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Tumor microbiome metabolism:
A game changer in cancer
development and therapy
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and Qingfei Zheng1,2*
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Accumulating recent evidence indicates that the human microbiome plays

essential roles in pathophysiological states, including cancer. The tumor

microbiome, an emerging concept that has not yet been clearly defined, has

been proven to influence both cancer development and therapy through

complex mechanisms. Small molecule metabolites produced by the tumor

microbiome through unique biosynthetic pathways can easily diffuse into

tissues and penetrate cell membranes through transporters or free diffusion,

thus remodeling the signaling pathways of cancer and immune cells by

interacting with biomacromolecules. Targeting tumor microbiome

metabolism could offer a novel perspective for not only understanding

cancer progression but also developing new strategies for the treatment of

multiple cancer types. Here, we summarize recent advances regarding the role

the tumor microbiome plays as a game changer in cancer biology. Specifically,

the metabolites produced by the tumor microbiome and their potential effects

on the cancer development therapy are discussed to understand the

importance of the microbial metabolism in the tumor microenvironment.

Finally, new anticancer therapeutic strategies that target tumor microbiome

metabolism are reviewed and proposed to provide new insights in

clinical applications.
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Introduction

The human microbiota is a broad category consisting of diverse bacteria, fungi,

protists, archaea, and viruses that occur in and on the human body (1). The total number

of these microbes is believed to be more than 100 trillion, which amounts to 2 kg in mass

(2). Due to its important pathophysiological role in human health and disease, the

microbiome has also been referred to as “the last human organ under active research” (3)
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and “the second brain” (4). Moreover, the number of unique

genes from the microbiome is estimated to be 100-fold higher

than that from human cells, as noted by the NIH Human

Microbiome Project (5, 6). The proteins encoded by these

genes and the metabolites biosynthesized by these microbes

are able to influence not only their own microbial

communities, but also the biological functions of host cells (7,

8). Notably, small molecule metabolites secreted by the human

microbiome affect local and systemic bodily functions, including

energy generation, metabolism of dietary components,

biosynthesis of vitamins, immune responses, behavior, and

even mood (9–11).

While microbes were implicated in diseases long ago, the

contributions of the tumor microbiome to carcinogenesis,

cancer progression, metastasis, and treatment have been

poorly understood until recently (12–14). Previous studies

have shown that microbes belonging to the genera Salmonella

and Helicobacter affect cellular dysplasia and carcinogenesis (15,

16). Microbiota homeostasis can also play a role in cancer

development (17). For instance, dysbiosis is associated with

the carcinogenesis of gastrointestinal (GI) and non-GI tumors

while also acting as an oncogenic driver of colorectal cancer

(CRC) (18). Current research indicates that human-associated

microbes interact with host cells and affect disease states,

especially cancer, via diverse mechanisms (19, 20). One key

mechanism is microbial metabolites serving as small molecule

messengers to mediate crosstalk between microbes and host cells

(21). Specifically, microbial metabolites can alter the tumor

microenvironment (TME) (22), which includes inflammatory

mediators, recruited immune cells, fibroblasts, adipocytes,

endothelial cells, and pericytes (22, 23), thereby directly

influencing cancer progression (23, 24) and the efficacy of

immunotherapy (1, 23). One well-studied example of this is

the genotoxic metabolite colibactin, produced by pathogenic

Escherichia coli, that can directly induce DNA double-strand

breaks (DSBs) (25), thus motivating CRC development (26).
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As the tumor microbiome metabolism exhibits direct and

indirect impacts on cancer development, novel therapy strategies

may be developed by targeting these unique metabolic pathways

(27, 28). Chemical biology, synthetic biology, and biomedical

engineering approaches facilitate the remodeling of the

microbiome-containing TME and will provide new

opportunities for the future development of bacterial, viral,

chemical, and immunological therapies.

In this review, we intend to highlight the tumor microbiome

and how it affects cancer development and therapy as a new

game changer. Among the multiple crosstalk mechanisms

between microbes and cancer cells, we specifically focus on the

unique metabolites produced by the tumor microbiome. The

chemical structures and biochemical mechanisms through

which tumor microbiome metabolism affects cancer biology

are addressed. Finally, yet importantly, the potential clinical

applications of targeting tumor microbiome metabolism

through multidisciplinary methods for future cancer therapy

have been proposed and discussed.
What is tumor microbiome?

The tumor microbiome is an emerging concept that has yet

to be clearly defined. It broadly refers to all microorganisms

located within the TME (Figure 1) and encompasses bacteria,

fungi, archaea, viruses, and other microbes (29) that contribute

to the reshaping of the microenvironment. These microbes are

widespread in the TME and inhabit inside or outside the tumor

cells and immune cells. It has long been in debate whether these

microbes constitute a predetermined niche or rather represent a

transient stochastic colonization (29).

Within cancer biology, intratumoral bacteria and their

effects are a newly raised concept (30). While bacteria were

observed in tumor isolates previously, it was assumed that these

were contaminants and were not associated with cancer cells
FIGURE 1

Schematic of human tumor microenvironment that contains tumor microbiome.
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(31). Recently, a large-scale analysis of over 1,500 clinical

samples indicated that the majority of the tumor microbiome

is intracellular bacteria that exhibit tumor-site-specific

properties (32). Intratumoral bacteria and host cancer cells

mutually influence each other through the transcriptome and

metabolome (33). Since these intracellular bacteria inhabit

cancer cells, direct crosstalk between host and microbes is

easily mediated by biomacromolecules and small molecule

metabolites. However, this still leads to a chicken-and-egg

situation—is the accumulation of intratumoral bacteria a cause

or effect of cancer? Further investigations are required to address

this question. Intracellular microbes hiding inside other type of

cells, such as macrophages and fibroblasts, have also been shown

to remodel the TME (34, 35) and thus affect cancer development

and treatment (36, 37).

On the other hand, viruses that directly cause cancer (also

known as oncoviruses) have been thoroughly studied. These

viruses currently include hepatitis B virus (HBV), hepatitis C

virus (HCV), human papillomaviruses (HPVs), Kaposi’s

sarcoma-associated herpesvirus (KSHV/HHV-8), human T-

lymphotropic virus (HTLV), Merkel cell polyomavirus (MCV),

and Epstein–Barr virus (EBV) (38). They induce cancer through

diverse mechanisms, such as the integration of viral DNA into

the host genome (39) and the inactivation of tumor suppressor

genes like p53 and Rb (40). Globally, these oncoviruses are

associated with approximately 10%–16% of cancer cases (41, 42).

It has also been suggested that other viruses, similar to the

bacteria mentioned previously, may play a role in carcinogenesis,

without directly causing cancer (37). Other microbes, such as

fungi, have also been implicated in cancer (43, 44), although this

is less studied.

Extracellular microorganisms in the TME, such as those in

the gut microbiota, oral microbiota, vaginal flora, and skin flora,

also play essential roles in cancer development (45–47) and have

significant impacts on curative outcomes (48). For instance, it

has long been known that the colonization byHelicobacter pylori

in stomach can directly cause gastric cancer (49), as well as

gastric mucosa–associated lymphoid tissue (MALT) lymphoma

(50). As a result,H. pylori is associated with approximately 5% of

cancers worldwide (42). Multiple studies have shown that the

gut microbiota interacts with the host by producing of a diverse

set of metabolites and toxins from exogenous dietary substrates

and endogenous host cellular compounds (51). Host metabolic

disorders are systematically associated with alterations in the

composition and function of the gut microbiota (52). Specific

classes of microbiota-derived metabolites, notably bile acids

(BAs), short-chain fatty acids (SCFAs), branched-chain amino

acids, trimethylamine N-oxide, and tryptophan and indole

derivatives, have been implicated in the pathogenesis of host

cell metabolic disorders, some of which directly relate to

carcinogenesis (53). In addition, the gut microbiome is

essential in shaping the development of innate and adaptive
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immunity (54) and plays an essential role in the clinical

efficiency of cancer immunotherapy (55).
Crosstalk between tumor
microbiome and cancer cells

The crosstalk between the tumor microbiome and cancer

cells is diverse and complex, involving cell–cell direct

interactions and messenger molecule-mediated effects

(Figure 2). With respect to host cell–microbe direct

interactions, intracellular microbe–induced autophagy and

extracellular microbe–caused inflammation are two well-

studied examples. For instance, it has been shown that

Fusobacterium nucleatum modulates the autophagy pathways

of CRC cells by targeting TLR4 and MYD88 innate immune

signaling and specific microRNAs, thereby promoting CRC

chemoresistance and migration (56). Moreover, it has been

accepted for decades that inflammation is a critical component

of tumor progression (57). Inflammatory cells significantly

influence the TME, thereby affecting neoplastic processes and

fostering the proliferation, survival, and migration of cancer cells

(58). Chronic, dysregulated, persistent, and unresolved

inflammation is associated with an increased risk of

malignancies, as well as the malignant progression of most

types of cancer (58). As microorganisms are one of the major

causes of inflammation, the tumor microbiome can manipulate

cancer development by remodeling the TME through the

recruitment of inflammatory cells. In fact, it has been pointed

out that bacterial infections can trigger chronic inflammation

that leads to host cell proliferation and tumor development (59).

Messenger molecule–mediated interactions between host

cells and microbes are another key machinery linking the

tumor microbiome to cancer progression. These messenger

molecules involve secreted proteins, peptide toxins, and small-

molecule metabolites. For example, the virulence factor

cytolethal-distending toxin produced by Campylobacter jejuni

is one of the major causes for infectious diarrhea worldwide and

has been shown to induce carcinogenesis in vivo (60, 61).

Moreover, tumor microbiome–derived small molecule

metabolites can reach remote tumor entities through systemic

circulation, free diffusion, and active transport (such as the

transport of lactate and pyruvate by proton-coupled

monocarboxylate transporters) (62). These metabolites are able

to stimulate antitumoral or carcinogenic innate immune

responses (22) via non-covalent interactions. For instance,

evolutionary conserved pathogen-associated molecular patterns

(PAMPs) from commensal microbes or pathogens can be

systematically sensed by the innate immune system via pattern

recognition receptors, such as Toll-like receptors and NOD-like

receptors, leading to the host’s innate immune responses (63).

There is evidence showing that bacterial PAMPs can boost
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antitumor immunity by augmenting Toll-like receptor signaling

and serving as cancer vaccine adjuvants (64–66). Additionally,

commensal gut bacteria can recruit natural killer T immune cells

to control the growth of liver tumors via their unique microbial

metabolism of BAs (67). Moreover, chemically reactive

metabolites from the tumor microbiome can promote or

inhibit tumor growth through the covalent modifications of

DNA, RNA, histones, and other essential enzymes involved in

host signaling transduction pathways (68). These modifications

can be enzymatic or non-enzymatic and are capable of inducing

cancer-causing and cancer-promoting epigenetic changes of

host cells (69). As a result of this complex crosstalk between

the host and tumor microbiome, both cancer and immune cells

change their own metabolic status to adapt to the reshaped

TME (70).

Furthermore, due to its novel metabolic and catabolic

pathways, the gut microbiome is capable of converting

human-ingested nutrients into functional microbial

metabolites that closely link diet, cancer, and other metabolic

diseases (19, 71, 72). These microbial metabolites produced by

microbes from diet, such as BAs and SCFAs, have significant

impacts on cancer and immune cells (73–78), thereby affecting

cancer development and immunotherapies through complex

mechanisms (79–81). Based on the important role of the
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microbiome in connecting diet and different types of cancer,

recent research advances have suggested that gut microbiota

modulation would become a novel strategy for prevention and

treatment of CRC (82). As diet and microbial communities affect

one another, dietary interventions have proven to be an efficient

approach to modulate the intestinal microbiota, which is in line

with the growing recognition of significant impacts of diet and

lifestyle on human health through microbiome regulation (83).
Metabolites produced by
tumor microbiome

The consequence of metabolism is the production of small

molecule metabolites, which are typically classified into two

categories: primary metabolites and secondary metabolites.

Primary metabolites are compounds that are directly involved

in an organism’s growth and development, while secondary

metabolites are not directly involved in these processes and

tend to vary more by species (84). There are a number of

primary metabolites produced by microbes that contribute to

cancer development or suppression, such as methylglyoxal

(MGO), SCFAs, BAs, reactive oxygen species (ROS), amines,

and methane (CH4) (85–87). These molecules are biosynthesized
FIGURE 2

Impacts of tumor microbiome on cancer development.
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by diverse human-associated microorganisms, including archaea

(88), bacteria (89, 90), fungi (90) protists (91) and parasites

(91, 92).

There are several examples of secondary metabolites with

well-established functions, such as colibactin, peptide aldehyde,

and thiopeptide, that have been known to affect cancer

development, and these metabolites have diverse chemical

structures (Figure 3). As a well-studied secondary metabolite

molecule, colibactin is a cytotoxin mainly produced by

pathogenic Escherichia coli, as well as other members of the

family Enterobacteriaceae. The production of colibactin was

shown to have a direct and significant association with CRC

via the induction of DNA DSBs (25, 26). Peptide aldehydes were

discovered as metabolites from a variety of microbes (including

E. coli, Bacillus subtilis, and Streptomyces species) and are known

to inhibit protease functions (93, 94), which may increase

carcinogenicity. Thiopeptides have complex structures and

strong antibacterial activities (95, 96), which can affect the
Frontiers in Oncology 05
distribution of human flora (97). In addition to being isolated

from multiple environmental microbes, thiopeptides have been

discovered from many microbial species in various parts of the

body, including Lactobacillus gasseri in the urogenital tract,

Propionibacterium acnes on the skin, Streptococcus downei in

the oral cavity, and Enterococcus faecalis in the gut (98).

Moreover, emerging studies have suggested that thiopeptides

may also serve as anticancer agents by targeting proteasomes

and transcription factor FOXM1 (99).
Impacts of tumor microbiome
metabolites on cancer development

Since small molecule metabolites from tumor microbiome

play essential roles in cancer development, we would like to

summarize some examples in this section to emphasize the

neglected but significant impacts of tumor microbiome
FIGURE 3

Chemical structures and functions of representative metabolites from tumor microbiome.
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metabolism on the TME (Figure 3). As stated above, colibactin’s

ability to cause DNA DSBs allows it to promote tumorigenesis

(100). Recently, it has been shown that colibactin also targets

bacteria by triggering prophage induction (101), which may

explain how this metabolite further affects the communities in

the tumor microbiome.

SCFAs are mainly bacterial fermentation products from

starch and other polysaccharides (102) and include a wide

range of molecules including acetate, propionate, butyrate, and

lactate (89). Among these, butyrate has been shown to potently

inhibit the activity of histone deacetylases (103–105), whereas

propionate does so moderately and acetate has no effect (106,

107). Lactate is known to play significant roles in the Warburg

effect and reverse Warburg effect (108–110), as well as affect

chromatin biology through histone modification (111, 112). It

has also been shown that SCFAs can: 1) modulate macrophage

functions by promoting the production of nitric oxide, IL-6, IL-

12 (113), and IL-22 (114); 2) induce the differentiation of Treg

cells (115–117); and 3) regulate the migration of neutrophils

(118). There are many connections between SCFAs and cancer,

where SCFAs function as a double-edged sword in

tumorigenesis. SCFAs have been implicated to have cancer-

promoting or cancer-suppressing effects that vary under

different conditions and with different types of cancer.

Previous research has shown that SCFAs are able to: inhibit

human colon cancer invasion (119, 120), inhibit the migration

and invasion of fibrosarcoma cells (121), increase IGF1 levels to

promote the proliferation of prostate cancer cells (122),

upregulate proapoptotic protein BAK (123), downregulate

adhesion protein a2b1 integrin (124), induce cell stress

responses and apoptosis in colorectal cells (125), inhibit

proliferation and increase differentiation and apoptosis of

adenocarcinoma cells (126), impair hypoxia-induced

angiogenesis (127), and regulate p53 expression (128, 129).

BAs are steroid derivatives that play essential regulatory

roles in the GI system and cancer development. While primary

BAs are produced by the liver, secondary BAs, mainly

deoxycholic acid and lithocholic acid, occur when primary

BAs are further metabolized by gut bacteria. Secondary BAs

have long been proposed to promote tumors (130). In addition,

further derivatives of secondary bile salts can cause apoptosis,

increase ROS production, and lessen pro-apoptotic effects (131).

Deoxycholic acid is believed to be associated with oncogenic

mutations of proto-oncogene KRAS (132) and can lead to DNA

DSBs and apoptosis (133). Lithocholic acid has been shown to

modulate Th17 and Treg cells (73), inhibit HLA class I genes

(134), and induce endoplasmic reticulum stress and

mitochondrial dysfunction in human prostate cancer cells

(135). Moreover, CRC cells can obtain resistance to apoptosis

after being exposed to specific bile salts (136, 137).

Polyamines are small molecule metabolites with two or more

amino groups, which exhibit a variety of functions. The most

common polyamines, putrescine, cadaverine, spermidine, and
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spermine, are metabolized from arginine (138) but can also be

produced by gut bacteria (139, 140). Polyamines are known to

protect cells from ROS (141) due to their reducing activities and

have been significantly correlated with CRC (142, 143).

Polyamines have been shown to be associated with inhibiting

the growth of prostate cancer cells (144–146), downregulating

estrogen receptor a in breast cancer cells (147), serving as a

downstream effector fromH. pylori, leading to DNA damage and

immune cell apoptosis in stomach cancer (148–151), and

increasing the risk for development of skin cancer in mouse

models (152, 153). Moreover, microbial polyamines exhibit

unique activities in the regulation of macrophage polarization

and function, thereby affecting host immune responses (154).

MGO is a chemically reactive dicarbonyl metabolite of glucose

metabolism (155, 156). In mammalian cells, MGO is mainly

generated as a byproduct through a non-enzymatic

dephosphorylation process during glycolysis, although it can also

be produced by tumor microbes that contain microorganism-

specific methylglyoxal synthases (88, 157). MGO can react with

nucleophilic groups of biomacromolecules, such as lysine and

arginine residues in proteins (158), as well as guanine residues in

DNA and RNA (159). This MGO-induced non-enzymatic covalent

modification (glycation) can result in the formation of advanced

glycation end products (AGEs) (160–162) and changes in the three-

dimensional chromatin architecture (163–165). It has been shown

that elevated levels of MGO in the TME lead to the overexpression

of anMGO detoxifier, glyoxalase I (Glo1), in cancer cells (166, 167).

There is evidence showing that low concentrations of MGO are

beneficial for cancer cell growth, while high levels of MGO

contribute negatively to cell survival by disrupting multiple

signaling pathways (168, 169). The biphasic model proposed

recently is a convincing explanation for the function of MGO-

induced glycation in manipulating chromatin damage and cancer

cell survival (166). Moreover, the recently identified histone MGO-

glycation eraser and rewriter enzymes, DJ-1 and PAD4, have been

recognized to possess cancer-promoting effects as oncoproteins

(163, 164). Thus, developing deglycase activity–oriented high-

throughput screening assays for identifying DJ-1 and PAD4

inhibitors will provide new insights for the mechanistic studies of

host deglycation pathways, as well as clinical applications (170).
Targeting tumor microbiome for
cancer therapy

As noted above, due to the inseparable connections between

microbes, host immune cells, and cancer cells, targeting the

tumor microbiome seems to be a practical tactic for cancer

therapy (Figure 4). Specifically, strategies include the

development of wild-type and/or engineered microbes for

bacterial and viral therapies and the application of chemical

biology, synthetic biology, and biomedical engineering to target
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the tumor microbiome metabolism for reshaping TME. Ideally,

with a deeper understanding of the tumor microbiome’s

function in the TME and cancer development, we could build

up an artificial ecosystem of microorganisms in the TME to

prevent cancer cells from spreading and enhance the efficiency

of immunotherapy.

Based on their functions in suppressing or promoting cancer

progression, microbes within the TME can be classified to

“good bugs” or “bad bugs” for cancer therapies (171). A

straightforward treatment strategy is to take advantage of

“good bugs” and get rid of “bad bugs” in the TME. For

example, Enterococcus species have been noted to promote

responses to immune checkpoint immunotherapy (ICI) (172).

Bifidobacterium pseudolongum and Akkermansia muciniphila

were observed to produce the metabolite inosine, which
Frontiers in Oncology 07
enhances ICI through Th1 activation (173). Following

biomaterial modulation, mice with increased levels of

Peptostreptococcus anaerobius and reduced levels of other

bacterial species responded better to oral squamous

cell carcinoma ICI (174). Bacteria belonging to the

Gammaproteobacteria family have been found to inactivate the

chemotherapy drug gemcitabine, which is often used for the

treatment of pancreatic ductal adenocarcinoma (175). Overall,

modulating the microbial communities in the TME can provide

new opportunities for cancer therapies (176). Accordingly,

synthetic biology approaches have been applied to engineer

specific tumor microbiome species to develop enhanced

bacteria-based cancer therapies. For instance, as low

concentrations of L-arginine can cause poor responses to PD-

L1 ICI, probiotic strain E. coli Nissle 1917 was engineered to
FIGURE 4

Summary of therapeutic strategies targeting tumor microbiome metabolism.
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convert ammonia to L-arginine, thereby increasing T-cell

infiltration and enhancing ICI (177). Additionally, Nissle 1917

and other E. coli strains were engineered to release nanobodies

with diverse functions to motivate T-cell infiltration and tumor

shrinkage (178, 179). There are also a number of clinical trials in

various phases regarding the applications of engineered bacteria

for cancer therapies, some of which have shown promising

results (180) (Table 1).

Similarly, oncolytic virotherapy has also been applied as an

immunotherapy for cancer treatment (181–183). For example,

alphavirus M1 was identified for such use, as it specifically

targets cancer cells deficient in zinc-finger antiviral protein

(184). Engineered oncolytic viruses expressing PD-L1

inhibitors have clinical potentials for curing cancers resistant

to PD-1/PD-L1 ICI, as they are able to activate tumor

neoantigen–specific T-cell responses (185). Notably,

virotherapy has been approved in some countries for use

against cancer. Imlygic, which is engineered from herpes

simplex virus I (HSV1) and contains granulocyte-macrophage

colony-stimulating factor, was approved in 2015 by the US Food

and Drug Administration and European Medical Agency for the

treatment of melanoma (186). G47D, which is engineered from

HSV1, was approved in 2021 by Japan Ministry of Health, Labor

and Welfare for the treatment of malignant glioma and other

brain cancers (187). Oncorine, which is engineered from

adenovirus, was approved in 2005 by the China Food and

Drug Administration Department in combination with

chemotherapy for the treatment of nasopharyngeal carcinoma

(186). Moreover, there are other oncolytic virotherapies

engineered from HSV1, adenovirus, and measles virus

currently in various phases of clinical trials (186) (Table 1).

The toxins and chemicals extracted from microbes can also

be used for cancer treatment. This strategy dates back to the late

19th century when Coley’s toxins (a mixture of toxins filtered

from killed Streptococcus pyogenes and Serratia marcescens) were

utilized to cure cancer (188). Although this was an unstable

approach with poor repeatability, the application of Coley’s

toxins led to milestone breakthroughs in immuno-oncology,

such as the discovery of tumor necrosis factor a (TNF-a) (189).
TNF-a has since been identified to suppress tumor growth and

improve the efficacy of immunotherapy by activating cell death

pathways (190, 191). Commensal bacteria have been found to

play significant roles in CpG-oligodeoxynucleotide

immunotherapy, which depend on the increased production of

TNF-a (192). Microbial SCFAs have also been shown to

improve CAR-T cell therapy by enhancing the levels of TNF-a
in different cancer models (193).

Last but not least, recent advances in biomedical engineering

have provided new opportunities for cancer treatment by

targeting the tumor microbiome. For example, the utilization

of biomaterials, such as nanoparticles (194, 195) and hydrogels

(174), to modulate and deliver microbial communities to specific

sites of the TME opens a new door for future cancer therapies
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(Figure 4). These novel materials can be designed to be stimuli

responsive (196) and utilized for the controlled and targeted

release of toxic chemotherapy drugs (197), therapeutic

antibodies (198, 199), CAR-T cells (200, 201), or live microbes

to reshape the TME (202–204). These applications of new

biomaterials will offer a promising platform for basic and

translational research and will accelerate clinical outcomes of

drugs that may have poor solubility and high toxicity.
Outlook and perspectives

In this review, we have summarized the research process of

the tumor microbiome, mainly focusing on the impacts of its

unique microbial metabolism on cancer development and

therapy. Over the past few decades, microorganisms have been

regarded only as a cause of infectious disease. The

pathophysiological functions of human-associated microbes

have long been neglected until recently when the microbiome

was identified to manipulate and affect diverse disease states, as

well as therapeutic efficacy. The impacts of the human

microbiome are so broad that research papers on the topic

have exploded in the past few years. Accordingly, a number of

new concepts have been raised to describe the omnipotent

human microbiota, including the “brain-gut axis” and “second

brain.” Despite these, the tumor microbiome still lacks a precise

definition. Nevertheless, the tumor microbiome plays

constructive roles in cancer biology, some of which are still

elusive. Among these macro- and micropathophysiological

effects induced by the tumor microbiome, small molecule

metabolite–mediated crosstalk appears to be particularly

important due to the free diffusion of metabolites that can

easily impact local and distant tumor tissues via covalent

modifications and/or non-covalent interactions. Here, we have

provided representative examples to emphasize the role of tumor

microbiome metabolism as a game changer in cancer biology

and clinical treatment, as well as its broad biomedical effects that

were once disregarded.

Targeting the pathways of microbial metabolism and

crosstalk between host and microbes will provide future

avenues for cancer diagnosis, treatment, and recovery.

Accordingly, therapy strategies have been developed at distinct

levels to target tumor microbiome metabolism: 1) directly

applying wild-type or engineered live microbes in immuno-

oncology; 2) utilizing the microbial-extracted fractions or

synthetic chemicals that interfere with corresponding

metabolic pathways for cancer treatment; and 3) utilizing

rationally designed biomaterials to rebuild a benign TME by

modulating the microbial ecosystem. All in all, after having a

deeper understanding of the close correlation between the tumor

microbiome and human cancer, we would change our

perception of these microorganisms’ identities in tumor tissues

from “short-term tenants” to “permanent residents.”
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TABLE 1 Representative microorganisms applied for cancer therapy.

Microorganism Clinical
Phase

Cancer Type Status (Trial
Identifier)

Salmonella Typhimurium VNP20009 I Metastatic melanoma or renal cell carcinoma Results published (N/A)

Salmonella Typhimurium TAPET-CD (VNP20009 expressing
cytosine deaminase)

I Head and neck solid cell carcinoma or esophageal
adenocarcinoma

Results published (N/A)

Salmonella Typhimurium (c4550 expressing human IL-2) I Liver metastases of solid tumors Results published
(NCT01099631)

Salmonella Typhimurium VXM01 (Ty21a expressing VEGFR2) I Pancreatic cancer Completed
(NCT01486329)

Clostridium novyi-NT I Solid tumor malignancies Results published
(NCT01924689)

Clostridium novyi-NT Ib Treatment-refractory advanced
solid tumors

Recruiting (NCT03435952)

CRS-100 (live-attenuated Listeria monocytogenes) I Liver metastases of solid tumors Completed
(NCT00327652)

Listeria monocytogenes II Metastatic pancreatic tumors Results published
(NCT01417000)

Listeria monocytogenes II Cervical cancer Results published
(NCT01266460)

VE800 (11 commensal bacteria strains) I/II Metastatic cancer, melanoma, gastric cancer, or
colorectal cancer

Active (NCT04208958)

MET-4 bacterial strains N/A Locoregionally-advanced oropharyngeal squamous
cell carcinoma

Recruiting (NCT03838601)

Enterococcus strain MNC-168 I Advanced malignant solid tumors Not yet recruiting
(NCT05383703)

Lactobacillus johnsonii LA1 and Bifidobacterium longum BB536 II Colorectal cancer Completed
(NCT00936572)

Plasmodium vivax I/II Non-small cell lung cancer Unknown (NCT02786589)

Plasmodium vivax I/II Advanced breast cancer or advanced liver cancer Unknown (NCT03474822)

Agaricus bisporus extract I Breast cancer recurrence Completed
(NCT00709020)

Agaricus bisporus extract I Prostate cancer recurrence Completed
(NCT00779168)

Trametes versicolor extract I Breast cancer Completed
(NCT00680667)

Ganoderma lucidum spore II Non-small cell lung cancer Unknown (NCT02844114)

Ganoderma lucidum III Pediatric cancers Completed
(NCT00575926)

Modified measles virus I Mesothelioma Completed
(NCT01503177)

Modified measles virus I Ovarian cancer and peritoneal cavity cancer Results published
(NCT00408590)

GL-ONC1 (modified vaccinia virus) I Solid tumors Completed
(NCT00794131)

M032 (modified herpes simplex virus) I Glioblastoma, astrocytoma, or gliosarcoma Active (NCT02062827)

G207 (modified herpes simplex virus) I/II Glioblastoma, astrocytoma, or gliosarcoma Completed
(NCT00028158)

H101 (modified adenovirus) N/A Gynecological cancer Recruiting (NCT05051696)

Modified fowlpox virus and modified vaccina virus II Prostate cancer Completed
(NCT00003871)

Talimogene laherparepvec (modified herpes simplex virus) III Melanoma Results published
(NCT00769704)

Pexastimogene Devacirepvec (modified vaccinia virus) III Hepatocellular carcinoma Results published
(NCT02562755)
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Microorganisms including bacteria (in blue), protists (in orange), fungi (in green), and viruses (in gray) have been utilized in clinical trials for cancer treatment. All information is from
ClinicalTrials.gov.
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