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Comprehensive analysis of fatty
acid and lactate metabolism–
related genes for prognosis
value, immune infiltration,
and therapy in
osteosarcoma patients

Zhouwei Wu1†, Tao Han1†, Haohan Su1†, Jiangwei Xuan2*

and Xinwei Wang2*

1Department of Orthopaedic Surgery, the Second Affiliated Hospital of Wenzhou Medical
University, Wenzhou, China, 2Department of Orthopaedic Surgery, Zhuji Affiliated Hospital of
Wenzhou Medical University, Zhuji, China
Osteosarcoma is the most frequent bone tumor. Notwithstanding that

significant medical progress has been achieved in recent years, the 5-year

overall survival of osteosarcoma patients is inferior. Regulation of fatty acids

and lactate plays an essential role in cancer metabolism. Therefore, our study

aimed to comprehensively assess the fatty acid and lactate metabolism pattern

and construct a fatty acid and lactate metabolism–related risk score system to

predict prognosis in osteosarcoma patients. Clinical data and RNA expression

data were downloaded from the Therapeutically Applicable Research to

Generate Effective Treatments (TARGET) and Gene Expression Omnibus

(GEO) databases. We used the least absolute shrinkage and selection

operator (LASSO) and Cox regression analyses to construct a prognostic risk

score model. Relationships between the risk score model and age, gender,

tumor microenvironment characteristics, and drug sensitivity were also

explored by correlation analysis. We determined the expression levels of

prognostic genes in osteosarcoma cells via Western blotting. We developed

an unknown fatty acid and lactate metabolism–related risk score system based

on three fatty acid and lactate metabolism–related genes (SLC7A7, MYC, and

ACSS2). Survival analysis showed that osteosarcoma patients in the low-risk

group were likely to have a better survival time than those in the high-risk

group. The area under the curve (AUC) value shows that our risk score model

performs well in predicting prognosis. Elevated fatty acids and lactate risk

scores weaken immune function and the environment of the body, which

causes osteosarcoma patients’ poor survival outcomes. In general, the

constructed fatty acid and lactate metabolism–related risk score model can

offer essential insights into subsequent mechanisms in available research. In

addition, our study may provide rational treatment strategies for clinicians

based on immune correlation analysis and drug sensitivity in the future.
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Introduction

Osteosarcoma is the most frequent solid malignancy of bone,

and it is common in children and adolescents (1). The incidence

of osteosarcoma is approximately 2–3 million per year in the

general population and about 8–11 million annually in the 15–

19 years of age population (2). Metastasis is also common in

osteosarcoma patients, approximately 15–30% of osteosarcoma

patients with metastasis (3, 4). Osteosarcoma often accompanied

the progression of metastatic disease if it was untreated (2).

Before the introduction of polychemotherapy, more than 90% of

patients with osteosarcoma died from lung metastases. Although

the general management of osteosarcoma with metastasis has

improved dramatically, the prognosis of patients with metastatic

osteosarcoma is still inferior (5). The long-term survival is nearly

less than 20% among patients with metastatic osteosarcoma (2).

Therefore, developing accurate and reliable biological indicators

for prognostic prediction and individualized treatment is urgent.

Due to the proliferation of cancer cells, the overall cancer

microenvironment is characterized by high oxidation, acidity,

malnutrition, and hypoxia. Therefore, tumor cells have different

metabolic characteristics than normal cells, which leads to a

significant difference in metabolites in cancer cells with normal

cells (6, 7). Recently, fatty acid metabolism, essential for many

biological activities, has attracted much attention in cancer cells

(8, 9). Fatty acid metabolism is closely related to cancer

development. Similarly, lactate, a significant carbon source for

cell metabolism, has been pointed out that plays an essential role

in cancer development, maintenance, and therapeutic response

(10, 11). Lactate metabolism is also related to cancer metabolism

and prognosis. Lactate has been proved to regulate all aspects of

cancer cell behavior (12). However, the association between fatty

acid metabolism and lactate metabolism–related genes and the

prediction of osteosarcoma has not been illustrated.

As we all know, the prognostic prediction model of cancers

has a critical role in clinical applications and improves patients’

prognostic management. Fatty acid and lactate metabolism plays

an essential role in the progress and development of cancer.

Therefore, we were trying to comprehensively assess the fatty

acid metabolism and lactate metabolism pattern and construct a

fatty acid and lactate prognostic risk score system to predict

prognosis in osteosarcoma patients. The prognostic risk score

model system could predict the survival of osteosarcoma.

Moreover, we also investigated the relationship between the

prognostic risk score system and tumor microenvironments
02
(TMEs) cell-infiltrating characteristics. Our study may provide

a novel perspective for exploring osteosarcoma’s metabolic

mechanism and treatment.
Materials and methods

Data collection

We extracted RNA sequencing (RNA-seq) and corresponding

clinical data of 84 osteosarcoma patients (63 cases without

metastasis and 21 cases with metastasis) from the

Therapeutically Applicable Research to Generate Effective

Treatments (TARGET) database. We downloaded the RNA-seq

data and clinical information of 53 osteosarcoma patients of the

external validation cohort from the Gene Expression Omnibus

(GEO) database (GSE21257) as an external validation cohort. We

extracted 345 fatty acid metabolism– and lactate metabolism–

related genes from the Molecular Signatures Database (MSigDB;

https://www.gsea-msigdb.org/gsea/msigdb/index.jsp) and

previous studies (shown in Supplementary Table S1) (13–15).
Identification of differentially expressed
fatty acid and lactate metabolism–
related genes

Before comparing, we first normalized expression data to

fragment per kilobase million (FPKM) values. We used the

“limma” R package to find different expressions of fatty acid

and lactate metabolism–related genes. Then we constructed a

correlation network for different expression of fatty acid and

lactate metabolism–related genes. To explore the connections

between the expression of the 18 fatty acid and lactate

metabolism–related differentially expressed genes (DEGs) and

osteosarcoma, we performed a consensus clustering analysis

with 84 osteosarcoma patients.
Development and validation of the fatty
acid and lactate metabolism–related
genes prognostic model

Univariable Cox regression analysis was used to assess the

relationship between each gene and prognosis in the TARGET
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cohort. It could provide the prognostic score for fatty acid and

lactate metabolism–related genes. A p < 0.05 was set as criterion

for genes included for further analysis. The regression of the least

absolute shrinkage and selector operation (LASSO) was

conducted to shrink the potential genes and build the

prognostic prediction model. Then, non-zero regression

coefficients were conducted in the TARGET cohort to

variables for multivariable Cox regression analysis and further

established the fatty acid metabolism and lactate metabolism risk

score. The formula calculating for the risk score was provided in

a previous study (16). High-risk and low-risk score groups were

divided according to the median of the fatty acid metabolism

and lactate metabolism risk score. Kaplan–Meier survival curve

was conducted to show the prognosis of the two groups, followed

by the log-rank test to show a significant difference. We

calculated the area under the curve (AUC) value to evaluate

the performance of the risk score system. Finally, the fatty acid

and lactate metabolism–risk score system was externally

validated in the GSE21257 validation cohort.
Prognostic analysis of the risk score and
development of a nomogram

We combined clinical information (age, gender, and

metastatic status) of patients in the TARGET cohort with the

risk score to include in univariate and multivariable Cox

regression analysis. A nomogram was built to predict the

prognosis of osteosarcoma patients based on the multivariable

Cox regression analysis results. Calibration curves also evaluated

the performance of the nomogram in the GSE21257 cohort.
Functional enrichment analysis

To further explore the differences in the gene functions and

pathways between the subgroups categorized by the risk model, we

utilized the “limma” R package to extract the DEGs by applying the

criteria FDR < 0.05 and |log2FC| ≥ 1. Gene ontology (GO)

enrichment analysis and Kyoto Encyclopaedia of Genes and

Genomes (KEGG) pathway analysis were performed based on

these DEGs. The single-sample Gene Set Enrichment Analysis

(ssGSEA) was conducted in high- and low-risk groups further to

explore the infiltrating scores of immune cells and activity of

immune-related pathways. At the same time, Benjamini–Hochberg

(BH) correction method was used to calculate the adjusted p-value.
Tumor immune microenvironment

We evaluated the cell infiltration levels in osteosarcoma via

calculating the immune score and stromal score. The “estimate”

R package can generate immune and stromal scores (17). We
Frontiers in Oncology 03
utilized the estimate algorithm to calculate the infiltration levels

of immune and stromal cells. We applied Spearman correlation

analysis to analyze the relationships between risk score and

immune and stromal cells.
Drug susceptibility analysis

We download the transcriptional expression of NCI-60

human cancer cell lines. We used Pearson correlation analysis

to determine the correlation between predictive genes and

drug sensitivity.
Cell lines and cultures

A human osteoblast cell line (hFOB1.19) and two human

osteosarcoma cell lines (U20S and 143B) were purchased from

the National Collection of Authenticated Cell Cultures

(Shanghai, China). The cells were cultured in Dulbecco’s

modified Eagle’s medium (DMEM, Gibco, Thermo Fisher

Scientific, MA, the USA) containing 1% penicil l in/

streptomycin (Thermo Fisher Scientific, MA, the USA) and

10% fetal bovine serum (FBS, Gibco, Thermo Fisher Scientific,

MA, the USA). We cultured the human osteoblast cell line at 34°

C with 5% CO2 and the osteosarcoma cell lines at 37°C with

5% CO2.
Western blotting

Total cell protein was extracted with RIPA lysis buffer

(Beyotime), and their concentrations were determined using a

BCA protein detection kit (Thermo Fisher Scientific). Next,

proteins were separated by PAGE (12%) and transferred to

PVDF membranes. After blocking with skim milk (5%, w/v) for

2 h at 25°C, membranes were incubated with the following primary

antibodies overnight at 4°C: SLC7A7 (1: 1000, Abcam, Cambridge,

UK, ab236669), MYC (1: 1000, Cell Signaling Technology, MA, the

USA, 18583), ACSS2 (1: 1000, Cell Signaling Technology, MA, the

USA, 3658), and GAPDH (1: 1000, ABclonal, Wuhan, China,

AC001). Membranes were then incubated with HRP-labeled IgG

secondary antibody (1:2000, Beyotime, #Shanghai, China, A02080)

for 2 h at 25°C. Protein bands on the membrane were then

visualized using the ECL Plus kit (Meilunbio, Dalian, China).

Finally, the band intensity was quantified via Image Lab 3.0

software (BioRad, Hercules, CA, USA).
Statistical analysis

All statistical analysis was conducted using R software

(Version: 3.6.1) and GraphPad Prism (Version: 7.00). We used
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a t-test to calculate the difference of continuous variables

between binary groups. In contrast, the Pearson chi-square test

was used to compare the categorical variables. The Mann–

Whitney test was used when comparing the immune cell

infiltration and immune pathway activation between the two

groups. Western blot data were expressed as M ± SE, and

analysis of variance (ANOVA) was used to compare

differences between the two groups. P < 0.05 was considered

statistically significant.
Results

Screening and functional analysis of fatty
acid and lactate metabolism–related
DEGs

The 345 fatty acid metabolism– and lactate metabolism–

related gene expression levels were compared in the pooled

TARGET data from metastatic and non-metastatic tissues. We

identified 18 DEGs. The RNA expression levels of these genes

are shown in Figure 1A. We conducted a correlation analysis to

investigate further the interactions between these fatty acid and

lactate metabolism–related genes. We set the minimum required

interaction score for the correlation analysis at 0.1, and we

determined that DEGs (SDHA, SCO1, PET100, MYC, CARS2,

ACSL5, SLC7A7, ACOT7, CALR, ACSS2, HACD1, ELOVL5,

ACSS3, CFH, HSD17B12, ACSL3, CRPPA, and TP53) were hub

genes (Figure 1B).
Frontiers in Oncology 04
Cancer classification based on the DEGs

When the clustering variable (k) was increased from 2 to 10,

the intragroup correlations were decreased. So, when k = 3, the

osteosarcoma patients could be divided into three clusters based

on the 18 fatty acid metabolism– and lactate metabolism–related

DEGs (Figure 2A). The survival rate was then compared between

the three clusters, and we found a significant difference in

survival rate between these clusters of patients (Figure 2B).
Development of a prognostic fatty acid
metabolism and lactate metabolism
risk score

We firstly used univariate Cox regression to screen the genes

related to survival. Three genes (SLC7A7, MYC, and ACSS2) met

the P < 0.05. As shown in Figure 3A, MYC was a risk factor,

whereas other genes were protective factors. Then, we conducted

the LASSO regression analysis, and according to the optimum l
value, a 3-gene signature was constructed (Figures 3B, C). The risk

score was calculated as follows: risk score = (-0.360* SLC7A7 exp.)

+ (0.454*MYC exp.) + (-0.749* ACSS2 exp.). As shown in

Figures 3D, E, patients were divided into low- and high-risk

subgroups based on the median risk score. The results of principal

components analysis (PCA) and t-distributed stochastic neighbor

embedding (t-SNE) indicated that patients with high or low risk

were separated into two groups that had significantly different

survival times (Figures 3F, G). Kaplan–Meier survival curve
BA

FIGURE 1

Expressions of the 18 fatty acid and lactate metabolism–related genes and the interactions among them. (A) Heat map (blue: low expression
level; red: high expression level) of the fatty acid and lactate metabolism–related genes between the non-metastatic (nonmetastatic, brilliant
blue) and the metastatic tissues (metastatic, red). P-values were showed as *P < 0.05; **P < 0.01. (B) The correlation network of these genes
(Cutoff = 0.1; red line: positive correlation; blue line: negative correlation).
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showed the prognosis was much worse in the high-risk group

(Figure 3H, P < 0.001). The AUC values were higher than 0.7 for

1-, 3-, and 5-year survival predictions (Figure 3I).
External validation of the fatty acid and
lactate metabolism risk score

Fifty-three osteosarcoma patients from a GEO cohort

(GSE21257) were extracted as the external validation cohort.

Based on the above risk score, the validation cohort was divided

into high- and low-risk groups (Figures 4A, B). As shown in

Figures 4C and 4D, the PCA and t-SNE results showed a

satisfactory separation between the two groups. In addition, the

Kaplan–Meier curve results also indicated a significant difference in

prognosis between the two groups (Figure 4E, P = 0.032). AUC

values of external validation also stated a good prediction

performance for 1-, 3-, and 5-year survival (Figure 4F).
The expression levels of three fatty acid
and lactate metabolism–related genes
in osteosarcoma

To demonstrate the importance and relevance of the genes in

osteosarcoma, we further used Western blotting analysis to

investigate the expression of three fatty acid and lactate

metabolism–related genes between osteoblasts and osteosarcoma

cells. Results showed that the expression levels of SLC7A7 and

ACSS2 were significantly decreased in two osteosarcoma cell
Frontiers in Oncology 05
groups (U20S and 143B) compared with the osteoblast cell group

(hFOB), whereas MYC was up-regulated in osteosarcoma groups

(Figures 5A, B).
Development of a nomogram based on
fatty acid and lactate metabolism
risk score

We integrated the fatty acid metabolism and lactate

metabolism risk score with other clinical factors (age, gender, and

metastatic status) to build a nomogram for prognosis prediction

(Figure 6A). The curves indicated this prognosis prediction

nomogram with excellent performance. 1-, 3-, and 5-year

calibration curves showed that the nomogram had a superb

consistency in predicting the survival rate (Figure 6B).
Independent prognostic value of the
risk model

We conducted univariate and multivariable Cox

regression analyses to evaluate the significance of risk score

for prognostic prediction. The results of Cox regression

analysis indicated that the risk score was significantly associated

with prognosis (Figures 7A, B). A heat map was built to show the

difference between fatty acid and lactate metabolism–related gene

expression and clinical features in different groups (Figure 7C). The

clinical features of osteosarcoma patients were shown in

Supplementary T1.
BA

FIGURE 2

Tumor classification based on the fatty acid and lactate metabolism–related DEGs. (A) Eighty-four OS patients were grouped into three clusters
according to the consensus clustering matrix (k = 3). (B) Kaplan–Meier OS curves for the three clusters.
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Functional analyses based on the
risk model

Thirty-eight DEGs between the low- and high-risk groups

were identified. Among them, eight genes were up-regulated in

the high-risk group, whereas 30 genes were down-regulated

(Supplementary T2). We performed GO enrichment and

KEGG pathway analysis based on these DEGs (Figures 8A, B).

We found that immune regulation (negative regulation of

immune system process, antigen process and presentation of

antigen, endocytic vesicle and membrane, MHC class II–related

pathways, and T-cell differentiation) were significantly enriched.

The results showed that DEGs were mainly related to the

immune system process, inflammatory response, and immune-

related signaling pathways.
Frontiers in Oncology 06
Immune status and tumor
microenvironment

We further used ssGSEA to evaluate the enrichment scores of

16 types of immune cells and the activity of 13 immune-related

pathways between the high- and low-risk groups in two cohorts.

Results showed that CD8+ T cells, dendritic cells (DCS),

macrophages, neutrophils, natural killer (NK) cells, pDCs, T

helper cells, tumor-infiltrating lymphocytes (TIL), and Treg were

significantly different between the low-risk and high-risk groups.

The scores of immune cells were lower in the high-risk group

(Figure 9A). Moreover, we indicated that the immune scores of

antigen presenting cell (APC) co-inhibition, antigen presenting

cell (APC) co-stimulation, CCR, checkpoint, cytolytic activity,

HLA, inflammation-promoting, MHC, para inflammation, T-cell
B C

D E F

G H I

A

FIGURE 3

Construction of risk signature in the TARGET cohort. (A) Univariate Cox regression analysis of overall survival for each fatty acid and lactate metabolism–
related gene, and three genes with P < 0.05. (B) Cross-validation for tuning the parameter selection in the LASSO regression. (C) LASSO regression of
the three overall survival-related genes. (D) Distribution of patients based on the risk score. (E) The survival status of low-risk and high-risk population.
(F) PCA plot for osteosarcoma patients based on the risk score. (G) The t-SNE analysis based on the risk score. (H) Kaplan–Meier curves for the overall
survival of patients in the high- and low-risk groups. (I) ROC curves demonstrated the predictive efficiency of the risk score.
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co-inhibition, and type I IFN response were significantly higher in

high-risk group (Figure 9B). The enrichment scores of these

immune cells and the immune pathways were also lower in the

high-risk group in the GEO cohort (Figures 9C, D). Our results

may explain the more significant the threat of osteosarcoma to the

body, the easier it is to weaken the immune response. The

Spearman correlation analysis was used to evaluate further the

relationship between stromal, immune, and risk scores. We found

that the risk score has a negative correlation with the immune

score in the TARGET cohort (p < 0.05; Figure 10A), and the risk
Frontiers in Oncology 07
score was also negatively associated with the stromal score (p <

0.05; Figure 10B). In addition, we draw similar conclusions in the

GEO cohort (Figures 10C, D).
Drug susceptibility analysis

To study the sensitivity of prognostic genes to

chemotherapeutic drugs, we downloaded data from the NCI-

60 panel of human cancer cell lines. We investigated the
B C

D E F

A

FIGURE 4

Validation of the risk model in the GEO cohort. (A) Distribution of patients in the GEO cohort based on the median risk score in the TARGET
cohort. (B) The survival status of low-risk and high-risk population. (C) PCA plot for osteosarcoma patients. (D) The t-SNE analysis based on the
risk score. (E) Kaplan–Meier curves for comparison of the overall survival between low- and high-risk groups; (F) Time-dependent ROC curves
for osteosarcoma patients.
BA

FIGURE 5

The expression levels of fatty acid and lactate metabolism related genes between osteosarcoma cell lines and osteoblasts. (A) Western blotting
analysis of the expressions of SLC7A7, MYC, and ACSS2 proteins in hFOB, U20S, and 143B groups. GAPDH serves as an internal standard. The
gels have been run under the same experimental conditions. (B) A histogram of the OD values of SLC7A7, MYC, and ACSS2 in each group (n = 3
per group). The obtained data are represented as M ± SE. Significance: **p < 0.01 versus hFOB group.
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association between three fatty acid and lactate metabolism–

related genes and common anticancer drug sensitivity

(Supplementary T3). The top 16 correlation analysis results

are provided based on the p-value (Figure 11). MYC is an

important therapeutic target, which is sensitive to irofulven,

dromostanolone propionate, oxaliplatin, hydroxyurea,

belinostat, parthenolide, etoposide, chlorambucil, lomustine,

ifosfamide, carmustine, palbociclib, dacarbazine, and LEE-011

(all p < 0.005). The expression of ACSS2 is insensitive to

oxaliplatin (p = 0.002). Moreover, SLC7A7 is sensitive to

decitabine (p = 0.002).
Discussion

Osteosarcoma is the most frequent solid malignancy of bone

and with high metastatic potential. The prognosis of

osteosarcoma patients with metastasis is inferior. Many risk

score systems for prognostic prediction have been developed for

cancer patients. Recently, fatty acid metabolism and lactate

metabolism in cancer cells have received increasing attention.

Fatty acid metabolism regulation can meet energy demands and

affect cancer cell proliferation, growth, and transformation (18).

Lactic acid is critical for epigenetic modification and DNA repair

in cancer cells (19). Some scholars have shown that reducing the

production and output of lactic acid in the extracellular

environment can weaken the driving or maintenance of

chemoresistant characteristics of tumor cells (20). Low

extracellular pH has many benefits for the survival of tumor

cells, including chemotherapy resistance (21). The above two

metabolisms were significantly associated with cancer

progression. Therefore, it is imperative to comprehensively

investigate fatty acid and lactate metabolism to predict the

outcomes and therapeutic responses for osteosarcoma patients
Frontiers in Oncology 08
with metastasis. Prognostic prediction is critical in clinical

applications and improves patients’ prognostic management.

As far as we know, this is the first study developing a risk

score model for predicting prognosis and therapeutic efficacy for

osteosarcoma patients.

We identified 18 DEGs; three were determined to construct a

risk score model using LASSO and Cox regression analyses. The

performance of this model was confirmed by internal and

external validation, which showed a robust survival prediction

performance. In addition, a nomogram was constructed via the

integration of the fatty acid metabolism and lactate metabolism–

based risk scores with clinical factors (age, gender, and

metastatic status), which could help predict the survival of

patients and guide the follow-up of individual treatments.

Our present study constructed a novel fatty acid and lactate

metabolism–risk score model including three genes (SLC7A7,

MYC, and ACSS2). SLC7A7 (solute carrier family 7, amino acid

transporter light chain, y + L system, member 7) is a critical gene

in the regulation of cationic amino acid transport (22).

Mutations in SLC7A7 may cause transporter dysfunction (23).

Overexpression of SLC7A7 is correlated with poor prognosis in

patients with glioblastoma (24). Besides, SLC7A7 has been

highly expressed in chemotherapy-resistant ovarian cancer and

is associated with chemotherapy outcomes (25). More

importantly, the expression of SLC7A7 was significantly

increased in monocytes during macrophage differentiation

(26). However, the role of SLC7A7 in osteosarcoma

progression and immunology is still unclear (27). Our study

pointed out that the expression of SLC7A7 is significantly

associated with the prognosis of osteosarcoma. Our study

showed that the expression level of SLC7A7 was significantly

decreased in osteosarcoma groups based onWestern blot results.

We speculated that the proliferation and migration of

osteosarcoma cells can down-regulate their SLC7A7
BA

FIGURE 6

Construction and calibration of nomogram. (A) Nomogram integrating risk score and clinical characteristics. (B) Calibration of the nomogram at
1-, 3-, and 5-year survival in the TARGET cohort.
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expression. MYC is a regulator of gene transcription and

controls a diverse set of biological programs (28, 29). MYC

can promote programs of proliferative cell growth; thus, MYC is

frequently up-regulated in tumors (30). MYC is associated with

many cancers’ progression (31). For example, a previous study

showed that MYC was important in lung tumor progression,

maintenance, and therapeutic resistance (32). Western blotting

analysis revealed that the level of MYC was up-regulated in

osteosarcoma. Therefore, targeting MYC to regulate

transcriptional programs may be an attractive therapeutic

intervention. Acetyl-CoA is a crucial metabolite for many

cellular processes, including fatty acid synthesis, ATP

production, and protein acetylation (33). Acetyl-CoA

synthetase 2 (ACSS2) is an enzyme that converts acetate to
Frontiers in Oncology 09
acetyl-CoA (34). ACSS2 regulates cell cycle progression and

metabolic reprogramming of tumor cells by stimulating the

acetylation of histones and transcription factors (35). A recent

study has pointed out that cancer cells up-regulate ACSS2, which

may cause by responding to stresses such as low nutrient

availability and hypoxia (33). However, some studies have

indicated that the decrease of ACSS2 can promote tumor

progression, and promoting the expression of ACSS2 can

inhibit tumor growth and development (36, 37). ACSS2 was

rarely researched in osteosarcoma. Our study showed that

ACSS2 might play an essential role in the prognosis of

osteosarcoma. Our findings revealed that the expression of

ACSS2 was down-regulated in osteosarcoma cells. ACSS2

could be a new potential biomarker for early diagnosis and
B

C

A

FIGURE 7

Independence detection of the constructed risk prediction model. (A) Univariate analysis for the TARGET cohort (gender: age, metastatic).
(B) Multivariate analysis for the TARGET cohort. (C) Heat map (blue: low expression; red: high expression) for the connections between
clinicopathologic features and the risk groups. **p < 0.01.
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BA

FIGURE 8

Functional analysis based on the DEGs between the two-risk groups in the TARGET cohort. (A) Bubble graph for GO enrichment (the bigger
bubble means the more genes enriched, and the increasing depth of red means the differences were more obvious; q-value: the adjusted p-
value). (B) Barplot graph for KEGG pathways (the longer bar means the more genes enriched, and the increasing depth of red means the
differences were more obvious).
B
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FIGURE 9

Immune status between different risk groups and the association between risk score and tumor microenvironment. (A) Comparison of the
enrichment scores of 16 types of immune cells between low- (blue box) and high-risk (red box) group in the TARGET cohort. *p < 0.05, **p <
0.01, and ***p < 0.001; (B) Comparison of the enrichment scores of 13 types of immune functions between low- (blue box) and high-risk (red
box) group in the TARGET cohort. *p < 0.05, **p < 0.01, and ***p < 0.001; (C) Comparison of the enrichment scores of 16 types of immune
cells between low- (blue box) and high-risk (red box) group in the GEO cohort. *p < 0.05, **p < 0.01, and ***p < 0.001; (D) Comparison of the
enrichment scores of 13 types of immune functions between low- (blue box) and high-risk (red box) group in the GEO cohort. *p < 0.05, **p <
0.01, and ***p < 0.001.
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subsequent treatment of osteosarcoma. We believe these three

genes may play an important role in osteosarcoma’s occurrence,

development, and prognosis.

According to GO and KEGG analysis results, we can

reasonably infer that fatty acid and lactate metabolism–related

genes are related to the tumor immune microenvironment.

Infiltrating immune cells are significant for tumor growth,

invasion, and metastasis. Therefore, it may be a promising

therapeutic target (38). The low level of critical anti-tumor

infiltrating immune cells indicates an overall impairment of

immune functions in high-risk patients in the TARGET

cohort. The same conclusion was also verified in the GEO

cohort. Compared with the low-risk group, the activation of

significant immune pathways decreased in the high-risk

group. The risk score was significantly correlated with the

immune score and stromal score, which means that immunity

and tumor environment may inhibit the aggression of
Frontiers in Oncology 11
osteosarcoma. Based on these findings, the weakening of anti-

tumor immunity and immune environment leads to the poor

survival outcome of high-risk osteosarcoma patients. Because

osteosarcoma patients’ immune cells and immune environment

are damaged, the body cannot identify and kill tumor cells.

Finally, it forms a substantial sarcoma that can be detected

by imaging.

According to the data analysis of 60 different cell

lines, the increased expression of these predictive genes

enhanced drug sensitivity or the resistance to chemotherapy

drugs approved by the Food and Drug Administration.

For example, cancer cells were sensitive to oxaliplatin

with the elevated expression of MYC, whereas they were

insensitive with the increased expression of ACSS2.

MYC upregulation is a valuable biomarker for neoadjuvant

chemotherapy in primary colorectal cancer with liver

metastasis (39). These findings might be excellent markers
B

C D

A

FIGURE 10

Estimate analysis for osteosarcoma patients. (A) The relationship between risk score and immune score in the TARGET cohort. (B) The
relationship between risk score and stromal score in TARGET cohort. (C) The relationship between risk score and immune score in the GEO
cohort. (D) The relationship between risk score and stromal score in the GEO cohort.
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for assessing the response to targeted therapy to facilitate the

development of personalized treatment for osteosarcoma.

However, in our present study, some limitations should be

noted. First, our results were constructed and validated

retrospectively according to data from public databases.

Therefore, future research is needed to evaluate the clinical

utility of our risk score model in patients with osteosarcoma.

Moreover, comprehensive functional experiments are also

required to show the elusive mechanisms of the three fatty

acid metabolism and lactate metabolism–related genes, which

will be conducted in our future research.
Conclusions

Our study was the first to identify the differentially expressed

fatty acid and lactate metabolism–related genes in osteosarcoma.

According to the differential expression genes, we built a risk

score model and nomogram for osteosarcoma patients to predict

the prognosis, which has a critical role in clinical applications

and improves patients’ prognostic management. We also found

the adjustment of immune cells and immune environment in

high-risk groups, which could provide potential immunotherapy

for further research. Besides, cancer cells with predictive genes
Frontiers in Oncology 12
are sensitive or insensitive to chemotherapeutics, which may

offer a new sight for targeted treatment of osteosarcoma in

the future.
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