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Radiation-induced heart disease (RIHD) is a recent concern in patients with lung cancer
after being treated with radiotherapy. Most of information we have in the field of cardiac
toxicity comes from studies utilizing real-world data (RWD) as randomized controlled trials
(RCTs) are generally not practical in this field. This article is a narrative review of the
literature using RWD to study RIHD in patients with lung cancer following radiotherapy,
summarizing heart dosimetric factors associated with outcome, strength, and limitations
of the RWD studies, and how RWD can be used to assess a change to cardiac
dose constraints.
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INTRODUCTION

Radiotherapy is the recommended treatment for approximately 50% of patients with cancer (1).
Despite advances in radiotherapy techniques, some degree of radiation-induced toxicity remains
inevitable. There is increasing evidence that cardiac toxicity is a concern in patients with lung cancer
receiving radiotherapy and can occur earlier than previously thought. The impact of radiotherapy
dose to the heart or sub-regions of the heart in patients with lung cancer receiving radiotherapy on
overall survival (2–12), non-cancer deaths (13, 14), and incidence of cardiac events/deaths was
recently demonstrated (2, 7, 8, 10, 15–20). However few studies have also incorporated the effect of
baseline cardiac comorbidities or polypharmacy on radiation-induced heart disease (RIHD) and
treatment outcome (8, 10, 15–20).

Randomized controlled trials (RCTs) are the gold standard method of providing evidence
relating to efficacy and tolerability of treatment in the modern healthcare system (21). There are
however many clinical scenarios, particularly in the radiotherapy setting, where there is no data
available from RCTs and/or conducting RCTs is challenging, and therefore there is no clinical
consensus on standard of care treatment. For example, older, frailer patients and those who present
with higher level of comorbidities at diagnosis are well-known to be under-represented in RCTs
(22), and as such, evidence to support decision making in these patient populations is often limited
(23–25). Moreover, as radiotherapy advances rapidly, with much of its modification occurring
through successive incremental technical developments rather than transformative step-changes,
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the impacts of such changes are challenging to test using classical
RCTs. Furthermore, there is often a learning effect associated
with new technologies, and hence a risk that results can quickly
become outdated. Finally, there are common situations where
trials would be difficult to design due to lack of clinical equipoise.
For example when introducing image-guided radiotherapy
(IGRT), many believed that imaging-based treatment would
likely be superior to non-imaging-based treatment with regard
to outcomes such as local control (26).

An alternative to RCTs is to provide evidence from the real-
world setting that has the advantage of being more inclusive.
Food and Drug Administration (FDA) defined Real-World Data
(RWD) as “the data relating to patient health status and/or the
delivery of health care routinely collected from a variety of
sources” (27). Both the FDA and National Institute for Health
and Care Excellence (NICE) are recognizing the importance of
using routine data to evaluate how interventions tested in highly
selected cohorts translate to the general population (28–30). In
the field of cardiac toxicity, much of the information we have
available comes from studies that used RWD. Post-hoc studies of
cardiac toxicity from clinical trials of thoracic radiotherapy and
retrospective studies of heart dosimetry and outcome can indeed
be hypothesis generating e.g., on the interplay between baseline
comorbidities and RIHD and the impact of cardiac dose on
patient outcomes (2, 4–6, 16, 17, 31–33).

The aim of this article is to provide a narrative review of RWD
studies in the field of RIHD in patients with lung cancer. By
RWD studies, we mean studies that include data from patients
that are not recruited to interventional experimental studies with
specific inclusion/exclusion criteria. We summarize the existing
literature derived from RWD, including data on heart dosimetric
factors linked to outcome. Finally, we recap the strength and
limitations of the RWD studies in this setting and describe
how RWD can be used to evaluate a change to cardiac
dose constraints.
REAL-WORLD DATA IN THE CONTEXT OF
RADIATION INDUCED HEART DISEASE

Clinical Context
Current cardiac dose constraints are mainly based on the
Quantitative Analysis of Normal Tissue Effects in the Clinic
(QUANTEC) and are mainly derived from radiotherapy in
patients with esophageal cancer and lymphoma studies (34). In
contrast to QUANTEC recommendations that mean heart dose
should be kept below 15 Gy, Darby et al. presented a linear risk,
no threshold model for major adverse cardiac events post-RT in
a retrospective RWD case-control study that included >2000
individuals with breast cancer (30). In patients with lung cancer,
survival remains poor; compared to patients with breast cancer,
patients with lung cancer are typically older and have multiple
comorbidities (35). The poor survival of patients with lung
cancer taken together with the belief that RIHD has a long
latency period based on data from the field of breast cancer and
lymphoma (36, 37), have led to the underestimation of the risk of
Frontiers in Oncology | www.frontiersin.org 2
cardiac toxicity related to thoracic radiotherapy in patients with
lung cancer. Moreover, higher cardiac dose exposure in patients
with lung cancer may result in earlier onset of RIHD.

RTOG 0617 was the landmark clinical trial that kick-started
worldwide awareness and interest in the field of RIHD in this
setting. This RCT comparted a standard dose of thoracic
radiotherapy (60 Gy in 30 fractions) to a higher dose (74 Gy in
37 fractions) delivered concurrently with chemotherapy +/-
cetuximab (38). High-dose radiotherapy was associated with a
higher risk of mortality, and multivariable models demonstrated
that heart dose is an important prognostic factor for all-cause
mortality (2). However, specific heart toxicity endpoints were not
recorded in the trial, therefore the association of dose with RIHD
or cardiac death could not be assessed. Wang et al. subsequently
presented an analysis of pooled data from six lung cancer dose-
escalation trials with endpoints for symptomatic cardiac death
(15). In competing risk-adjusted cumulative incidence curves, for
cardiac death, the impact of higher mean doses to the heart was
shown. Patients receiving greater than 20 Gy mean heart dose
were more than twice as likely to experience death due to a
cardiac cause than patients with a mean heart dose of 10 Gy
or less.

These post-hoc analyses of RCT data stimulated interest in the
field of RIHD in lung cancer and researchers have since sought to
supplement this evidence using RWD. Following the publication
of RTOG 0617, it has been recognized that the latency time for
RIHD in patients with lung cancer is much shorter than other
thoracic cancers including patients with lymphomas and breast
cancers who typically develop RIHD at least 5 years after
radiotherapy (37, 39–42).

There is also an appreciation that the physiology of RIHD is
complex. The heart consists of several connected anatomical sub-
structures, each of which could have an associated radiotherapy
dose response to radiation. Identifying the structures with the
strongest association with RIHD is challenging due to the
proximity of these sub-structures, meaning that the radiation
dose between neighboring regions will be highly correlated.
Despite these challenges, studies based on RWD have
identified dose to sub-regions of the heart more strongly
associated with patient outcomes. McWilliam et al., using
RWD and a voxel-based data mining approach, reported
radiation dose to the base of the heart had the greatest impact
on survival in patients with lung cancer treated with radical
radiotherapy (3). This region was further validated in patients
with stage I non-small cell lung cancer (NSCLC) treated with
stereotactic body radiation therapy (SBRT). Stam et al. analyzed
the dose to cardiac sub-structures using a template anatomy,
identifying the superior vena cava and left atrium as most
strongly associated with non-cancer death in patients with
early-stage NSCLC receiving SBRT (13). Similarly to Darby et
al’s study in patients with breast cancer (36), in a RWD nested
case-control study, Abravan et al. showed a linear relationship
between mean dose to a region located at the base of the heart
and cardiac-related deaths in patients with lung cancer treated
with radical radiotherapy (43). No threshold has been identified,
however, and whether such a relationship is linear or threshold
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based still remains to be understood. Table 1 shows the results of
studies utilizing RWD to investigate associations between heart
dosimetric parameters and outcome in patients with lung cancer.
Of note, most studies in lung cancer investigate the link between
outcomes and planned dose (as opposed to delivered dose).
However, the set-up uncertainties and anatomical motion
impacts the dose received by the heart and heart sub-
structures, and thereby the risk of RIHD (44).

A complementary study from Manchester, again using RWD,
investigated the impact of residual set-up errors on patient
outcomes. For each fraction of radiotherapy, the patients’
positioning is checked with an on-board cone-beam CT scan.
Any positional differences in the tumor can be corrected;
however, these corrections can result in shifting the radiation
dose towards or away from the heart. Over the full treatment
course, this may result in an individual patient receiving a higher
or lower dose to the heart than planned. In patients with stage III
NSCLC, when the dose was moved in the direction of the heart
(likely increasing the heart dose), patients had worse overall
survival in multivariable analysis (45). The same effect was seen
in patients with early-stage NSCLC treated with SBRT (46).
Further analysis of the dataset of patients with stage III NSCLC
investigated the dose differences due to these positional changes
and identified a region in the base of the heart where the changed
dose was most strongly associated with early mortality (47).
Importantly, variation in residual set-up errors can be considered
as random and compared to a natural experiment with no
obvious corre lat ion with other cl inica l or pat ient
characteristics, allowing a causal relationship between the dose
response to the base of the heart and risk of death to be inferred.

In addition to the studies in the field of lung cancer, a number
of RWD studies have been reported on the impact of dose to
heart or heart sub-structures on risk of cardiac events in patients
with other thoracic tumors. For example, in patients with
esophageal cancer, despite high level of competing risk,
association between heart dose and cardiac events (48, 49), key
coronary substructures (namely left anterior descending
coronary artery [LAD]) dose and incidence of major coronary
events (50) have been reported. In patients with breast cancer,
association between mean heart dose and major coronary events
(36), left ventricle dose and cardiac events (51), and LAD dose
and increased requirement for coronary intervention in mid
LAD (52) have been reported. However, it should be noted that
heart exposure from tangential fields during breast radiotherapy
only affects a small section of the heart compared to the exposure
observed during thoracic radiotherapy for lung cancer (where
one or more beams traverse the heart). Therefore, difference in
dose distribution within the heart, baseline comorbidities, and
age at diagnosis may partly explain why RIHD is an acute event
in patients with lung cancer as opposed to a late event in patients
with breast cancer.

Baseline Cardiac Conditions
Identification of the burden and severity of cardiac comorbidities
is important to personalize cardiac sparing in patients with lung
cancer treated with thoracic radiotherapy. It has been established
Frontiers in Oncology | www.frontiersin.org 3
that comorbidities are an important predictor of early mortality
(53). Indeed, about 75% of patients with lung cancer have known
comorbidities at diagnosis with the most common being
cardiovascular disease, chronic obstructive pulmonary disease,
and diabetes (54–57). An area of interest in the field of cardiac
toxicity in lung cancer is the impact of pre-existing cardiac
condition on the risk of RIHD, given that a quarter of patients
with lung cancer will present with a cardiovascular disease at
diagnosis (55, 58, 59).

In a retrospective cohort of 1155 patients with lung cancer,
Tammemagi et al. identified multiple comorbidities in two-thirds
of patients, including 18 comorbidities that demonstrated
stronger associations with early mortality than age, gender, or
smoking (53). A United States National Cancer Institute
Surveillance, Epidemiology and End Results (SEER) database
RWD study of patients aged over 65 years with small cell lung
cancer (SCLC) found that patients who had a cardiac event
(acute myocardial infarction, cardiomyopathy, arrhythmia, heart
failure or pericarditis) in the 12 months prior to treatment had
an increased incidence of cardiac events following
chemoradiotherapy (60). The rate of cardiac events was 55.4%
in the year following radiotherapy in patients who had a previous
cardiac event compared to 28% in those who had not had a
previous cardiac event. A similar study in patients with NSCLC
found an increased mortality in patients with known cardiac
comorbidities following thoracic radiotherapy (59). Even when
patients with cardiac comorbidities were excluded from the
analysis, there was still an increase in cardiac events following
radiotherapy in patients with multiple non-cardiovascular
comorbidities (61).

Wang et al. paired World Health Organization/International
Society of Hypertension (WHO/ISH) risk score with dosimetric
parameters on multivariable analysis and found that patients
with a high 10-year risk of a cardiovascular event had a
significantly higher rate of cardiac events after radiotherapy
(15). The WHO/ISH risk prediction charts not only indicate
the risk of ischemic heart disease but also stroke and are only
applicable to patients who have not yet had a cardiovascular
event. Therefore their use is limited in a population of patients
with lung cancer, over 25% of whom will have a history of a
cardiovascular event (62). To overcome this issue, Dess et al.
used the Framingham risk score, which predicted a patient’s risk
of myocardial infarction or death from ischemic heart disease in
a cohort of 71 patients with lung cancer and without pre-existing
cardiac disease treated with dose-escalated radiotherapy (16, 63).
This post-hoc analysis did not find any correlation between
Framingham risk score and ≥ grade 3 cardiac event.

In a retrospective study of 748 patients who had radiotherapy
for stage II-III NSCLC, Atkins et al. showed not only that
patients with cardiac comorbidities had an increased rate of
major adverse cardiac events following treatment compared with
those without cardiac comorbidities, but also that mean heart
dose ≥ 10Gy was associated with increased incidence of major
adverse cardiac events (cardiac death, unstable angina, and
myocardial infarction) in patients without a history of ischemic
heart disease (8). They further reported that mean heart dose is
July 2022 | Volume 12 | Article 934369
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TABLE 1 | Summarizing RWD studies suggesting associations between heart dosimetric factors and outcome of patients with lung cancer in multivariable models.

Authors, year Patient stage,
population (n)

Study Institution Correlation between heart dosimetric factors, other heart related factors and outcome in
multivariable analysis

Speirs et al,
2016 (2)

Stage II-III
NSCLC
(416)

Single institution,
Siteman Cancer Center/
Barnes Jewish Hospital

Heart V50 associated with OS and cardiac toxicity

Mcwilliam et al,
2017 (3)

Stage I-IV
Lung cancer
(1101)

Single institution,
The Christie

Mean dose to the identified region located in the base of the heart associated with OS

Stam et al,
2017 (13)

Stage I-II
NSCLC
(803)

Multi-institutional Maximum dose on the left atrium and dose to 90% of the superior vena cava associated with non-
cancer death

Stam et al,
2017 (4)

Stage II-III
NSCLC
(469)

Single institution,
NKI

Heart V2 associated with OS

Wang et al,
2017 (15)

Stage III
NSCLC
(112)

Multi-institutional MHD, heart V5, heart V30, and left ventricle V5 associated with CE in patients with IHD or high WHO/
ISH risk scores.
MHD ≥ 20 Gy higher rate of CE No association between OS and heart dose

Dess et al,
2017 (16)

Stage II-III
NSCLC
(125)

Multi-institutional MHD and PCD associated with higher CE

Vivekanandan
et al,
2017 (5)

Stage IIB-III
NSCLC
(78)

University of Oxford ECG changes at 6 month and left atrium dose > 64 Gy associated with OS

Ning et al,
2017 (17)

Stage I-IV
NSCLC
(201)

Single institution,
MD Anderson Cancer Center

Heart V35 >10% and PCD associated with PCE

Chun et al,
2017 (6)

Stage III
NSCLC
(482)

Multi-institutional Heart V40 associated with OS

Yegya-Raman
et al, 2018 (18)

Stage II-IV
NSCLC
(140)

Single institution,
Rutgers Cancer Institute

MHD and baseline coronary artery disease associated with symptomatic CE

Wong et al,
2018 (14)

Stage I-II
NSCLC
(189)

Single institution,
Princess Margaret Cancer
Centre

Max dose (per 100 Gy) to left and right ventricle associated with non-cancer deaths

Xue et al,
2019 (7)

Stage I-III
NSCLC
(94)

Multi-institutional MHD, hart V5, V55, pericardial mean dose, V5, V30, and V55 associated with PCE
Pericardial V30 and V55 associated with OS

Atkins et al,
2019 (8)

Stage II-IIIB
NSCLC
(748)

Single institution,
Dana-Farber Cancer Institute/
Brigham and Women’s
Hospital

MHD (≥10 Gy) associated with MACE and OS

Mcwilliam et al,
2020 (9)

Stage I-IV
Lung cancer
(978)

Single institution,
The Christie

Max dose to the combined cardiac region including right atrium, right coronary artery, and
ascending aorta associated with OS

Abravan et al,
2020 (19)

Stage II-III
Lung cancer
(1243)

Single institution,
The Christie

Mean dose to the identified region overlapping with right atrium (≥10 Gy) associates with cardiac
related death in patients without PCD

Atkins et al,
2021 (10)

Stage II-III
NSCLC
(701)

Single institution,
Dana-Farber Cancer Institute/
Brigham and Women’s
Hospital

LAD coronary artery V15≥ 10% associated with MACE and OS, particularly in patients without CHD.
Left ventricle V15 ≥ 1% associated with MACE in patients with CHD.

Shepherd
et al,
2021 (11)

Stage I-III
NSCLC
(285)

Single institution,
MSKCC

Heart V8 associated with OS

Abravan et al,
2021 (20)

Stage II-III
Lung cancer
(1218)

Single institution,
The Christie

Mean dose to LAD associated with cardiac hospital admission and cardiac related death in patients
without diagnosed PCD

Abravan et al,
2022 (43)

Stage II-III
Lung cancer
(2488)

Single institution,
The Christie

Mean dose to cardiac avoidance region (superior vena cava, right atrium, aortic root, and proximal
segments of the coronary arteries) linearly associated with the increase in the risk of cardiac related
death
Frontiers in Onco
logy | www.front
iersin.org
NSCLC, non-small cell lung cancer; OS, overall survival; MHD, mean heart dose; IHD, ischaemic heart disease; WHO/ISH, world health organization/international society of hypertension;
CE, cardiac events; ECG, electrocardiogram; PCD, pre-existing cardiac disease; PCE, pericardial effusion; MACE, major adverse cardiac events; LAD, left anterior descending
coronaryartery; CHD, chronic heart disease.
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not a suitable surrogate for LAD dose and the risk of major
adverse cardiac events in the sub analysis of the same lung cancer
cohort (10).

By having access to cause of death from Public Health
England data, and hospital admissions from Hospital Episode
Statistics, and utilizing voxel-based data mining, Abravan et al.
investigated how radiotherapy dose in the thorax relates to
cardiac-related death taking into account patient pre-existing
cardiac conditions, using RWD from 1243 patients with lung
cancer (19). Fine and Gray competing risk regression for cardiac-
related death, with other causes of death as a competing risk,
showed an increase in the risk of cardiac-related death in patients
with pre-existing cardiac disease. Voxel-based data mining
identified a region overlapping with the right atrium where
dose was significantly higher in those patients who died due to
a cardiac cause. Multivariable analysis suggested that
radiotherapy dose to this region has the highest impact on
cardiac-related death only in those patients without diagnosed
cardiac conditions prior to treatment. In a further study,
Abravan et al. studied the risk of cardiac hospital admission
after radiotherapy and dose delivered to cardiac sub-structures in
1218 patients with lung cancer with no known pre-existing
cardiac disease (20). Multivariable analyses showed that mean
LAD dose correlates with both cardiac admission post-RT and
cardiac-related death. Cardiac admission post-RT also correlates
with cardiac-related death in the model including mean LAD
dose. It is suggested that significance of LAD dose alongside
cardiac admission in predicting cardiac-related death may point
to undiagnosed cardiac disease in this population.

Calcifications are one established predictor for cardiovasular
events (64–68) and are directly measurable from the CT scan
acquired for planning a patient’s treatment. Utilizing RWD,
Abravan et al. observed an association between the volume of
calcifications found on the planning 4DCT scan and cardiac
comorbidity scores obtained from Adult Co-Morbidity
Evaluation (ACE-27) in 334 patients with lung cancer treated
with SBRT (69). Multivariable models showed that the volume of
calcification is an independent predictor of patient survival.
Furthermore, for 428 patients, a deep-learning model was
applied to identify calcifications from planning CT scans and
stratify into low- and elevated-risk groups. Patients in the high-
risk group were found to have an increased risk of all-cause
mortality in the multivariable model (70).

Other Toxicities Related to Heart
Radiotherapy Dose: Lymphopenia
Other toxicities can also result from heart irradiation and further
affect the outcome of patients with lung cancer. Incidence of
lymphopenia (a drop in lymphocyte counts), has for example
been reported following thorax irradiation. Severe lymphopenia
has been shown to be associated with worse outcome in patients
with lung cancer who received radiotherapy as part of their
cancer treatment (71, 72).

Few RWD studies have addressed the effect of heart
irradiation on lymphopenia and outcome. Ladbury et al.
reported that higher radiotherapy dose to the “host immune
Frontiers in Oncology | www.frontiersin.org 5
system,” defined as a function of mean heart dose, mean lung
dose, mean body dose, and number of fractions, was associated
with overall survival in 117 patients with stage III NSCLC (72).
Abravan et al. utilized a large cohort (>900) of patients with lung
cancer receiving curative-intent radiotherapy and studied which
organs are responsible for severe lymphopenia during
radiotherapy when irradiated. Using voxel-based data mining,
results showed an association between thoracic vertebrae V20,
mean lung dose, mean heart dose and grade 3 or higher
lymphopenia (71). Authors further showed that lymphopenia
is an independent predictor for OS in both SCLC and NSCLC.
Local irradiation to heart and lung affects circulating
lymphocytes in the blood pool, which may explain one
important mechanism of lymphopenia. Another study by Zhao
et al. showed worse OS for 76 early-stage patients with lung
cancer who developed grade 2 or higher lymphopenia after
SBRT. A negative association between heart V5 and total
lymphocyte count after SBRT was further indicated (73).

Evidence is emerging that both cardiac toxicity and
lymphopenia are associated with cardiac irradiation, and
further work is required to elucidate the relationship between
toxic heart dose, lymphopenia, and patient outcome.
DISCUSSION

What are the Strengths and Limitations of
Real-World Data?
RCTs have the advantage of ensuring high internal validity in a
way that observed effects are the result of the tested intervention.
They provide high quality data but often they require additional
patient procedures incurring greater expense or burden for
patients . The downside of RCTs is that they lack
generalizability. RCTs can be subjected to selection bias and
hence may not accurately represent the patient population of
interest (74, 75). Moreover, RCTs are often expensive and there
are situations where they can be impractical, such as evaluation
of technological advances in radiotherapy (26). In the field of
radiotherapy-induced cardiac toxicity, given the accumulating
evidence on the impact of dose to specific anatomical regions of
the heart, it is becoming increasingly difficult to argue equipoise
for the evaluation of new dose limits through classical RCTs. In
such situations, the application of RWD can provide an
alternative to conventional RCT evidence. Whereas much of
the RWD evidence discussed above comes from retrospective
observational studies, RWD is not only synonymous with this
approach but can also be used prospectively to study the impact
of new interventions in pragmatic trial designs (76).

It is however important to acknowledge that RWD studies
have known limitations, primarily the risks of bias introduced by
missing or incorrectly recorded data, and the inherent risk of
unmeasured confounding in non-randomized datasets. In RIHD
studies for example, target volume and location may influence
not only the dose to the heart but also clinical outcome (survival)
which can lead to false association in real-world research and
may affect the validity of evaluations of interventions (77). In
July 2022 | Volume 12 | Article 934369

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Abravan et al. Real-World Data and Cardiac Toxicity
addition, dose exposure to one sub-structure in the heart is often
co-linear with dose to another nearby sub-structure, such that
the selection of which sub-structure or dose threshold is
responsible for damage is usually done on statistical
considerations, which is unlikely to reflect the underlying biology.

How to Achieve High Quality Real-World
Data Research?
There are concrete steps that can be taken to improve the quality
of the RWD required to study RIHD. For example, heart or heart
sub-structure segmentations are essential to successfully derive
high-quality and meaningful evidence to inform decisions in the
clinic. However, retrospective contouring of structures or sub-
structures of interest is not realistic. The manual contouring of
heart sub-structures on routine radiotherapy planning CTs is a
particularly challenging task as respiratory motion, cardiac
motion, as well as the varying extent of co-morbidities can
impair visualization and result in large inter-observer variation
particularly of small structures, such as the valves or coronary
arteries (78). Even when sub-structures have been prospectively
contoured, important variations can be seen due to the different
guidelines available, or different interpretation of existing
guidelines (79). For example, Thor et al. (80) have analyzed the
heart doses reported in the RTOG 0617 clinical trial and
demonstrated that inconsistencies in delineation led to a
significant underestimation of cardiac exposure. They
concluded that auto-contouring (e.g., using deep-learning to
segment the whole heart) could increase the quality of clinical
trials and the reliability of dose-toxicity associations explored in
secondary analyses.

Several groups have developed auto-segmentation tools, using
either atlas-based (81, 82) or machine-learning approaches (83)
to address this issue. The performance of these auto-contouring
solutions continues to improve but is affected by uncertainties in
the manual contours used for training/validation. Another
avenue that some authors have pursued is to use motion
compensation to improve the quality of planning CTs and
reduce contour uncertainties. Even though the motion of heart
sub-structures due to heartbeat is reportedly small (typically <5
mm) (84), the heart can move 5-20 mm due to respiration. With
the adoption of 4DCT worldwide, the use of different
reconstruction techniques may add uncertainty to heart sub-
structure segmentation. A potential solution to mitigate this issue
is the use of motion compensated (mid-position) reconstructions
which have been shown to reduce inter- and intra-observer
contouring variations for organs at risk in patients with lung
cancer (85). Moreover, Abravan et al. evaluated cardiac
calcification detection in different phases of the respiratory
cycle and found better detection in the extreme position of the
respiratory cycle (69).

Novel methodologies can be used to generate evidence about
the effectiveness of new treatments such as heart-sparing
radiotherapy where RCT data will not exist. The robustness of
biases can be assessed by employing probabilistic bias analysis,
an approach that systematically assesses the extent of potential
confounders (86). Utilizing new approaches such as causal
Frontiers in Oncology | www.frontiersin.org 6
inference, in which expert assumptions about causal
mechanisms of outcomes are directly incorporated into
statistical models using observational data, may further help
with minimizing the effect of confounding. For example, the
study discussed previously in which positional set-up errors are
used to infer changes in heart dose, uses an instrument variable
approach that can be compared to a natural randomized
experiment (45). Such studies increase confidence that the
observed differences in survival are caused by the differences in
heart dose and are not merely associations with different
underlying causes.

How Results From Real-World Data Could
Be Utilized in the Clinic?
The ultimate aim of RWD studies in the field of RIHD is to
introduce and apply a dose limit to a defined anatomical area of
the heart as part of the treatment planning process. If the evidence
on sparing of anatomical regions of the heart is equivocal,
equipoise can be argued and randomized designs such as
pragmatic point-of-care or simple trial could be used (87).
These approaches are designed to evaluate the effectiveness of
interventions as an embedded part of routine practice, and are
intermediate between RCTs and quasi-experimental studies. They
aim to preserve a high degree of internal validity while reducing
some of the disadvantages of conventional RCTs. However, as
argued above, evidence in the field of radiotherapy-induced
cardiac toxicity for patients with lung cancer is accumulating
and it is becoming more difficult to argue equipoise. In this
context, non-randomized quasi-experimental designs could
instead be used in which specific outcome measures before and
after a new clinical intervention is implemented are
compared (76).

Use of Rapid Learning as a Methodology
to Assess the Impact of Heart Dose
on Survival
Recent RWD studies (3, 9, 19, 20), have shown that incidental
dose to the base of the heart increases the risk of early mortality
in patients with lung cancer. A cardiac avoidance region was
defined based on our previous studies encompassing structures
located at the base of the heart including superior vena cava,
right atrium, aortic root, and proximal segments of the coronary
arteries. It is hypothesized that the cardiac toxicity is a result of
damage done to the conduction system and the coronary arteries
through inflammation, fibrosis, or ischemia. The RAPID-RT
programme recently funded by the UK National Institute for
Health Research (NIHR) is a large-scale research programme
which will evaluate a change in the radiotherapy protocol to
spare a cardiac-avoidance region in patients with stage II-III lung
cancer treated with curative-intent radiotherapy at The Christie
NHS Foundation Trust in Manchester, UK (27). A summary of
the evidence that has fed into this programme of research is
summarized in Figure 1. This change in the radiotherapy
protocol is expected to increase patients’ short-term survival by
10-20%. Nevertheless, changing treatment delivery to spare the
heart avoidance region without compromising tumor coverage
July 2022 | Volume 12 | Article 934369
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may increase the dose to other organs at risk nearby, primarily
the lungs, which in return may increase the risk of other
toxicities, such as radiation pneumonitis (27). The programme
will use a quasi-experimental interrupted time series design, with
multiple cycles of learning, to assess the impact of the
introduction of a dose limit to the cardiac avoidance region on
survival and other toxicities using RWD. Related studies will
assess the quality of the evidence derived from the rapid-learning
methodology and how either it, or the methodological RWD
approach, can be used to contribute to evaluate the impact of
changes made to other aspects of radiotherapy pathway in
other centers.
CONCLUSION

In this review we demonstrated that high-quality RWD has the
potential to provide robust evidence in the field of RIHD.
Although RCTs are generally not practical for the evaluation of
cardiac toxicity, emerging evidence and newmethodologies using
RWD are providing an alternative to the classical RCTs. The
RAPID-RT study will use RWD to assess the clinical impact of
Frontiers in Oncology | www.frontiersin.org 7
introducing a new cardiac avoidance region dose constraint with
the aim of reducing the risk of RIHD and improving survival.
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