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Abnormal N6-methyladenosine (m6A) modification levels caused by METTL3 have been
identified to be a critical regulator in human cancers, and its roles in the immune
microenvironment and the relationship between targeted therapy and immunotherapy
sensitivity in gastric cancer (GC) remain poorly understood. In this study, we assessed the
transcriptome-wide m6A methylation profile after METTL3 overexpression by m6A
sequencing and RNA sequencing in BGC-823 cells. Gene Ontology (GO) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analyses were performed to analyze the
function of core targets of METTL3. Eighteen methylation core molecules were identified in
GC patients by combining transcriptome and methylome sequencing. GC patients can be
separated into two subtypes based on the expression of 18 methylation core molecules.
Furthermore, subgroup analysis showed that patients with different subtypes had a
different OS, PFS, stage, grade, and TMB. Gene set enrichment analysis (GSEA)
showed that immune-related pathways were enriched among subtype A. The
ESTIMATE analysis suggested that the extent of infiltration of immune cells was
different in two subtypes of GC patients. Tumor Immune Dysfunction and Exclusion
(TIDE) and The Cancer Immunome Atlas (TCIA) database also showed that there were
significant differences in the efficacy of immunotherapy among different types of GC
patients. Altogether, our results reveal that METTL3-mediated m6A methylation
modification is associated with the immune microenvironment and the effects of
immunotherapy in GC patients. Our findings provide novel insights for clinicians in the
diagnosis and optimal treatment of GC patients.
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INTRODUCTION

With changes in dietary and lifestyle habits, the incidence and
mortality of gastric cancer (GC) have increased substantially over
the past decade, and reports suggest that the median survival
time of advanced GC is only 12–15 months (1, 2). The Global
Cancer statistics 2020 report shows that the incidence and
mortality of GC ranked fifth and fourth, respectively, among
the malignant tumors (3). Excitingly, immune checkpoint
inhibitors have made great strides in treating advanced GC in
recent years. It has been shown that the combination of PDL1
inhibitors in chemotherapy and targeted therapy can
significantly reduce tumor size and improve objective response
rates (4, 5). However, some GC patients do not derive benefits
from immunotherapy (6).

N6-methyladenosine (m6A) is the most abundant RNA base
modification in mammalian mRNAs, especially in eukaryotic
mRNA (7), and METTL3 is the core methyltransferase of m6A
modification, which plays a critical biological role in the
occurrence and development of various malignant tumors by
regulating gene expression. Numerous studies have
demonstrated that METTL3 can facilitate the growth of GC cells
and liver metastasis by promoting angiogenesis and glycolysis (8).
METTL3 also mediates the repression of E-cadherin by enhancing
m6A modification of ZMYM1, thereby promoting the epithelial–
mesenchymal transition of GC cells (9). Moreover, METTL3 can
influence the immune microenvironment in tumors and thus
affect the sensitivity of patients to immunotherapy (10). In
addition, decreased METTL3 expression in bone marrow cells
can promote tumor growth and metastasis in vivo, and the
infiltration of M1 and M2 tumor-associated macrophages and
regulatory T cells was increased significantly in tumor tissues in
METTL3-deficient mice (11). Meanwhile, METTL3 can
upregulate PD-L1 expression and inhibition of METTL3
expression can enhance tumor immunity through PD-L1-
mediated T-cell activation in vitro and in vivo (10). However,
the effect of METTL3-induced m6A modification on the GC
immune microenvironment has not been thoroughly studied.
Therefore, a comprehensive understanding of genes regulated by
METTL3 in GC and the relationship between these molecules and
the immune microenvironment of GC may provide a foothold for
understanding the pathogenesis of GC and predicting the immune
response of patients to GC.
MATERIALS AND METHODS

Cell Culture
The human GC cell line BGC-823 was purchased from the
Institute of Cell Research of the Chinese Academy of Sciences
in Shanghai. The cells were cultured in DMEM (Procell)
containing 10% fetal bovine serum (FBS; Gibco) and 1%
penicillin–streptomycin (Biyuntian) in a 37°C incubator with
5% CO2, and sterile water was added to maintain humidity in
the incubator.
Frontiers in Oncology | www.frontiersin.org 2
Establishment of Stable Cell Lines
Overexpression METTL3
The METTL3-overexpressing lentiviral fluid was obtained from
Jikai (Shanghai Jikai Gene Medical Technology Co., Ltd.
Shanghai, China). BGC-823 cells in the logarithmic growth
phase were inoculated into a 6-well plate, when the confluence
was close to 70%, and the negative control (NC group) and
METTL3-overexpressing lentivirus (oe-METTL3) were used to
infect BGC-823 cells according to the manufacturer’s
instructions. Following lentiviral infection, puromycin (4 mg/
ml) was used for screening for 3 days, and the successfully
transfected cells were used for subsequent experiments.

Transcriptome and Methylome
Sequencing
Total RNA isolated from BGC-823 cells transfected with control
and METTL3-overexpressing lentivirus was subjected to m6A-
mRNA and lncRNA. Epitranscriptomic microarray and
transcriptome sequencing were performed by Aksomics Inc.
(Shanghai, China) and Beijing Genomics Institute (BGI,
China), respectively. Agilent Feature Extraction software
(version 11.0.1.1) analyzed the acquired array images. Raw
intensities of IP (immunoprecipitated, Cy5-labeled) and Sup
(supernatant, Cy3-labeled) were normalized with an average of
log2-scaled spike-in RNA intensities. After spike-in
normalization, the probe signals with Present (P) or Marginal
(M) QC flags in a certain proportion were retained for m6A
quantification based on the IP (Cy5-labeled) normalized
intensities. Differentially m6A-methylated RNAs between two
comparison groups were identified using the screening criteria
for the fold change and statistical significance (p-value)
thresholds. Hierarchical clustering was performed to show the
differential m6A-methylation patterns among samples.

Screening of Candidate Methylated
Key/Core Genes and Functional
Enrichment Analysis
Differentially expressed genes with low methylation degree and
increased expression were selected using screening criteria p-
value < 0.05 and fold-change ≤ 1/1.5, and genes with high
methylation and decreased expression were screened with p-
value < 0.05 and fold-change ≥ 1.5. The intersection of genes
with high methylation and decreased expression and genes with
low methylation degree and increased expression yielded the
methylation core genes. Functional enrichment analysis of
differential genes was performed using the Database for
Annotation, Visualization and Integrated Discovery (DAVID)
database (https://david.ncifcrf.gov/), and the enrichment results
were visualized using the “ggplot2” package.

Data Collection
Clinical information, comprehensive transcriptome, and
mutational profiling of 804 GC patients were obtained from
the GSE84437 dataset of the TCGA and GEO databases, and the
data were corrected using the “limma” package.
July 2022 | Volume 12 | Article 935239

https://david.ncifcrf.gov/
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Chen et al. METTL3 in Gastric Cancer
Consensus Clustering
GC patients were divided into different molecular subtypes based
on the expression levels of core genes regulated by METTL3
using “ConsensusClusterPlus”. Good clustering was based on the
following requirements: (1) the cumulative distribution function
curve increases steadily; (2) the sample distribution of each
group is relatively even, and there is no maximal or minimal
grouping; and (3) the correlation of the intergroup is low, and
that of the intragroup is high.

Assessment of Tumor Mutational Burden,
Immune Microenvironment, Immune
Responses, and Drug Treatment in
Different GC Subtypes
The mutational data of GC patients were downloaded from the
TCGA database and processed by Pl script. “ggplot2” and
“survival” package were used to draw the Kaplan–Meier (K-
M) survival curves and violin plot of overall survival (OS) and
tumor mutational burden (TMB) in different GC subtypes. The
scores of stromal cells, immune cells, and total tumor cells were
calculated separately using the ESTIMATE algorithm (12). The
contents of various types of immune cells in GC tissues were
analyzed using CIBERSORT (13). Immune checkpoint genes
and immunophenotyping data were obtained from previous
studies (14, 15). Immunotherapy data for GC patients were
obtained from TIDE (http://tide.dfci.harvard.edu/) and TCIA
(https://tcia.at/) websites. The “pRRophetic” package was used
Frontiers in Oncology | www.frontiersin.org 3
to predict the sensitivity of different GC subtypes to clinical
drug treatment.
RESULTS

Genome-Wide Screening of Altered m6A-
Tagged Transcript Profiles in GC Cells
After METTL3 Overexpression
The flowchart of the study is indicated in Figure 1. To
systematically explore the RNA m6A modification profile after
METTL3 overexpression, genome-wide profiling of m6A-tagged
transcripts was conducted by m6A-modified RNA sequencing
(m6A-seq). The results showed that overexpression of METTL3
resulted in significantly increased and decreased m6A
modifications in 150 and 525 genes, respectively. A total of 28
hypomethylated, highly expressed genes were identified. Next, a
volcano plot was generated from the above differentially
methylated genes to visualize the differentially expressed genes.
Then, a heatmap was generated to visualize the top twenty genes
with the highest or lowest methylation levels (Figures 2A, B).
Finally, GO and KEGG enrichment analyses were performed on
differentially methylated genes, and the results showed that
m6A-methylated genes affected by METTL3 were mainly
enriched in PI3K-AKT, MAPK, and P53 signaling pathways.
Interestingly, these genes were also associated with tyrosine
kinase inhibitors and PD-L1 (Figures 2C, D; Supplementary
FIGURE 1 | The flowchart showing the design of this study.
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Table 1). These results indicated that m6A modification
changes caused by METTL3 might be promising targets
for immunotherapy.

Effects of METTL3 Gene Overexpression
on the Transcriptome Profiling of GC Cells
To explore the effect of METTL3 on gene expression at the
transcriptome level, the genes and signaling pathways that
METTL3 may regulate were analyzed by transcriptome
sequencing in METTL3-overexpressed BGC-823 cells. A total of
1,266 upregulated genes and 1,526 downregulated genes were
yielded by transcriptome sequencing. First, all differentially
expressed genes were visualized using volcano plot
representations, followed by a heatmap to visualize the top
twenty genes with the most increased or decreased expression
level influenced by METTL3 (Figures 3A, B). Next, GO and
KEGG enrichment analyses were performed on the differentially
expressed genes, and the results showed that these genes were
mainly related to cell adhesion. Similar to m6A RNA methylomes
revealed by m6A-seq, differential genes in the transcriptome were
enriched significantly in immune and tyrosine kinase inhibitor
resistance pathways (Figures 3C, D; Supplementary Table 2).
The above results indicate that METTL3 participates in signal
transduction pathways involved in tumorigenesis and
Frontiers in Oncology | www.frontiersin.org 4
development, and may also be closely related to the clinical
targeting of GC and immunotherapy sensitivity.

Identifying Differences in m6A-Methylated
Core Genes Regulated by METTL3 in GC
Cells
Previous studies have confirmed that m6A modification can
affect the stability of RNA (16). Accordingly, we first screened the
genes with high m6A methylation but low expression, and then
intersected them with genes with low m6A methylation and
increased expression; 73 genes were selected for further
exploration (Figures 4A, B). The results showed that most
methylated core genes were differentially expressed in GC
tissues compared with normal tissues (Figure 4C). Survival
analysis by Cox regression and K-M analyses indicated that 18
methylation core molecules had prognostic value for GC patients
(Figure 4D; Supplementary Table 3). Then, the relationship
between the mutation status of methylation core genes and the
prognosis of patients with GC was analyzed; the waterfall plot
showed that 11% of GC patients had mutations in the PCDH10
gene, and the rest of the methylation core genes also had different
degrees of mutation (Figure 4E). In conclusion, we identified
core genes that were methylated by METTL3, which may play
important roles in the progression of GC.
B

C D

A

FIGURE 2 | Methylation modification of METTL3 regulatory targets. (A) Volcano plot of the methylation level of differential genes regulated by METTL3. The red and
blue dots in the plot represent high and low m6A methylation modification genes, respectively. Black spots represent genes with no difference in methylation levels
regulated by METTL3. (B) The top 20 genes with the highest or lowest difference in methylation levels regulated byMETTL3 were shown in the heatmap. (C, D) GO
and KEGG enrichment analysis of genes with different methylation levels.
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Molecular Subtype Analysis of Methylated
Core Genes Regulated by METTL3
To explore the effect of METTL3-mediated m6A methylation
on core genes in GC progression (Supplementary Table 4), a
consensus clustering algorithm was applied to classify GC
patients into two clusters based on the expression levels of 18
methylation core molecules (Figure 5A). The histogram
showed that these genes were overexpressed mainly in type A
(Figure 5B). The principal component analysis (PCA) plot
showed a significant difference between the two GC subtypes
(Figure 5C). Subsequently, we analyzed the effect of each
subtype on GC patient prognosis. The K-M curve showed
that the OS and progression-free survival of Cluster B GC
patients were markedly better than those of Cluster A
(Figures 5D, E). Finally, we investigated the association
between clinicopathologic features and different GC types.
The radar chart displays GC patients in T3–T4, N2–N3, M1,
Stage III–Stage IV, and G3, and is clearly concentrated in the A
subtype (Figure 5F). Meanwhile, the prognosis of patients in
the B subtype with Stage III–Stage IV was significantly better
than GC patients in the A subtype (Figures 5G–J). In summary,
core genes methylated by METTL3 may be a marker of
prognosis for patients with GC.
Frontiers in Oncology | www.frontiersin.org 5
Tumor Mutational Burden and Immune
Microenvironment are Significantly
Different Among GC Patients with
Different Molecular Subtypes
It is widely acknowledged that the TMB is closely related to the
degree of response of patients to treatment (17). Accordingly, we
explored the differences in TMB among molecular subtypes of GC
patients. The results indicated that patients with B molecular
subtypes had a considerably higher TMB (Figure 6A).
Subsequently, we combined different molecular subtypes and
TMBs to analyze GC prognosis. The results showed that the
prognosis of GC patients with a high TMB was significantly
better than those with a low TMB, and the prognosis of patients
with a high TMB in the B subtype was significantly better than
type A patients (Figures 6B–D). Since TMB is closely related to
the immunity of GC patients, we used GSEA to explore the
differences in immune-related functions between the two
subtypes. The results showed that most immune-related
biological processes and molecular functions, such as immune
receptor activity, T-cell activity, and B-cell differentiation, were
significantly different between the two types (Figure 6E;
Supplementary Table 5). We then analyzed the differences in
immune microenvironment scores between the two subtypes.
B

C D

A

FIGURE 3 | Gene alterations at the transcriptional level regulated by METTL3 overexpression. (A) Volcano diagram of differentially expressed genes regulated by
METTL3. The red and blue dots in the plot represent upregulated and downregulated genes, respectively. Black spots represent genes changed with no
significance. (B) The top 20 genes with the highest or lowest change of expression regulated by METTL3 were shown in the heatmap. (C) GO enrichment analysis of
METTL3-regulated differentially expressed genes at the transcriptional level; (D) KEGG enrichment analysis of METTL3-regulated differentially expressed genes at the
transcriptional level.
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Interestingly, subtype B had significantly lower stromal and
immune scores than subtype A (Figure 6F). Finally, based on
CIBERSORT, we explored the differences in immune cell
infiltration in GC patients with different subtypes. The
infiltration levels of M2 macrophages, monocytes, resting mast
cells, CD8 T cells, and naïve B cells were obviously higher in
subtype A than those in subtype B, while follicular helper T cells,
memory-activated CD4 T cells, and M0 macrophages had
significantly lower infiltration in subtype A compared to those
in subtype B (Figure 6G). Altogether, significant disparity of TMB
and immune cell infiltration was found between the different
subtypes of GC based on 18 methylation core molecules.

Analysis of Differences in Immune and
Targeted Therapy Responsiveness in
Gastric Cancer Patients of Different
Molecular Subtypes
An increasing body of evidence suggests considerable heterogeneity
in the efficacy of immunotherapy in patients with GC, and TMB is a
Frontiers in Oncology | www.frontiersin.org 6
biomarker that can predict the response or efficacy of
immunotherapy in GC patients (18). We used the Tumor
Immune Dysfunction and Exclusion (TIDE) score to explore
differences in immune responses between the two subtypes.
Subtype B had a relatively low TIDE score, suggesting that
subtype B of GC patients may have a better response to
immunotherapy (Figure 7A). It is well-established that CAF is
involved in the body’s immune response (19). Our analysis showed
that GC patients with subtype B have significantly lower CAF levels,
which may account for subtype B patients deriving greater benefit
from immunotherapy (Figure 7B). In addition, we explored the
relationship between GC subtypes and immune expression
signatures, and we found that subtype A patients have a greater
proportion of C4 and C6 (Figure 7C). Because GC patients with
subtype B have a higher TMB, we explored whether patients with
subtype B have a higher sensitivity to immune checkpoint
inhibitors. First, we found that 42 immune checkpoint genes were
differentially expressed in the two GC subtypes, including LAG3,
CD274, PDCD1, and CTLA-4 (Figure 7D). We then obtained the
B

C

D E

A

FIGURE 4 | Core genes regulated by METTL3. (A, B) Venn plot of combined transcriptome and epigenome sequencing of core genes; (C) differential expression of
core genes in gastric cancer and normal gastric mucosal tissues; (D) core genes with independent prognostic value identified by Cox regression; (E) mutation rate of
core genes with independent prognostic value in gastric cancer patients.
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immunotherapy score data fromTCIA and compared the difference
in immunotherapy score between two GC subtypes. Results
demonstrated that patients with subtype B exhibited higher
immunotherapy scores than subtype A (Figures 7E–H). Finally,
we explored the differences between the two subtypes for other
pharmacological treatments. The results showed that patients in
subtype B exhibited higher sensitivity to paclitaxel than in type A
(Figure 7I). Taken together, our results indicate that METTL3-
mediated m6A methylation may affect the responsiveness to
immunotherapy in GC patients.
DISCUSSION

GC is one of the leading causes of cancer-related death
worldwide, especially in China. Significant inroads have been
Frontiers in Oncology | www.frontiersin.org 7
achieved in recent years; for instance, neoadjuvant
chemotherapy can greatly improve the prognosis of GC
patients, and GC survival rates at 5 years are less than 30%
(20, 21). In recent years, tumor immunotherapy has made a
breakthrough in clinical cancer treatment, but some patients still
do not benefit from immunotherapy (22). Targeted epigenetic
therapies can improve the efficacy of immunotherapy (23).
Recent studies have found that mRNA m6A is involved in
anti-inflammatory and anti-tumor functions, playing a vital
role in regulating the complexity and diversity of the immune
microenvironment. Accordingly, evaluating the modification
pat tern of m6A can help predic t immunotherapy
responsiveness. It is well-established that METTL3-mediated
m6A modifications influence the immune microenvironment
and thus affect the sensitivity of patients to immunotherapy (24).
In this study, 18 methylation core molecules regulated by
B
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A

FIGURE 5 | Molecular subtype of METTL3-regulated core genes. (A) Consensus clustering of gastric cancer patients according to the expression of core genes.
(B) The expression of 18 methylation core molecules in different GC subtypes. (C) PCA plots of subtype. (D, E) K-M curves of overall survival and progression-free
survival of gastric cancer patients with different subtypes. (F) The number of patients at different T, N, and M stages and grades in different GC subtypes. (G–J) The
prognosis of Stage I–Stage IV and G1–G3 GC patients in different GC subtypes.
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METTL3 were screened by using methylation and transcriptome
sequencing. We found that METTL3-mediated methylation is
essential for shaping the immune microenvironment, which may
predict patient responsiveness to immunotherapy.

Moreover, we divided the GC patients into two subtypes
based on the expression of 18 methylation core molecules; GC
patients with subtype A exhibited a worse OS and progression-
free survival than patients with subtype B. In addition, consistent
with previous studies in bladder, cervical, ovarian, and
endometrial cancers, we found that GC patients with high
TMB had better OS (25). Multiple biomarkers, especially
microsatel l ite instabil ity and TMB, have important
implications for identifying or screening patients most likely to
Frontiers in Oncology | www.frontiersin.org 8
benefit from immunotherapy (26). A high mutational burden in
lung and melanoma patients is associated with a significantly
higher response to immunotherapy (27, 28). In addition, GC
patients with a higher mutational burden achieved longer OS
when treated with topalimumab (18). Our analysis showed that
GC patients with subtype B had a higher TMB and a better
prognosis, indicating that patients with subtype B would benefit
more from immunotherapy.

Tumor patients with a high TMB have higher levels of tumor
neoantigens, which may cause changes in the function and status of
immune cells in patients, resulting in more potent killing effects on
tumor cells (29). The present study used the ESTIMATE algorithm
to explore differences in immune cells and stromal cells in patients
B

C D

E

F

G

A

FIGURE 6 | Differences in tumor mutational burden and immune microenvironment in gastric cancer patients in different subtypes. (A) Tumor mutational burden of
different GC subtypes. (B) Relationship between tumor mutational burden and prognosis of GC patients. (C, D) Prognosis of patients of high- and low-TMB in A or B
GC subtpyes. (E) GSEA enrichment analysis of subtype. (F) Differences in the immune microenvironment in gastric cancer patients in different subtypes. (G)
Differences in immune cell infiltration in different subtypes.
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with different subtypes of GC (12). We found that monocytes, M2
macrophages, tumor-associated fibroblasts, CD8 T cells, and mast
cells were significantly lower in subtype B than in subtype A in GC
patients. Monocytes can influence the immune microenvironment
and promote GC’s malignant progression (30). M2 macrophages
Frontiers in Oncology | www.frontiersin.org 9
can activate pro-angiogenic and immunosuppressive signals in
tumors, especially in diffuse GC (31). Previous studies have shown
that tumor-associated fibroblasts can promote the malignant
progression of GC through a variety of pathways, including
promoting drug resistance of GC cells, and promoting the
B
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FIGURE 7 | Differences in the responsiveness of patients to chemotherapy, targeted therapy, and immunotherapy in different GC subtypes. (A) The TIDE score in
different GC subtypes. (B) Expression of CAF in different GC subtypes. (C) The relationship between GC subtypes and immune expression signatures. (D)
Expression of immune checkpoints in different GC subtypes. (E–H) Differences in the responsiveness of GC patients to immune checkpoint inhibitor therapy in
different subtypes. (I) The sensitivity of paclitaxel in different GC subtypes.
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formation of an aggressive phenotype such as proliferation,
invasion, and migration in GC cells (32, 33). In addition,
inhibition of mast cells may improve the therapeutic effect of
immune checkpoint inhibitors (34). Meanwhile, M0 macrophages
were significantly higher in subtype B patients. Previous research
suggests that newly tumor-infiltrated naive M0 macrophages play
anti-tumorigenic activities via release of TNF-a secretion (35). In
addition, follicular helper T cells and memory-activated CD4 T cells
were higher in subtype B patients too. According to the literature,
helper T cells are necessary to activate naive B cells. Some activated
naive B cells become memory cells that provide protection for the
body (36). Other studies have shown that a higher CD4/CD8 ratio
of pleural effusion predicts better survival for lung cancer patients
receiving immune checkpoint inhibitors (37). The low infiltration of
CD8 T cells and the high infiltration of memory-activated CD4 T
cells in type B GC cancer may increase the efficacy of immune
checkpoint inhibitor therapy in GC patients. Decreased tumor
purity also plays a vital role in the malignant progression of GC,
treatment resistance, and prognostic assessment (38). These
differences in the infiltration of immune cells may be related to
the differences in the prognosis and clinical pathological stages of the
patients with different subtypes. We found that the immune score
and stromal score in subtype B GC patients were lower than in
patients with subtype A, which indicated that patients with subtype
A had lower tumor purity. The above results reveal that the better
prognosis of patients with subtype Bmay be due to the higher tumor
purity and reduced infiltration of immune cells that promote
tumor progression.

Current evidence suggests that the application of immune
checkpoint inhibitors such as PD-1/PD-L1 and CTLA-4 and the
combination of immunization and standard chemotherapy
significantly prolong the survival of tumor patients (39). We
found that type B GC patients responded better to immune
checkpoint inhibitor therapy and lower interferon levels.
Interferon can promote T-cell exhaustion through PDL1 (40).
Accordingly, patients with type B may benefit from immune
checkpoint inhibitor therapy. The results of the TIDE
database also substantiated our above findings. In addition to
immunotherapy, we also analyzed the differences in the sensitivity
to chemotherapy and targeted drugs in GC patients, and the results
showed that GC patients with subtype B were more sensitive to
paclitaxel than subtype A.
Frontiers in Oncology | www.frontiersin.org 10
In conclusion, we developed a network-based approach to
investigate the m6A-driven genes regulated by METTL3 and
identified the core genes based on transcriptome and methylome
sequencing. These molecules are closely related to the prognosis
of GC patients, the immune microenvironment, and clinical
treatment sensitivity. Therefore, these findings provided novel
information regarding m6A modification changes modulated by
METTL3 in GC, suggesting that METTL3-related molecules may
serve as a clinical target for GC patients.
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