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Background: Fibroblast growth factor receptors (FGFRs) modulate numerous

cellular processes in tumor cells and tumor microenvironment. However, the

effect of FGFRs on tumor prognosis and tumor-infiltrating lymphocytes in

gastric cancer (GC) remains controversial.

Methods: The expression of four different types of FGFRs was analyzed via

GEPIA, TCGA-STAD, and GTEX databases and our 27 pairs of GC tumor

samples and the adjacent normal tissue. Furthermore, the Kaplan–Meier plot

and the TCGA database were utilized to assess the association of FGFRs with

clinical prognosis. The R software was used to evaluate FGFRs co-expression

genes with GO/KEGG Pathway Enrichment Analysis. In vitro and in vivo

functional analyses and immunoblotting were performed to verify FGFR4

overexpression consequence. Moreover, the correlation between FGFRs and

cancer immune infiltrates was analyzed by TIMER and TCGA databases. And the

efficacy of anti-PD-1 mAb treatment was examined in NOG mouse models

with overexpressed FGFR1 or FGFR4.

Results: The expression of FGFRs was considerably elevated in STAD than in

the normal gastric tissues and was significantly correlated with poor OS and

PFS. ROC curve showed the accuracy of the FGFRs in tumor diagnosis, among

which FGFR4 had the highest ROC value. Besides, univariate and multivariate

analysis revealed that FGFR4 was an independent prognostic factor for GC

patients. According to a GO/KEGG analysis, the FGFRs were implicated in the

ERK/MAPK, PI3K-AKT and extracellular matrix (ECM) receptor signaling

pathways. In vivo and in vitro studies revealed that overexpression of FGFR4

stimulated GC cell proliferation, invasion, and migration. In addition, FGFR1

expression was positively correlated with infiltrating levels of CD8+ T-cells,

CD4+ T-cells, macrophages, and dendritic cells in STAD. In contrast, FGFR4

expression was negatively correlated with tumor-infiltrating lymphocytes.

Interestingly, overexpression of FGFR1 in the NOG mouse model improved

the immunotherapeutic impact of GC, while overexpression of FGFR4 impaired
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the effect. When combined with an FGFR4 inhibitor, the anti-tumor effect of

anti-PD-1 treatment increased significantly in a GC xenograft mouse model

with overexpressed FGFR4.

Conclusions: FGFRs has critical function in GC and associated with immune

cell infiltration, which might be a potential prognosis biomarker and predictor

of response to immunotherapy in GC.
KEYWORDS

fibroblast growth factor receptors (FGFRs), gastric cancer, immune cell infiltration,
prognosis, anti-programmed cell death 1 monoclonal antibodies (Anti-PD-1 mAB),
database analysis
Introduction

Gastric cancer (GC) has been described as one of the most

common cancers, and the fourth leading cause of cancer-related

mortality (1). Unfortunately, diagnosis is often in the advanced

stage when only palliative treatment is available. Despite

advances in treatment, including surgery, radiation,

chemotherapy, and immunotherapy, the prognosis remains

poor. The 5-year overall survival (OS) rate of the Stage IV GC

is less than 10% (2). Therefore, more innovative agents should be

developed to improve patient prognosis.

The mammalian fibroblast growth factor receptor (FGFR)

family includes four highly conserved receptors (FGFR1, FGFR2,

FGFR3, and FGFR4) (3). They are single-pass transmembrane

proteins typically containing an extracellular domain, a

transmembrane domain, and an intracellular tyrosine kinase

domain (4). Fibroblast growth factors (FGFs) bind to their

receptors and subsequently dimerized with the receptor. Then the

dimerizer triggers a cascade of intracellular processes that activate

crucial survival and proliferation signaling pathways. Irregular FGFR

signaling pathway are associated with various physiological process

for many tumor types, including oncogenesis, tumor progression,

and resistance to anti-cancer treatments (5–7). FGFR1 is amplified in

an estimated 10% of breast cancers and 12% of non-small cell lung

cancer (NSCLC), leading to a poor patient prognosis (8–9).

According to a recent study, mutations in the gene encoding

FGFR3 are more prominent in luminal 1 bladder tumors (10).

FGFR4 has been implicated in hepatocarcinogenesis (11). Multiple

studies showed genetic aberration of FGFR2, thus serving as a

diagnostic biomarker and therapeutic target for GC (6, 12).

Therefore, many inhibitors have been developed against specific

FGFRs, with some as candidates for potential pharmaceutical

therapy. However, most FGFR inhibitors have shown only a

modest effect in GC during clinical trials although the data from

preclinical study were highly promising (13, 14). Thus, extensive
02
studies on the FGFRs are necessary to find pharmacological targets

for GC therapy.

The potential use of immunotherapy in GC has received

considerable interest in recent decades. CHECKMATE-649

clinical trials showed the great clinical value of Nivolumab

(Opdivo) in the late-stage GC patients and elevated survival

from 11.1 months to 14.4 months in Combined Positive Score

(CPS) >5 population (15). Although Epstein-Barr virus,

microsatellite instability-high (MSI-H), and tumor mutational

burden was used as indicators to predict the prognosis of GC

(16), there is still only a subset of patients that benefit from PD-

1/PD-L1 checkpoint blockade. Thus, it is critical to identify more

effective immunotherapy targets and predictive biomarkers.

Previous experiments have found that FGFR is associated with

immunity (17, 18), but the correlation between FGFR protein

expression and tumor-infiltrating immune cells is not clear. In

addition, the underlying mechanism how FGFRs regulates the

immune environment and their association with the efficiency of

immunotherapy remains unclear.

The dysregulated expression levels of FGFRs and their

association with clinicopathological characteristics have been

described in cancers, such as NSCLC, gallbladder, hepatic

carcinoma, and breast cancer. However, the function and

prognostic role of distinct FGFR family members in GC

remains controversial. Moreover, the mechanisms of FGFRs in

tumorigenesis and tumor immunology are still unclear. This

study analyzed the expressions of four types of FGFRs in

different databases and patients with GC and verified the

results through in vivo and in vitro studies. We aimed to find

the expression patterns, potential functions, distinct diagnosis,

and prognostic values of FGFRs in GC. More importantly, we

further investigated the correlation of FGFRs with tumor-

infiltrating immune cells and evaluated the potential predictive

value of FGFRs to immunotherapy response through database

analysis and in vivo experiments.
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Materials and methods

Data source

The RNA-sequencing profile for 375 primary GC, 32 normal

gastric tissues, and their corresponding clinicopathological

characteristics (age, grade, stage, and sex) and survival time were

download from The Cancer Genome Atlas-Stomach

Adenocarcinoma (TCGA-STAD) database (https://portal.gdc.

cancer.gov/). Similarly, the profile of 100 normal gastric tissues

and 300GC tumor were download fromGEOdatabase (GSE66229).
Reagents

Anti-PD-1 mAb (Nivolumab) was obtained from Bristol-

Myers Squibb Company, New York, New York, USA. FGF 401

(Selleck Chemicals, Houston, Texas, USA), FGFR1(D8E4,

#9740), FGFR4(D3B12, #8562), Erk1/2(137F5, #4695),

Phospho- Erk1/2 (Thr202/Tyr204) (D13.14.4E, #4370), Akt

(C67E7, #4691), Phospho-Akt (Ser473) (D9E, #4060), E-

Cadherin (4A2, #14472), MMP-9 (D6O3H, #13667) antibody

(Cell Signaling Technology, Danvers, Massachusetts, USA), anti-

fibronectin (ab32419), anti-MMP2 (ab97779) (Abcam,

Cambridge, UK), and b-actin (Sigma-Aldrich, St Louis,

Missouri, USA) were used as obtained.
Patients

Twenty-seven pairs of GC tissues and their adjacent normal

tissues were obtained from General Surgery Department of the

First Affiliated Hospital at Xi’an Jiaotong University, China, in

2020 and 2021. Immediately after resection, GC and normal

adjacent tissues specimens were stored at -80°C. This study was

approved by the Ethics Committee of the First Affiliated

Hospital of Xi’an Jiaotong University, and conducted in

accordance with the Declaration of Helsinki principles.

Informed consent was obtained from all patients.
Plasmids and stable cell
lines establishment

All human GC cell lines were obtained from the Cell

Resource Center, Peking Union Medical College (Peking,

China) and cultured in Roswell Park Memorial Institute

Medium (RPMI) or Dulbecco’s Modified Eagle Medium

(DMEM) with 10% Fetal Bovine Serum (Invitrogen) at 37°C

and 5% CO2. The 293T cells were obtained (Clontech

Laboratories, San Francisco, California, USA) and cultured in

DMEM with high glucose. pHAGE-FGFR1 and pHAGE-FGFR4
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were gifts from Gordon Mills & Kenneth Scott, Addgene

plasmid #116740, #116743. Retroviral infections were

performed as previously described (19, 20). Transfected cells

were established under puromycin selection, until stable cell

lines were generated as N87-EV, N87-FGFR1, and N87-FGFR4.
The differential expression analysis of
FGFR family in GC

Gene Expression Profiling Interactive Analysis database

(GEPIA, gepia.cancer-pku.cn) provided vast integrated genome

expression profiles in GC and normal samples (21). The mRNA

expression levels of FGFR in GC tissues were compared to normal

tissues. We further examined the expression of FGFRs in multiple

tumor samples through ONCOMINE (www.oncomine.org) and

Tumor Immune Estimation Resource (TIMER) databases (https://

cistrome.shinyapps.io/timer/) to validate the former result. In

addition, we used the Cancer Genome Atlas (TCGA) and

Genotype-Tissue Expression (GTEX) data to evaluate the

expression of FGFRs members in tumor and adjacent normal

tissues to explore the expression in GC patients of different

clinicopathological characteristics. The data was analyzed through

the “ggplot2” R package using R software from Bell Laboratories

(formerly AT&T, now Lucent Technologies, New Jersey, USA) by

John Chambers and colleagues.
Survival analysis

Kaplan–Meier plot (www.kmplot.com) was utilized to

examine the prognosis of FGFRs expression in STAD. The

survival outcomes were OS and progress-free survival (PFS)

(22). In addition, the association were evaluated between mRNA

levels of FGFRs and clinical characteristics. The univariate and

multivariate analysis were applied using the Cox regression

model. A p-value<0.05 was considered significant.
Enrichment analysis of FGFRs
co-expression network in GC

The LinkedOmics database was used to analyze the

correlated genes with FGFRs through the “limma” R package

to extract the expression profiles of the correlated gene in

TCGA-STAD data sets. Then, we drew the correlation

heatmap of the top 10 genes through TCGA based on FGFRs

different expression groups (Pearson Correlation Coefficient,

p<0.05). The Gene Ontology (GO) and Kyoto Encyclopedia of

Genes and Genomes (KEGG) enrichment analyses were

performed using the R package “clusterProfiler” to assess the

relative biological functions and molecular pathways regulated
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by the correlated genes. A p-value<0.05 was set as significant for

screen criteria.
FGFRs genomic alterations

The cBioPortal database (http://cbioportal.org) was used to

explore the FGFRs gene alterations in GC (23). Then the TIMER

somatic copy number alternation (SCNA) module compares

tumor infiltration levels in tumors with different SCNA for

FGFR family members through a two-sided Wilcoxon rank-

sum test.
Immune cell infiltration analysis

TIMER database is a publicly available source for evaluating

the impact of different immune cells in diverse cancers (24). The

correlation between FGFRs and the 24 different kinds of immune

cell infiltrates in gastric cancer samples, including CD8+ T-cells,

CD4+ T-cells, neutrophils, macrophages, and natural killer cells,

was achieved by the “ssGSEA” method through the GSVA

package with R computing. TIMER was utilized to assess the

correlation between FGFRs expression and tumor purified

immune cell infiltration.
Functional experiments, real-time
quantitative PCR, and immunoblotting

Functional experiments (cell proliferation, transwell invasion

assay, and scratch assay), RT-qPCR, and immunoblotting were

performed as described in our previous articles (25–26). FGFR1,

FGFR2, FGFR3, and FGFR4 primers (OriGene, Rockville, Maryland,

USA) were used to detect mRNA levels by real-time quantitative

reverse transcription polymerase chain reaction (RT- PCR). All the

experiments were repeated three times independently.
In vivo studies in humanized NOG
mouse tumor model

Immunodeficient NOD Cg-PrkdcscidIl2rgtm1Sug/JicCrl (NOG)

mice (Weitong Lihua Experimental Animal Co., Ltd, Beijing,

China) were used to receive human immune cells and established

a humanized immune system. Peripheral blood mononuclear cells

(PBMCs) from healthy donors were isolated and 2×107 cells were

administered intraperitoneally into the mice. BALB/c nude mice

were purchased from the Laboratory Animal Center of Xi’an

Jiaotong University. N87-EV, N87-FGFR1, and N87-FGFR4 cells

(5 ×106) were administered subcutaneously into mice. After 10

days, the subcutaneous tumors had grown to a size that could be

measured (approximately 90mm3). Then FGF401was diluted in 6%
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administered intragastrically at 30 mg/kg daily. Mouse was

injected with Anti-PD-1 mAb (nivolumab) at 200 mg/mouse

twice a week for 4 weeks. Every 2 days, the tumor volume and

body weight were measured and calculated as (length × width2)/2.

Mice were euthanized when Tumor volume (TV) exceeded 1,500

mm3 or when the mouse’s weight decreased by < 70% of that at Day

1. Survival (in days) was defined as the time for each mouse from

Day 0 until the day of death or euthanization. Survival curve was

built for each group through GraphPad Prism 7.0 (GraphPad

Software, San Diego, California, USA). The mice experiments

were performed following the protocols approved by the by the

Ethics Committee of the First Affiliated Hospital of Xi’an

Jiaotong University.
Statistical analysis

All results were statistically analyzed and summarized as a

mean and standard error of measurement (SEM) by GraphPad

Prism Software. The two-tailed Student’s t-test was applied to

assess the differences between the groups. Spearman’s

correlation test was performed to determine the correlation

between groups. p ≤ 0.05 was considered statistically different.
Results

Distinct expression of FGFRs in
GC patients

To determine differences in FGFR family expression between

tumor and normal tissues, we analyzed the mRNA level both in

various datasets and our GC samples. First, the differential

expression of FGFR family members was evaluated with pan-

cancer analysis with Oncomine and TIMER databases, which

revealed that the expression of FGFR family in lung cancer,

breast cancer, liver cancer, colorectal cancer, head-neck cancer,

GC, and sarcoma was higher than that in normal tissues (Figure

S1). Then the transcriptional levels of FGFR family in GC and

their adjacent normal tissues were evaluated in the GEPIA

database (Figure 1A). According to the result, FGFR2 and

FGFR4 expression were considerably increased in tumors than

that in normal tissue. But there was no significant difference

between the tumors and normal tissues in FGFR3 and FGFR1.

Next, we downloaded the original files from TCGA-STAD and

GTEx database to analyze FGFR1-4 expression. In this database,

the expression levels of FGFR2, FGFR3, and FGFR4 were

remarkably higher in STAD than that in normal tissues, while

FGFR1 was significantly lower (Figure 1B). Furthermore, the

analysis of paired samples from the TCGA database suggested

that only FGFR4 expression was significantly elevated in tumor

samples (Figure 1C). To further ensure the accuracy of results we
frontiersin.org
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analyzed above, we examined the mRNA level in 27 pairs of GC

tissues and their adjacent normal tissues by qRT-PCR. The

results indicated that the RNA level of FGFR2 (p<0.05) and

FGFR4 (p<0.001) was considerably higher in tumor tissues

compared to the matched adjacent non-tumor tissues

(Figure 1D). No significant difference was found between

tumor and adjacent normal tissues in the mRNA level of

FGFR1 and FGFR3. Moreover, we further validated the

expression of FGFRs in another GSE66229 database. The
Frontiers in Oncology 05
expression of FGFR3 and FGFR4 were significantly higher in

tumor than in normal samples in GC (p<0.001) (Figure 1E).
The prognostic and diagnostic value of
FGFRs in GC

To further assess the prognostic and diagnostic value of

FGFRs in STAD, we analyzed the impact of FGFR family
B C

D

E

A

FIGURE 1

The mRNA expression levels of FGFRs in GC. (A) The differential expression of FGFR family members in cohort tumor and non-tumor tissues
was analyzed with GEPIA. (B) The difference in expression of FGFRs between STAD in TCGA data sets and normal gastric tissues in GTEX data
sets. (C) The differences in expression of FGFRs between STAD and matched normal tissues from TCGA-STAD database were determined by
GEPIA. (D) The mRNA expression of FGFRs in gastric tumor tissues and matched adjacent non-tumor tissues from our samples. (E) The
differential expression of FGFRs between tumor and matched normal tissues from GSE66229 database. *p < 0.05; ***p < 0.001; **** p <0.0001;
ns, not significant; GC, gastric cancer; T, tumor; N, normal.
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expression on survival using the Kaplan–Meier plot. High

expression mRNA levels of the whole FGFR family were

significantly associated with OS and PFS in GC patients

(Figures 2A, B). The result from GSE66229 database showed

the same trend. The expression of FGFR1 and FGFR4 were also

correlated with the poorer overall survival in GC. But FGFR2

and FGFR3 (Figure 2C). Furthermore, we analyzed the

correlation between FGFRs and GC patients’ characteristics

and found FGFR1 expression was substantially associated with

the T stage, whereas other clinical features were not markedly

different with high expression of FGFR (Figure 2D, Figure S2).

FGFR1, FGFR 3, and FGFR 4 expression varied in different

histological types, among which the difference between diffuse

and tubular tumors was most pronounced (Figure 2E). Then, we

assessed the correlation between FGFR family expression and the

clinicopathological features with univariate and multivariate

Cox regression analysis using TCGA data. As shown in

Table 1, N stage, distant metastasis, age, and FGFR4 were

independent prognostic factors for GC patients, while FGFR1,

FGFR2, and FGFR3 had no significant association with an

increased risk of GC and poor OS and PFS in univariate

or multivariate analyses. Additionally, the ROC analysis

revealed that the FGFRs expression levels had high diagnostic

potential for GC, among which FGFR4 was the most accurate

(FGFR1: AUC: 0.615, FGFR2: AUC: 0.533, FGFR3: AUC: 0.615,

FGFR4: AUC: 0.878; Figure 2F).
Enrichment analysis of FGFRs co-
expression genes in GC

To better understand the underlying mechanisms of FGFRs

expression in GC, we evaluated the genes associated with the

expression of FGFR family members in the STAD datasets of

TCGAwith the Limma R package. After the selection, upregulated

and downregulated genes were identified according to the FGFR

high and FGFR low expression group in STAD. a correlated

heatmap was drawn between the different groups, which showed

the highest ten positive and ten negative genes of every FGFR

member (Figures 3A–D) (Pearson Correlation Coefficient,

p<0.05). To verify the gene-gene interaction network, STRING

and GeneMANIA were also used to explore the correlated genes.

The potential target gene interactions with the FGFR family are

shown in Figure S3. The interactions were generally in agreement

with the genes from the association analysis. Then we performed a

functional enrichment analysis to excavate the underlying

biological function of FGFR based on the co-expressed genes.

The KEGG analysis showed the FGFR1/3/4 were closely related to

the PI3K-AKT signaling pathway and ECM receptor interaction,

while FGFR2 was highly correlated with cell cycle, pathways of

neurodegeneration multiple diseases, and Wnt signaling pathway

(Figures 4A–D).
Frontiers in Oncology 06
FGFR4 overexpression enhanced
proliferation, invasion, and migration of
GC in vitro and in vivo

In the results above, we found that FGFR1, FGFR2, FGFR3,

and FGFR4 were all associated with the prognosis of GC

patients, in which FGFR4 had the most prognostic and

diagnostic value among the whole family. To further elucidate

the functional role of FGFR4 overexpression, NCI-N87 and

MGC-803 cell lines with low FGFR4 expression were

transfected with lentivirus plasmid pHAGE-FGFR4. FGFR4

overexpression stable cell line was established by puromycin

selection. FGFR4 overexpression was confirmed by qRT-PCR

and immunoblotting (Figures 5A, F). The overexpression of

FGFR4 induced a significant elevation of cell proliferation

according to the proliferation assay (Figure 5B). Similarly,

plate colony formation showed considerably more colonies in

the FGFR4 overexpressed group (Figure 5C). As to the transwell

cell migration assay, high levels of FGFR4 resulted in the

increase of both NCI-N87 and MGC-803 cells (Figure 5D).

The data from scratch assay was consistent with the data above

(Figure 5E). To ascertain the downstream regulation pathway of

FGFR4 overexpression, we examined the expression levels of

representative markers in the ERK/MAPK pathway, PI3K/Akt

pathway, and ECM signaling. Western blot analyses showed that

p-ERK, p-AKT, fibronectin, and matrix metalloproteinase 2

(MMP-2) were remarkab ly e l eva ted a f t e r FGFR4

overexpression. Meanwhile, E-cadherin was significantly

reduced in the N87-FGFR4 cells (Figure 5F, Figure S4). The

data was consistent with the result from the KEGG pathway

analysis and functional experiment. Moreover, the nude mice

bearing FGFR4 overexpression tumors (N87-FGFR4) showed

better tumor-growth promotion than those with the control

plasmid (Figures 5G–I). These results indicated that FGFR4

overexpression promotes the malignancy and the EMT in GC.

Therefore, FGFR4 can also be expected to serve as a novel target

for GC treatment.
Genomic alterations of the FGFR
family in GC

Gene mutation was highly correlated with tumor origination

and progression; therefore, we speculated that FGFR family

variation in gene mutation might affect GC development.

Using the cBioportal database, we initially investigated the

types and frequencies of alterations in the FGFR family in GC

samples. From the histogram, three types of gene alteration of

FGFR family members were discovered in various GC cohorts,

including mutation, deep deletion, and amplification. The

mutation frequency of FGFR2 was the most significant (6%),

of which the majority were amplification mutations, whereas the
frontiersin.org
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three types of gene alterations were more balanced in FGFR1,

FGFR3, and FGFR4 (Figures 6A, B). However, in the survival

analysis, no considerable differences were discovered between

the FGFR2 altered mutation group and the unaltered one (Figure
Frontiers in Oncology 07
S5). TIMER database was employed to further assess the

association between the level of tumor infiltration and SCNA.

The variations of FGFRs somatic copy number alterations were

all significantly associated with immune cell infiltration levels of
B

C

D

E

A

F

FIGURE 2

The diagnostic and prognostic value of FGFRs in GC. (A, B) The OS (A) and PFS (B) survival curves of FGFRs in TCGA-STAD in Kaplan–Meier plot
databases. (C) The OS survival curves of FGFRs in GSE66229 database. (D, E) The expression of FGFRs in different T stages (D) and histologies (E)
were analyzed in TCGA-STAD data sets. (F) ROC curve analysis of FGFRs in the diagnosis of GC. *p < 0.05; **p < 0.01; ***p < 0.001; OS, overall
survival; PFS, progression-free survival; GC, gastric cancer.
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TABLE 1 Univariate and multivariate COX risk model.

Characteristics Total(N) Univariate analysis Multivariate analysis

Hazard ratio (95% CI) p-value Hazard ratio (95% CI) p-value

T stage 362

T1 18 Reference

T2 78 6.725 (0.913–49.524) 0.061 5.528 (0.743–41.136) 0.095

T3 167 9.548 (1.326–68.748) 0.025 6.487 (0.887–47.464) 0.066

T4 99 9.634 (1.323–70.151) 0.025 5.786 (0.775–43.176) 0.087

N stage 352

N0 107 Reference

N1 97 1.629 (1.001–2.649) 0.049 1.277 (0.753–2.166) 0.364

N2 74 1.655 (0.979–2.797) 0.060 1.438 (0.833–2.480) 0.192

N3 74 2.709 (1.669–4.396) <0.001 2.262 (1.338–3.826) 0.002

M stage 352 2.254 (1.295–3.924) 0.004 2.425 (1.326–4.435) 0.004

Age
(≤65 vs >65)

367 1.620 (1.154–2.276) 0.005 1.811 (1.260–2.602) 0.001

FGFR4 370 1.397 (1.006–1.941) 0.046 1.431 (1.011–2.026) 0.043
Frontiers in Oncology
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FIGURE 3

The co-expressed genes associated with the expression of FGFRs were analyzed as a heatmap by using the STAD data sets of TCGA. (A) FGFR1,
(B) FGFR2, (C) FGFR3, (D) FGFR4. *p<0.05; **p<0.01; ***p<0.001.
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CD8+ T-cells, CD4+ T-cells, macrophages, and dendritic cells in

GC, suggesting the involvement of FGFRs in regulating immune

cells in the TME (Figure 6C).
Expression of FGFRs related to immune
cell infiltration in tumors

To understand the correlation between FGFR family

members and immune cell markers, the TCGA-STAD

database was investigated using the GSVA package included in

the R software. A positive correlation was found between the

expressions of FGFR1 and FGFR2 in GC patients and the level of

immune cell infiltration, which included NK cells, CD8+ T-cells,

dendritic cells, and macrophages. However, FGFR3 and FGFR4

expressions showed a reverse negative trend (Figure 7A). Among

all the FGFR family members, the Spearman correlation number
Frontiers in Oncology 09
between FGFR1 and NK cells was highest (=0.756). While

FGFR4 had the most obvious negative correlation with the

CD8+ T cells (=-0.240). In contrast, the correlation number of

FGFR2 and FGFR3 was much lower. The correlation between

enrichment of distinct immune cells and FGFRs are shown in

Figures 7B, C. TIMER database analysis also revealed a similar

pattern (Figure S6).
High expression level of FGFRs indicates
the different reactions to the anti-PD-1
mAb treatment

To the best of our knowledge, the tumors that could attract

more T-cell infiltration are considered as hot tumors, they tend

to be more sensitive and effective to immunotherapy. Since we

found that FGFR1 was significantly positively correlated with
B

C D

A

FIGURE 4

Enrichment analysis of FGFRs co-expression genes in GC. (A–D) The functions of genes significantly associated with FGFR1 (A), FGFR2 (B),
FGFR3 (C), and FGFR4 (D) alterations were predicted by the enrichment analysis of KEGG. GC, gastric cancer; KEGG, Kyoto Encyclopedia of
Genes and Genomes.
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FIGURE 5

FGFR4 overexpression in GC cells exhibits a tumor progression effect. (A) FGFR4 mRNA levels were detected by qRT-PCR in NCI-N87 (A) and
MGC-803 cells transfected with EV (control plasmid) and FGFR4 (p-HAGE -FGFR4). (B) FGFR4 overexpression promoted cell proliferation in GC
NCI-N87 and MGC-803 cells, respectively. (C) FGFR4 overexpression improved the colony formation ability of GC cells. (D, E) Cell invasion and
migration capacity were measured by the Transwell invasion assay (D) (scale bar, 100 mm) and Scratch assay (E) (scale bar, 200 mm). (F) N87-EV,
N87-FGFR4, MGC803-EV, and MGC803-FGFR4 cells were collected with lysates subject to immunoblotting. (G) Representative images of nude
mouse subcutaneous tumors for N87-EV and N87-FGFR4 cell lines. (I) Tumor volume was measured at the indicated time points. Data
represent the mean of three independent experiments. *p < 0.05, **p < 0.01, ***p<0.001 student’s t-test; GC, gastric cancer; RT-PCR, real-time
quantitative reverse transcription polymerase chain reaction; EV, empty vector.
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many immune cells and had a high correlation coefficient, we

wondered whether overexpression of FGFR1 could form a hot

tumor, thereby improving the immunotherapy effect.

Furthermore, we evaluated whether a negative correlation with

FGFR4 overexpression could diminish the immunotherapeutic

consequence. To confirm this, NCI-N87 cells were transfected

by pHAGE-FGFR1, pHAGE-FGFR4, and its empty vector.

After selecting cells with stable FGFR expression, we

confirmed their protein levels through a Western blot assay

(Figure 7D). Then N87-FGFR1, N87-FGFR4, and N87-EV cells
Frontiers in Oncology 11
were subcutaneously injected into NOG mice. After tumor

formation, the mice were randomly allocated to receive either

an anti-PD-1 mAb or a placebo. All three kinds of xenograft

NOG mouse models showed TV decrease when treated with

anti-PD-1 mAb. Among them N87-FGFR1 had most significant

differences, while no considerable difference was found in the

N87-FGFR4 group (Figure S7). In addition, N87-FGFR1 group

showed significant regression of average TV after anti-PD-1

mAb treatment compared with the control group, while there

was no obvious decrease in the TV of the N87-FGFR4 group
B C

A

FIGURE 6

Genomic alterations of the FGFR family in GC. (A, B) The types and frequencies of FGFR family alterations in the GC samples through the
cBioportal database. (Data base selected: TGCA, Nature 2014; TCGA, Firehose Legacy; TCGA, PanCancer Atlas; MSK,2020; UHK, Nat Genet
2011; Pifizer and UHK, Nat Genet 2014; U Tokyo, Nat Genet 2014; TMUCIH, PNAS, 2015. (C) Association between FGFRs gene copy number and
immune cell infiltration levels in TCGA-STAD cohorts. *p < 0.05; **p < 0.01; ***p < 0.001; GC, gastric cancer.
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compared with the control group when treating with anti-PD-1

mAb. Interestingly, a significant difference was found in mouse

bodyweight between the N87-FGFR1 and N87-FGFR4 groups

(Figure 7E). And the survival analysis revealed that the survival

time was also significantly elevated in the N87-FGFR1 group

after anti-PD-1 treatment compared with the N87-FGFR4 group

(Figure 7F). As a result, overexpression of FGFR1 may improve

the immunotherapeutic impact of GC, whereas overexpression

of FGFR4 may impair the immunotherapeutic effect.
Frontiers in Oncology 12
Combination of anti-PD-1 with FGFR4
inhibitor improves the antitumor immune
response in high expression FGFR4 GC

Overexpression of FGFR4 is not effective for immunotherapy by

itself; therefore, a combination of immunotherapy and FGFR4

inhibitors potentially improve the efficacy of the treatment. We

investigated the combination treatment of FGFR4 inhibitor

(FGF401) and anti-PD-1 mAb in an FGFR4 overexpressed
B C

D E F

A

FIGURE 7

Expression of FGFRs related to tumor immune cell infiltration in TCGA-STAD. (A) The correlation between FGFRs and the different immune
infiltrating cells in TCGA-STAD. (A, B) The correlation between FGFR1 (B) /FGFR4 (C) and NK cell/CD8+ T-cells/B-cells/macrophages in cell
infiltration in TCGA-STAD. (D) FGFR1 and FGFR4 were stable and overexpressed in NCI-N87 cells. (E) The anti-PD-1 mAb was more effective in
controlling tumor volume in mice with FGFR1 than FGFR4 overexpressed NCI-N87 xenografts. (F) Kaplan–Meier plots of mouse survival. Survival
days represents as the time from Day 1 to the day of death or euthanization. **p<0.01, ***p<0.001, log-rank test between groups.
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xenograft mouse model. In a mouse subcutaneous xenograft model

of N87-FGFR4, the daily anti-PD-1 treatment showed only modest

antitumor efficacy compared with the control mice. Following

combination with oral dosing of FGF401 at 30 mg/kg, the TV of

the mice decreased remarkably (Figure 8A). Survival curves of mice

in the FGFR4 overexpressionmodel by different treatment (placebo,

FGF401, anti-PD-1 mAb, or combination) were presented in

Figure 8B. The combination of FGF401 and anti-PD-1 treatment

significantly prolonged the survival compared to the control group.

The similar situation was seen in the FGF401 single-agent group.

However, no significant difference was found between the anti-PD-1

mAb group and the control group or FGF401 treatment group. In

contrast, mice treated with combination reagents survived longer

than mice treated with anti-PD-1 mAb alone (HR, 0.235; 95%

confidence interval (CI), 0.07–0.74; p= 0.01274). The median

survival of the control, anti-PD-1 mAb, FGF401, and combination

groups was 16.5 days, 19 days, 21 days, and 30 days, respectively

(Figure 7B). Collectively, these results demonstrated that a high

expression level of FGFR1 could indicate a good prognosis with the

anti-PD-1 treatment, while the opposite was seen with FGFR4.

Combination therapy with FGF401 and anti-PD-1 could improve

the antitumor immune response in high expression FGFR4 GC.
Discussion

It has been commonly accepted that the FGFR family plays a

critical role in biological development (e.g., embryogenesis,
Frontiers in Oncology 13
angiogenesis, tissue homeostasis) and in regulating

physiological processes (e.g., migration, proliferation, and

differentiation) (3, 4). Therefore, abnormalities in FGF-FGFR

signaling can lead to the development and progression of many

cancers, including GC (27–29). Recently, many FGFR related

drugs were invented and showed promising result in GC,

including pan-FGFR inhibitors, selective FGFR inhibitors,

FGFR antibodies and antibody drug conjugates (2).

Pemigatinib, the first FGFR1/2/3 selective inhibitor received

accelerated FDA approval for patients carrying FGFR2 fusion/

rearrangement in cholangiocarcinoma (13). It could also inhibit

tumor growth in FGFR2 amplified GC xenograft models. A

phase II FiGhTeR trial of pemigatinib in metastatic esophageal-

gastric junction/gastric cancer patients with trastuzumab

resistant is currently underway (30). Bemarituzumab (FPA144)

is a monoclonal FGFR2-IIb isoform-selective antibody. FIGHT

trial showed bemarituzumab combined with mFOLFOX

remarkably attenuated tumor growth and improved OS of the

mestastatic GC patients with FGFR 2b protein overexpression

(31). An increasing number of clinical trials of FGFR related

drugs are ongoing in GC.

Due to the significant amplification of the FGFR2 gene in

gastric cancer, it has become the most popular factor of the

FGFR family in GC research (32, 33). However, in the survival

analysis of the GEPIA database, no significant differences were

found between the FGFR2 mutation-altered group (mainly

amplification) and the unaltered one. This may be due to the

FGFR2 amplification at the gene level does not lead to the high
BA

FIGURE 8

FGFR4 overexpression in the mouse model re-sensitized to anti-PD-1 mAb treatment in combination with an FGFR4 inhibitor. The N87-FGFR4
subcutaneous xenograft model was divided into different treatment groups either orally treated with FGF401 at 30 mg/kg once day or
intraperitoneally injected with anti-PD-1 mAb at 200 mg/mouse twice weekly for 4 weeks, or both. (A) TVs of individual mice. Top left: control.
Top right: anti-PD-1 mAb group. Bottom left: FGF401 group. Bottom right: FGF401 plus anti-PD-1 mAb treatment group. (B) Kaplan–Meier plots
of mouse survival. Bottom, a table showed the median survival time of mice in different group and its HR (95% CI). (*p < 0.05; **p<.01;
***p < 0.001, log-rank test between groups; TV, tumor volume.
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mRNA levels and protein expression. Furthermore, clinical

studies of FGFR family inhibitors in GC have been dominated

by inhibition of FGFR2, but their results were largely

disappointing (13). Therefore, FGFR2 amplification may not

be the best choice in GC for the direction of new drug

inventions. Exploring the entire protein family, and in

particular other family members and related inhibitors, maybe

even more important.

In this study, we explored the expressions of the entire FGFR

family in GC and their association with clinicopathological

characteristics by uncovering TCGA-STAD data with a

bioinformatics approach. The expression of FGFR2 and FGFR4

was higher in human stomach cancers than in normal tissues,

according to the GEPIA and TCGA datasets. While the

expression of FGFR1 and FGFR3 varied, the differences had no

significance in the diverse datasets. The findings in our clinical

tissues followed a similar pattern. The data above suggested that

FGFRs overexpression might play significant roles in the

tumorigenesis and progression of GC, among which FGFR2

and FGFR4 varied the most. Our result is consistent with a

previous study which showed that the overexpression of FGFR1,

FGFR2 and FGFR4 were detected in several GC cases by

immunohistochemistry (IHC) staining, whereas FGFR3 was

hardly detectable (34). FGFR1 (2%), FGFR2 (< 10%), FGFR4

(<2%) amplification was frequently reported in the GC

sequencing studies (28, 29, 32). FGFR2 was the most

investigated gene in FGFR family. FGFR2 amplification was

frequently found in the aggressive diffuse subtype from Lauren’s

classification, and associated with lymphatic and venous

invasion, lymph node metastasis, distant metastasis, advanced

TNM stage, and poor prognosis. However, parts of our results of

FGFR1 differs from results in prior studies. It is possible that our

study used a real-time updated database including multiple

populations worldwide. But the analysis from previous study

using IHC method which is the result from the limited local

population. Using the Kaplan–Meier plot, we discovered that an

increase in FGFRs expression was substantially linked with poor

OS and PFS in all the patients with GC who were followed for

180 months. Moreover, The AUC number for FGFRs from the

ROC curve was high, indicating the diagnostic potential of all

FGFRs in GC patients. Thus, the high expression of all FGFR

family members was associated with poor GC prognosis and

diagnosis. These results corroborate the findings of many

previous studies and a prior meta-analysis, which underscored

the clinical and prognostic significance of FGFR1 and FGFR2

overexpression in patients with GC (14, 35). Therefore, FGFRs

overexpression is a promising diagnostic and prognostic

biomarker for GC patients.

Among the entire FGFR family, the difference in FGFR4

expression was more significant. The ROC curve showed the

highest AUC for FGFR4 than any other FGFR type. The

univariate and multivariate analysis showed that the FGFR4

expression is the only factor from the FGFR family related to the
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OS and has the potential to be an independent prognostic

biomarker. In terms of function, overexpression of FGFR4

promotes tumor development, cell migration, and invasion.

According to the results above, aberrant FGFR4 plays a

significant role in gastric carcinogenesis and could serve as a

diagnostic marker and therapeutic target for GC treatment.

Although all FGFRs have a similar structure, physiological

roles, and downstream signaling, FGFR4 is distinct from the

others. FGFR4 is the only FGFR member that is not

embryonically lethal when knocked out (36), and its kinase

domain is structurally distinct from the others. As a result,

FGFR4 inhibition for cancer therapy may be successful in

treating cancer patients with FGFR4 high expression tumors,

causing only minimal side effects. Hepatocellular carcinoma,

colon cancer, pancreatic cancer, and breast cancer patients have

all been found to have FGFR4 activation (11, 37–39). However,

there are only a few reports of FGFR4 expression in human GC

(40–42). Furthermore, our study showed FGF401(an FGFR4

inhibitor) could prevent the proliferation of FGFR4

overexpression in the GC mouse xenograft model. This study

supports evidence from preclinical results, that some GC cell

lines were sensitive to newly invented FGFR4 inhibitors, such as

FGF401, BLU-554 and Futibatinib (43–45). Therefore, FGFR4

inhibitors may be a possible option for future target therapy in

GC. In all, our study demonstrated the importance of FGFR4

high expression in GC survival and provided a new basis for

investigating the function of FGFR4 in GC in the future.

Previous studies on FGFR downstream pathways have

focused on the RAS/MAPK and PI3K/Akt pathway (40, 46).

FGFR regulate FGFR4 was correlated with GSK-3b in

hepatocarcinoma (47). Through GO/KEGG analysis, we found

that the enrichment pathways associated with FGFR4 and FGFR1

were concentrated not only in the ERK/MAPK and PI3K/Akt

pathway, but also ECM receptor pathways. We further validated

the crosstalk between FGFR4 and ERK/MAPK, PI3K-AKT or

ECM receptor pathway by in vitro experiments. These are

consistent with the findings that FGFR2 mRNA levels were

positively associated with Twist-related protein 1 (Twist1), an

important transcription factor in the EMT process in the diffuse

type of GC. Paulina G et al. also reported that b-catenin and

SNAIL were accumulated in the nucleus and associated with

resistance of FGFR2 inhibitor (48). For a single target inhibitor,

the most probable reason for failure is the arising resistance from

the negative feedback loop of its downstream signaling or

crosstalk pathway activation. This study revealed that

overexpression of FGFR4 activates the ERK/MAPK, PI3K/Akt

and ECM receptor pathways, which provides a possible target for

the development of combinational treatment strategies. However,

our experiments only explored the correlation between the FGFR4

pathway and the PI3K/AKT, ECM receptor pathway, but not the

precise regulatory mechanisms and upstream/downstream

relationships. Further investigations are needed to explore the

detailed regulating mechanisms of FGFR4 in GC.
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Prior studies that have noted the importance of FGF-FGFR

axis regulating tumor microenvironment and immune evasion.

Wnt1/FGFR1 mice showed significantly enhanced myeloid-

derived tumor suppressor cells (MDSC) infiltration and tumor

angiogenesis compared to single Wnt1 transgenic mice. The

treatment of BGJ398, an FGFR inhibitor, resulted in regression

of breast cancer tumors, reduced levels of MDSCs in the

surrounding residual stroma, and decreased tumor vascularity

(49). Similarly, AZD4547 treatment inhibited proliferation and

lung metastasis of mammary tumor cells in mice and reduced

MDSCs in the tumor microenvironment and body circulation

(50). In our study, we discovered that elevated FGFR1 expression

in GC was positively correlated with tumor immune infiltration

and that such overexpressed mouse models were more effectively

treated with anti-PD-1 mAb. The opposite correlation was

observed in between FGFR4 expression and immune cell

infiltration. And the mouse model with high FGFR4

expression resulted in insensitivity to immunotherapy. This

data is in agreement with several recent studies. Activation of

FGFR1 has been shown to induce macrophage recruitment in

tumors via CX3CL1 induction (51). Jing, W et al. found that

inhibition of FGFR3 in bladder cancer to increase PD-L1 protein

levels, leading the inhibition of antitumor activity of CD8+ T

cells (52). These data show the distinct influence on tumor

immune environment of different FGFRs, which provide

suggestions for prognosis prediction of immunotherapy for

GC. Of course, the results need to be confirmed by further

clinical evidence and large-scale clinical trials.

Additionally, combining immunotherapy with an FGFR4

inhibitor could enhance the immune therapeutic effect. These

results are in accord with recent investigation indicating that the

combination of JNJ-42756493 (erdafitinib), a selective pan-

FGFR inhibitor, and anti-PD-1 mAb promotes T-cell clonal

expansion, and immunologic alterations that enhance antitumor

immunity and survival in NSCLC (53). A similar finding was

reported by Chenhe Yi et al. in hepatocarcinoma with the

combination of lenvatinib and PD-1 mAb (47). A number of

clinical trials applying drug combination strategies are currently

in process, such as clinical trials were on-going, including

erdafitinib with JNJ-63723283 (NCT03473743), nintedanib

with ipilimumab and nivolumab (NCT03377023), AZD4547

plus durvalumab (NCT02546661), rogaratinib plus

atezolizumab (NCT03473756) and so on (54, 55). But until

now, no clinical trial was carried out using a FGFR4 inhibitor

plus anti-PD-1 mAb strategy in GC. Further experiments

regarding mechanisms and large clinical trials are required to

validate the results of our study. It may provide a basis to

improve the immunotherapy efficiency in GC.

In conclusion, our study demonstrated that FGFRs are

overexpressed in GC, and their expression level is associated

with the clinicopathological characteristics and prognosis of GC

patients, among which FGFR4 has the most significant diagnostic

and prognostic potency. It can be used as a biomarker for
Frontiers in Oncology 15
diagnosis, treatment, and prognosis of GC. Besides, we also

found that the expression level of FGFRs was closely related to

immune cell infiltration but varied between FGFR1 and FGFR4,

which may be a marker for the efficacy of immunotherapy.

Combining an anti-PD-1 mAb and an FGFR4 inhibitor could

improve the effect of anti-PD-1 mono-treatment in FGFR4

overexpression mouse models. This report reveals the critical

function of FGFRs in GC, as well as the potential connection

between FGFRs and tumor-immune interactions, which may

work as a potential predictor of response to immunotherapy.

These findings will help us better understand the function and

importance of the FGFR family and lay the foundation for further

translational and clinical research on the using FGFRs and their

inhibitors for the diagnosis and treatment of GC.
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