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CT-based radiomics in
predicting pathological
response in non-small cell
lung cancer patients receiving
neoadjuvant immunotherapy

Qian Lin †, Hai Jun Wu*, Qi Shi Song † and Yu Kai Tang †

Department of Oncology, Xiangya Hospital, Central South University, Changsha, China
Objectives: In radiomics, high-throughput algorithms extract objective

quantitative features from medical images. In this study, we evaluated CT-

based radiomics features, clinical features, in-depth learning features, and a

combination of features for predicting a good pathological response (GPR) in

non-small cell lung cancer (NSCLC) patients receiving immunotherapy-based

neoadjuvant therapy (NAT).

Materials and methods: We reviewed 62 patients with NSCLC who received

surgery after immunotherapy-based NAT and collected clinicopathological

data and CT images before and after immunotherapy-based NAT. A series of

image preprocessing was carried out on CT scanning images: tumor

segmentation, conventional radiomics feature extraction, deep learning

feature extraction, and normalization. Spearman correlation coefficient,

principal component analysis (PCA), and least absolute shrinkage and

selection operator (LASSO) were used to screen features. The pretreatment

traditional radiomics combined with clinical characteristics (before_rad_cil)

model and pretreatment deep learning characteristics (before_dl) model were

constructed according to the data collected before treatment. The data

collected after NAT created the after_rad_cil model and after_dl model. The

entire model was jointly constructed by all clinical features, conventional

radiomics features, and deep learning features before and after neoadjuvant

treatment. Finally, according to the data obtained before and after treatment,

the before_nomogram and after_nomogram were constructed.

Results: In the before_rad_cil model, four traditional radiomics features

(“original_shape_flatness,” “wavelet hhl_firer_skewness,” “wavelet

hlh_firer_skewness,” and “wavelet lll_glcm_correlation”) and two clinical features

(“gender” and “N stage”) were screened out to predict a GPR. The average

prediction accuracy (ACC) after modeling with k-nearest neighbor (KNN) was

0.707. In the after_rad_cil model, nine features predictive of GPR were obtained

after feature screening, among which seven were traditional radiomics features:

“exponential_firer_skewness,” “exponential_glrlm_runentropy,” “log- sigma-5-0-

mm-3d_firer_kurtosis,” “logarithm_skewness,” “original_shape_elongation,”
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“original_shape_brilliance,” and “wavelet llh_glcm_clustershade”; twowere clinical

features: “after_CRP” and “after lymphocyte percentage.” The ACC after modeling

with support vector machine (SVM) was 0.682. The before_dl model and after_dl

model were modeled by SVM, and the ACC was 0.629 and 0.603, respectively.

After feature screening, the entiremodel was constructed bymultilayer perceptron

(MLP), and the ACC of the GPR was the highest, 0.805. The calibration curve

showed that the predictions of the GPR by the before_nomogram and

after_nomogram were in consensus with the actual GPR.

Conclusion: CT-based radiomics has a good predictive ability for a GPR in

NSCLC patients receiving immunotherapy-based NAT. Among the radiomics

features combined with the clinicopathological information model, deep

learning feature model, and the entire model, the entire model had the

highest prediction accuracy.
KEYWORDS

radiomics, pathological response, NSCLC, biomarkers, lung cancer, immunotherapy,
neoadjuvant therapy
Introduction
Lung cancer is a heterogeneous malignant disease arising

from the bronchial epithelium or alveolar tissue, usually caused

by smoking, varying environmental exposures, and underlying

genetic susceptibility (1). According to the 2020 global burden of

cancer statistics provided by the International Agency for

Research on Cancer (IARC), lung cancer ranks second in

global incidence and first in mortality. In China, lung cancer is

the most common cancer with the highest incidence and

mortality rate. The most common subtype is non-small cell

lung cancer (NSCLC) with an incidence rate of about 85%, while

the 5-year survival rate is only 10%–20% (2, 3).

Currently, surgical treatment remains the mainstay of

treatment for early-stage and locally advanced (stages I and II

and some with stages IIIA and IIIB) NSCLC(NCCN) (4, 5).

However, patients experience high rates of local and distant

recurrence postoperatively, suggesting that systemic therapy is

necessary to improve cure rates. Neoadjuvant therapy (NAT) is a

form of cancer treatment and refers to systemic therapy given

before surgery, including neoadjuvant chemotherapy,

chemoradiotherapy, targeted therapy, and immunotherapy.

However, the technical definition of NAT usually refers

exclusively to neoadjuvant chemotherapy and is distinguished

from adjuvant chemotherapy after surgery. NAT (6) reduces the

rate of distant disease recurrence by taking advantage of the

damaged lymphatics and vasculature resulting from surgery,

thereby increasing local drug concentration. Effective antitumor

therapy can shrink the primary lesion and downstage the tumor
02
stage, reducing the need for extensive surgery leading to organ

preservation and improved quality of life. Moreover, patients are

generally in a better situation and less likely to experience acute

toxicity before surgery, and currently, receiving systemic therapy

is more well-tolerated. By observing the radiological and

pathological responses following NAT, tumor sensitivity to

chemotherapeutic drugs can be understood, which provides a

reference for the choice of the postoperative treatment regimen.

Effective NAT can minimize the proliferative capacity of tumors

at the time of surgery and reduce the risk of intraoperative

dissemination of cancer cells, and even a small proportion of

patients can experience major pathological response (MPR) and

complete pathological response (CPR) (7).

Lately, with the wide use of immune checkpoint inhibitors

(ICIs) such as anti-programmed death-ligand-1 (PD-L1) and

anti-programmed death-1 (PD-1) antibodies in advanced

NSCLC, patients have had significantly improved quality of

life and good prognosis, making immunotherapy (8–10) a new

option for the treatment of resectable and potentially resectable

NSCLC. In previous clinical studies, either single-agent ICI or

immune doublet combination NAT significantly led to higher

MPR and CPR rates and lower complication rates than

neoadjuvant chemotherapy (11, 12).

In an exciting phase II study of ICI with chemotherapy, the

MPR and CPR rates were 83% and 63%, respectively, with 90%

of patients who underwent resection achieving clinical stage

(13). Although the large-scale phase III study is still ongoing

from the results of the abovementioned phase II studies, patients

treated with neoadjuvant ICI and then surgery had a similar

adverse event as compared to chemotherapy combination but
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with better pathological remission (residual tumor cells in tumor

bed ≤10%) and improved quality of life (14).

In general, the higher the MPR/CPR rate, the better efficacy

of NAT (15, 16). If the pathological response information can be

evaluated before surgical resection, it will guide the type of

surgery. Therefore, developing noninvasive assessment response

models can help identify patients with good responses who may

benefit from local excision. Those who achieve CPR may benefit

from the watch-and-wait or nonsurgical strategies.

Imaging modalities such as computed tomography (CT),

magnetic resonance imaging (MRI), and positron emission

tomography (PET) have become routine in the clinical

management of patients with tumors such as lung cancer.

Lesions detected through these imaging modalities are

described and analyzed only based on simple qualitative (e.g.,

shape, location, spiculated lesion, and lobulation) and

quantitative (e.g., size, volume, density, signal, and

standardized uptake values) features. The radiological

diagnostic accuracy is closely related to the radiologists’

experience, with marked subjective differences. In 2012, Dutch

investigators (17) first proposed the concept of radiomics,

hypothesizing that the cellular and molecular heterogeneity of

tumor cells can be reflected by quantitative imaging

microheterogeneity. They also concluded that when extracted

with radiomics, these features can transform image data of

interest regions from medical imaging into quantitative data

through high-throughput algorithms. The general procedure of

radiomics is as follows: 1) Acquisition of medical imaging data;

2) Region of interest (ROI) segmentation and feature extraction;

3) Feature selection, model building, and validation; 4) Statistical

data analysis. Since then, the concept of radiomics has been

widely studied in the differentiation of benign and malignant

lesions (18), in the preoperative prediction of lymph node

metastasis in lung cancer (19), and in the assessment of the

mutational status of genes such as Epidermal Growth Factor

Receptor (EGFR) (20) and anaplastic lymphoma kinase (ALK)

(21). More radiomics studies include the prediction of treatment

effects and prognosis in cancer (22, 23) and even in non-

neoplastic diseases such as the early diagnosis of Alzheimer’s

disease (24) and the rapid radiological diagnosis of coronavirus

disease 2019 (COVID-19) pneumonia (25, 26).

With the development of computer software, computational

power has significantly improved, and in recent years, artificial

intelligence (AI) technology based on deep learning (DL)

algorithms has been vigorously developed and has gradually

begun to be applied in medical research. Currently, it is mainly

based on medical images using computer vision technology to

solve clinical tasks such as lesion segmentation and disease

classification (27–29). In the processing of medical images, the

most widely used DL network is the convolutional neural

network (CNN). A CNN is a computational method for

learning relevant features from image signal intensities
Frontiers in Oncology 03
proposed based on the working principle of the human

nervous system. The ability to directly utilize high-dimensional

numerical information in images from a large enough number of

training data and identify image features with a high degree of

representativeness creates and selects a large amount of abstract

information at the hidden layer, which is defined as DL. DL

features can be used more comprehensively to accomplish

segmentation, classification, and other targeted tasks (30).

Building entirely new DL models requires large amounts of

annotated data to be used as training data; however, the sample

size of most radiological data is often limited. The method of

using a trained DL model on other data sets for a target data set

and for extracting the features of the target data set is called

transfer learning. Transfer learning offers the possibility of DL

for small samples of medical data. Many studies have confirmed

that this is an effective and superior way to conventional

machine learning (27, 31).

This study aims to extract radiomics features and DL

features from CT images of patients with NSCLC before NAT

with ICIs and after NAT with chemotherapy, then combine the

features with clinicopathological information of patients.

Combining clinicopathological feature signature and DL

feature signature that could predict pathological remission after

NAT with ICIs in NSCLC patients was done through feature

screening. Also, binary logistic regression analysis constructed a

prediction model integrating traditional radiomics feature labels,

DL feature labels, and clinicopathological information.

Finally, a nomogram was constructed to visualize the model,

achieving a precise assessment of pathological remission after

NAT with ICIs in NSCLC, thereby providing an adjuvant tool

for developing individualized treatment regimens for patients.
Materials and methods

Study participants

Clinicopathological information was retrospectively

collected from 83 patients with pathologically confirmed

NSCLC and treated with immunotherapy-based NAT between

1 March 2020 and 1 January 2022.

Inclusion criteria include patients with pathologically

diagnosed NSCLC through either image-guided biopsy or

bronchoscopy-directed biopsy; potentially operable stage Ib–III

NSCLC as per the 2017 Union for International Cancer Control

(UICC)/American Joint Committee on Cancer (AJCC) Eighth

Edition; no history of other tumors or other antitumor therapy;

patients who received immunotherapy-based NAT with planned

surgery; patients with at least 2 chest CT results available

performed within 2 weeks (up to a maximum of 1 month)

before immunotherapy-based NAT and 1 week (up to a

maximum of half a month) before surgery.
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Exclusion criteria include CT scans not done in our hospital

or outside the study timeline (n = 11); Surgical cases done

outside our hospital (n = 10).

Finally, the data of 62 patients were included in the study.

They then were randomly divided into the training group (for

the establishment of the radiomics label and model) and a

validation group (for the verification of the radiomics label

and model) at a ratio of 7:3 or 8:2.
Pathology

Preoperative pathological information
The preoperative pathology was mainly determined by lung

biopsy or bronchoscopy biopsy, and cases biopsied outside our

hospital were all reconfirmed by our pathologists.

Preoperative pathologic information included common

immunohistochemistry, genetic testing, and PD-L1 testing,

Ki67 (percentage), chromogranin A (CgA) (negative/positive),

Syn (negative/positive), p63 (strong/moderate/weak), cancer

embroyonic antigen (CEA) (negative/positive), thyroid

transcription factor 1 (TTF-1) (negative/positive), P40

(negative/positive), p53 (negative/positive), napsin-a (negative/

positive), cytokeratin 5/6 (CK5/6) (negative/positive),

cytokeratin 7 (CK7) (negative/positive), pan-cytokeratin (CK-

Pan) (strong/moderate/weak), ALK control X3/echinoderm

microtubule-associated protein-like 4 (EML4-ALK) (Ventana)

(negative/positive), gene mutation (negative/positive), PD-L1

(22c3)-Ventana (total positive score) (negative/positive).

Postoperative pathological information
The postoperative pathology was confirmed from surgical

resection samples after NAT immunotherapy, and the efficacy of

NAT in NSCLC was evaluated by the pathologists of our hospital

depending on tumor bed, lymph node tumor remission, and

residual disease according to an expert consensus issued by the

expert committee on lung cancer quality control at the National

Cancer Quality Control Center (NCQCC) with the following

criteria: MPR as viable tumor cell residual ≤10% from the

tumor bed, CPR as no viable tumor cells remaining in the

tumor bed and lymph nodes, and partial pathological response

(PPR) as >10% viable tumor cells remaining in the tumor

bed (14).

Collected postoperative pathology information, including

PPR, MPR, and CPR, was defined as a good and poor

pathological response (CPR, MPR) and poor pathological

response (PPR).
Patient clinical data

Clinical information was derived from the electronic medical

record and was cross-checked by two independent investigators.
Frontiers in Oncology 04
General clinical information collected includes age (years),

gender (men/women), smoking status (yes/no), tumor

differentiation grade (low/intermediate/well-differentiated),

tumor type (squamous/adenocarcinoma), T stage (stage I/II/

III/IV), N stage (stage I/II), clinical Tumor, Node, and

Metastasis (TNM) stage (stage Ib–III), smoking history (yes/

no), family history of tumor (yes/no), history of chronic

comorbities (yes/no), height (m), number of immunotherapy

cycles (two cycles/three cycles/four cycles), and immunodrugs

(domestic/imported).

Clinical information before and after treatment was also

collected, including body weight (kg), body mass index (kg/m2),

lactate dehydrogenase (high/low), albumin (g/L), C-reactive

protein (mg/L), white blood cells (109/L), percentage of

lymphocytes (%), tumor markers (normal/abnormal), thyroid

function (normal/abnormal), T helper/induced T cells (%), and

inhibitory T cells/cytotoxic T cells (%).
Processing of missing data

The filling method for missing data is called data

interpolation, which can be divided into the single filling and

multiple filling methods. The single imputation method only

yields one set of imputation results for an incomplete data set

and greatly impacts the data distribution; for example, the mean

filling method is to fill in missing values using the mean of all

available data. The multiple imputation method uses the existing

data of the incomplete data set to fill the missing value at any

time to generate multiple complete data sets.

Random forest-based chained equations with multiple

imputations (MICEforest, multiple imputations based on

forest by chained equations) enable the generation of multiple

groups of data with mean and variance that are all like the

original data set according to the method of random forest, with

imputation completed by comparing a selected group of data

with the smallest difference from the original data set.

Technically, any predictive model can be used for MICEforest.

This study deleted categories with missing values greater

than 25%, and MICEforest multiple interpolation methods were

used to fill the missing values. Category “thyroid function” was

also removed because of the large difference between the data

after filling and the original value.
Processing of clinicopathological
information

After deleting items with a lot of missing data and multiple

imputing items with a small amount of missing data, the final

remaining clinicopathological data used in this study were used

to compare the distribution of variables in the two groups of

good pathological response (GPR) vs. bad pathological response
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(BPR) using the R language program. The chi-square test was

used for categorical variables, the Wilcoxon rank and t-test were

used for continuous variables, and a p-value <0.05 was

considered statistically significant.
CT scan protocol

Patients were instructed to hold their breath after deep

inspiration and complete the scan with one breath-hold using

one of three CT scanners: Toshiba Aquilion ONE (Toshiba

Medical System Corporation, Japan), Siemens SOMATOM

Drive (Siemens Medical System Co., Ltd., Germany), and GE

Revolution (General Electric Medical System Co., Ltd., America)

with the scan ranging from at least the thoracic inlet to the level

of the costophrenic angle, including the whole lung. Scanning

parameters of different CT scanners are shown in Table 1.
Tumor segmentation

From the picture archiving and communication system

(PACS), the CT images of each patient containing at least a

lung window and mediastinal window were exported, and the

enhanced CT was also exported synchronously if it existed. All

cases were performed with the open-source software ITK‐SNAP

(version 3.8.0, http://www.itk-snap.org) in high-resolution lung

windows (window width 1,500–2,000 Hu, window position −450

to −600 Hu). In all CT images containing tumor lesions, the ROI

was manually outlined along the contour of the lesion layer by

layer to try to keep the ROI containing only the entire tumor and

does not contain other distinguishable tissues, such as air and

obvious blood vessels. If there is a simultaneously enhanced CT
Frontiers in Oncology 05
or PET, it will be compared layer by layer to make it as accurate

as possible. The final ROI is shown in Figure 1.
Radiomics conventional feature
extraction and model construction

The manually drawn ROI was used to extract the traditional

quantitative features of each patient using the Pyradiomics

package (version 3.0.1, https://pyradiomics.readthedocs.io) in

the Python program (version 3.6.13, https://www.python.org).

The extracted radiomics traditional features included first-order

features, two-dimensional (2D) shape features, 3D shape

features, gray-level size zone matrix (GLSZM) features, gray-

level co-occurrence matrix (GLCM) features, gray-level

dependence matrix (GLDM) features, gray-level run-length

matrix (GLRLM) features, and wavelet transform features. The

extracted traditional features of radiomics and the

clinicopathological information after deletion and imputation

according to whether they were acquired before neoadjuvant

immunotherapy or acquired after NAT were used to construct

models separately. CT images acquired before NAT were

extracted for radiomics; traditional quantitative features

named before_rad_data, together with clinicopathological

information that was available immediately before NAT, were

used to construct the model, which is referred to as

before_rad_cil. After 2–4 cycles of NAT, CT images obtained

before surgery were used to extract radiomics quantitative

features named after_rad_ data. Combined with the clinical

information after NAT, a model named after_ rad_cil

was constructed.

Before modeling, the data are transformed into structured

data with 0 mean 1 variance by standardization for subsequent

processing to eliminate the differences of different eigenvalues on
TABLE 1 Scanning parameters of the different CT scanners.

Toshiba Aquilion ONE Siemens SOMATOM Drive GE Revolution

tube current automatic tube current 80-350mA automatic tube current 80-350mA automatic tube current

tube voltage 120 kV 120 kV 120 kV

FOV 320.3 307 \

construction
algorithm

standard algorithm, lung algorithm and soft
tissue algorithm

standard algorithm, lung algorithm and soft
tissue algorithm

standard algorithm, lung algorithm and soft
tissue algorithm

slice thickness 1mm 1mm 1mm

slice separation 0.8mm 1mm 1mm

matrix 512×512 512×512 512×512

construction slice
separation

1mm 1mm 1

Construction slice
thickness

1mm 1mm 1

revolution speed \ \ 158.75mm/s

detector width \ \ 80mm
FOV, field of view.
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the scale. After data normalization, features were screened by the

Spearman correlation coefficient, and only one feature was

retained in features with a high correlation (correlation

coefficient >0.9).

For the filtered features, the least absolute shrinkage and

selection operator (LASSO) was used to select features to

construct the LASSO equation and calculate the feature weights,

respectively. These features with a feature coefficient >0 were

randomly divided into training and test sets in a ratio of 7:3 and

then modeled with one of eight machine learning algorithms:

support vector machine (SVM), k-nearest neighbor (KNN),

decision tree (DecisionTree), random forest (RandomForest),

extreme gradient boosting (XGBoost), multilayer perceptron

(MLP), extremely randomized trees (ExtraTrees), and light

gradient boosting machine (LightGBM), And to compare the

predictive accuracy of each model. The accuracy, area under the

curve (AUC), sensitivity, and specificity of 5-fold cross-validation

after random grouping were used as evaluation indexes. Finally,

the model results with the best prediction efficiency after 100

random groupings were selected to construct the pretreatment

radiomics features combined with the clinicopathological feature

label (before_rad_cil_signature) and the posttreatment radiomics

features combined with the clinicopathological feature label

(after_rad_cil_signature). The flow of the ROI delineation,

conventional feature extraction, data analysis, model building,

and comparison is shown in Figure 2.

Tools used in combined clinicopathological feature and

radiomics feature screening and model building were as
Frontiers in Oncology 06
follows: Python program (version 3.6.13, https://www.python.

org/) and the packages of scikit-learn (version 1.0, https://scikit-

learn.org) and pandas (version 1.1.5, https://pandas.pydata.org).
Radiomics deep learning feature
extraction and model construction

Usually, training a DL model requires large amounts of

annotated data and an excellent performance hardware

platform. Due to this study’s limited sample size and hardware

platform, transfer learning and fine-tuning are used to overcome

this limitation. Transfer learning can transfer knowledge learned

from previous tasks to new tasks and avoid retraining new tasks

to improve the learning efficiency of new tasks. Fine-tuning is

usually used with transfer learning.

The pretrained model constructed by previous tasks is used

to learn the task data to avoid the large amounts of human,

computational, material, and financial resources required to

retrain the model while ensuring its effectiveness. The

pretrained model used in our study was resnet50, and the

model network was pretrained on Imagenet to determine all

network parameters through parameter adjustment

and optimization.

The CT images for fine-tuning and DL feature extraction in

this study were obtained by intercepting the tumor area at the

layer of the maximum ROI on the cross section. The steps of DL

feature extraction are shown in Figure 3: 1) Manually outline the
FIGURE 1

The final ROI. (A) Segmentation results of the cross section. (B) Segmentation results of the sagittal plane. (C) Three-dimensional (3D)
visualization effect of the tumor area. (D) Segmentation results of the coronal plane. ROI, region of interest.
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ROI layer by layer using ITK-SNAP software. 2) The CT 3D

image containing the ROI was automatically read using software

written by ourselves, identifying the level at which the largest

ROI was located in the cross section and clipping out the CT
Frontiers in Oncology 07
image at which the tumor was located with a rectangular box. 3)

The cropped CT pictures were randomly split into training and

validation groups in an 8:2 ratio, fine-tuned using the pretrained

model resnet50. 4) Select the most accurate grouping model for
A B DC

FIGURE 2

Flowchart of radiomics analysis. (A) The ROI was manually segmented on CT images before and after neoadjuvant therapy. (B) Quantitative
features in the ROI were calculated, including features such as shape, texture, and wavelet filtering. (C) Combined clinicopathological features,
standardized processing of data, feature filtering, and model building. (D) To evaluate the predictive model efficacy, the evaluation indexes of
each model were compared to select the better performing model to construct the before_rad_cil_signature and after_rad_cil_signature.
*multiply.
FIGURE 3

Flowchart of deep learning feature extraction.
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DL feature extraction. 5) The output of DL features from the last

layer before the full connection layer is usually the most concise.

It is also the general DL feature selection layer in the industry.

Therefore, our study selected the data of the last layer before the

full connection layer, avgpool, as the DL features for subsequent

studies, with a total of 2,048 features. 6) Like the above steps, the

CT images obtained before and after NAT were separately

subjected to DL feature extraction.

According to the CT images obtained before NAT, the

extracted DL feature is named before_dl_data. According to

the CT images obtained before surgery after 2–4 cycles of NAT,

the DL feature is named after_dl_data.

Before modeling, the above data are converted into

structured data with 0 mean 1 variance by standardization for

subsequent processing. The data dimension is reduced to 62

dimensions by principal component analysis (PCA) after data

standardization. The data set after dimension reduction was

randomly divided into a training set and a test set in an 8:2 ratio.

Then, this was modeled with one of eight machine learning

algorithms: SVM, KNN, DecisionTree, RandomForest,

XGBoost, MLP, ExtraTrees, and LightGBM, And to compare

the predictive accuracy of each model. The accuracy, AUC,

sensitivity, and specificity of 5-fold cross-validation after

random grouping were used as evaluation indexes. Finally, the

model results with the best prediction efficiency after 100

random groupings were selected to construct the pretreatment

DL label (before_dl_signature) and the posttreatment DL

label (after_dl_signature).

Tools used in DL feature extraction and model building were

as follows: ITK‐SNAP (version 3.8.0, http://www.itk-snap.org),

Python program (version 3.6.13, https://www.python.org), and

packages: Pytorch (version 1.9.0, https://pytorch.org), scikit-

learn (version 1.0, https://scikit-learn.org), and pandas (version

1.1.5, https://pandas.pydata.org).
Combined model construction

After deletion and missing value processing, all previously

extracted radiomics traditional quantitative features, radiomics

DL features, and clinicopathological features were combined

into a 7,421-dimensional joint data set. Before modeling, the

joint data were transformed into structured data with 0 mean 1

variance by standardization to eliminate the scale difference of

different eigenvalues. After data normalization, features were

screened by the Spearman correlation coefficient, and only one

was retained in features with a high correlation (correlation

coefficient >0.9). LASSO further screens the selected features,

and the LASSO equation is constructed for the features with

feature coefficient >0, and the feature weights are calculated.

These features with feature coefficient >0 were randomly divided
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into training and test sets in a ratio of 7:3. Then, these were

modeled with one of eight machine learning algorithms: SVM,

KNN, DecisionTree, RandomForest, XGBoost, MLP,

ExtraTrees, LightGBM, And to compare the predictive

accuracy of each model. The accuracy, AUC, sensitivity, and

specificity of 5-fold cross-validation after random grouping were

used as evaluation indexes. Finally, the model results with the

best prediction efficiency after 100 random groupings were

selected to construct the entire feature label (entire_signature).

Tools used in the entire feature screening and model

building were as follows: Python program (version 3.6.13,

https://www.python.org) and packages: scikit-learn (version

1.0, https://scikit-learn.org) and pandas (version 1.1.5, https://

pandas.pydata.org).
Nomogram construction

The nomogram provides a simple graphical presentation of a

clinical prediction model, allowing calculation of the probability of

a certain target event based on individualized information for the

patient. Its simple graphical interface promotes the wide

application of nomograms. Our study used previously

constructed before_rad_clinic_signature, before_dl_signature,

and clinical features screened by LASSO to construct a pre-

NAT nomogram (before_nomogram); before_rad_clinic_

signature, before_dl_signature, after_rad_clinic_signature,

after_dl_signature, and entire_signature were used to jointly

construct a posttreatment nomogram. The procedure of

nomogram construction is shown in Figure 4. Both nomograms

were based on logistic regression models by plotting calibration

curves to compare predicted vs. actual outcome events.

Tools used in nomogram construction were as follows: the R

program (version 3.6.1, https://www.r-project.org) based on the

RMS package (version 5.1-3.1).
Results

Clinicopathological information
of patients

The categories , totals , and missing numbers of

clinicopathological information collected are shown in Tables 2

and 3. The categories with missing values greater than 30% were

CK, Caudal-related homeobox transcription factor-2 (CDX-2),

CEA, p53, CD56, CgA, Syn, p63, CK-Pan, Ki67, CK7, PD-L1

expression, Driving genemutation, p40, Napsin-A, CK5/6, TTF-1,

after_assisted/induced T, after_inhibited/cytotoxic T,

before_inhibited/cytotoxic T, and before_assisted/induced T.

These categories were deleted.
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Missing data processing

After deleting the categories with missing values greater than

25%, the items and missing ratios that needed MICEforest for

multiple interpolations are before_CRP, 24.19%; before_thyroid

function, 19.35%; after_thyroid function, 11.29%; after_CRP,

6.45%; differentiation, 6.45%; after tumor markers, 4.84%; and

before_LDH, 4.84%. Because the difference between the thyroid
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function data using multiple interpolations and the original data

is more than 10%, they were deleted. The items and proportions

of missing data that were ultimately included in the study and

subjected to multiple imputations using the MICEforest method

are shown in Figure 5. After multiple imputations, the mean

difference between imputed and raw data was between 0.01%

and 3%. Figure 5 shows the fit of the imputed data to the

original data.
TABLE 2 Categories with missing values, numbers missing, and proportions of missingness in the clinicopathological data collected.

Category Numbers missing Proportions of missingness Category Numbers missing Proportions of
missingness

CK 60 0.968 Napsin-A 36 0.581

CDX-2 60 0.968 CK5/6 36 0.581

CEA 59 0.952 TTF-1 31 0.5

P53 57 0.919 after _ assisted / induced T 30 0.484

CD56 50 0.806 after _ inhibited / cytotoxic T 30 0.484

CgA 50 0.806 before _ inhibited / cytotoxic
T

28 0.452

Syn 49 0.79 before _ assisted / induced T 28 0.452

P63 48 0.774 before_CRP 15 0.242

CK-Pan 45 0.726 before_ thyroid function 12 0.194

Ki67 43 0.694 after_ thyroid function 7 0.113

CK7 43 0.694 after_CRP 4 0.065

PD-L1 expression 40 0.645 differentiation 4 0.065

Driving gene
mutation

39 0.629 after tumor markers 3 0.048

P40 36 0.581 before_LDH 3 0.048
FIGURE 4

Nomogram construction flowchart.
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General information on
clinical pathology

The distribution of clinicopathological information used for

data analysis in this study was not statistically significant

between GPR and BPR except for gender, as shown in Table 4.
Radiomics conventional features and
model building

Before_rad_data extraction and before_rad_cil
model construction

Python Pyradiomics package extracted radiomics

Conventional quantitative features from CT images, extracting
Frontiers in Oncology 10
1,648 features per patient. Features extracted from all CT images

before NAT were constructed as the before_rad_data. There

were 197 first-order features (First order), 13 2D shape features,

231 3D shape features, 242 GLCM features, 84 GLDM features,

96 GLRLM features, 96 GLSZM features, and 688 wavelet

transform features in the before_rad_data.

Clinicopathological characteristics before neoadjuvant

treatment are shown in Table 5, used with the before_rad_data,

and jointly constructed into a 2D array with a feature number of

1,667. After screening by the Spearman correlation coefficient, 238

features related to the efficacy of neoadjuvant immunotherapy were

obtained. The screened features were randomly divided into

training and test groups in a 7:3 ratio and further screened by the

LASSO regressionmodel. At Lamba = 0.1048 (Figure 6), six features

highly correlated with the efficacy of neoadjuvant immunotherapy
BA

FIGURE 5

(A) Categories of missing values and ratios that need interpolation. (B) The fit of the imputed data to the original data.
TABLE 3 Categories with no missing values in the collected clinicopathological data.

Category Numbers
missing

Proportions of
missingness Category

Numbers
missing

Proportions of
missingness

before tumor markers 0 0 before_ albumin 0 0

after_L% 0 0 before_BMI 0 0

after_WBC 0 0 before_ weight 0 0

after_ albumin 0 0 height 0 0

after_LDH 0 0 chronic history 0 0

after_ weight 0 0 gender 0 0

after_BMI 0 0 smoking status 0 0

number of immunotherapy
cycles

0 0 Evaluation of
postoperative

0 0

clinical TNM stage 0 0

family history of tumor 0 0 N stage 0 0

before_L% 0 0 T stage 0 0

before_WBC 0 0 tumor type 0 0

Classification of immunodrugs 0 0 age 0 0
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TABLE 4 General information of clinicopathological information.

Category Sub-classification Total number BPR GPR p-value Test methods

62 23 39

gender Women 11 (17.7%) 8 ( 34.8%) 3 ( 7.7%) 0.019 chi-square test

Men 51 (82.3%) 15 ( 65.2%) 36 ( 92.3%)

age(year) 58.5 (54.2-64.0) 58.0 (53.0-62.0) 59.0 (56.0-64.5) 0.321 Wilcoxon signed rank test

Type of tumor adenocarcinoma 18 (29.0%) 10 ( 43.5%) 8 ( 20.5%) 0.102 chi-square test

squamous 44 (71.0%) 13 ( 56.5%) 31 ( 79.5%)

differentiation intermediate 24 (38.7%) 12 ( 52.2%) 12 ( 30.8%) 0.226 chi-square test

low 16 (25.8%) 4 ( 17.4%) 12 ( 30.8%)

well 22 (35.5%) 7 ( 30.4%) 15 ( 38.5%)

T stage III stage 16 (25.8%) 5 ( 21.7%) 11 ( 28.2%) 0.847 chi-square test

II stage 26 (41.9%) 10 ( 43.5%) 16 ( 41.0%)

IV stage 16 (25.8%) 7 ( 30.4%) 9 ( 23.1%)

I stage 4 ( 6.5%) 1 ( 4.3%) 3 ( 7.7%)

N stage 0 stage 16 (25.8%) 7 ( 30.4%) 9 ( 23.1%) 0.615 chi-square test

II stage 32 (51.6%) 10 ( 43.5%) 22 ( 56.4%)

I stage 14 (22.6%) 6 ( 26.1%) 8 ( 20.5%)

clinical stages I/II stage 14 (22.6%) 6 ( 26.1%) 8 ( 20.5%) 0.721 chi-square test

IIIA stage 34 (54.8%) 13 ( 56.5%) 21 ( 53.8%)

IIIB stage 14 (22.6%) 4 ( 17.4%) 10 ( 25.6%)

smoking history No 17 (27.4%) 9 ( 39.1%) 8 ( 20.5%) 0.196 chi-square test

Yes 45 (72.6%) 14 ( 60.9%) 31 ( 79.5%)

chronic history No 48 (77.4%) 16 ( 69.6%) 32 ( 82.1%) 0.411 chi-square test

Yes 14 (22.6%) 7 ( 30.4%) 7 ( 17.9%)

height (m) 1.7 (1.6-1.7) 1.6 (1.6-1.7) 1.7 (1.6-1.7) 0.088 Wilcoxon signed rank test

before weight(kg) 61.2 (56.0-69.6) 60.0 (53.5-65.8) 64.0 (57.0-70.5) 0.117 Wilcoxon signed rank test

before_BMI(kg/m2) 22.6 (21.1-24.2) 22.6 (20.8-23.7) 22.7 (21.1-24.5) 0.6 Wilcoxon signed rank test

before_LDH(U/L) 175.1 (150.8-191.4) 178.5 (165.9-189.0) 175.0 (150.0-192.8) 0.925 Wilcoxon signed rank test

Before_albumin(g/L) 39.3 (37.2-41.6) 38.9 (36.9-41.5) 39.5 (37.3-41.5) 0.62 Wilcoxon signed rank test

before_CRP(mg/L) 9.5 (2.3-21.9) 7.0 (2.0-16.4) 10.4 (3.1-24.0) 0.166 Wilcoxon signed rank test

before_WBC(10^9/L) 6.7 (5.1-7.7) 5.7 (4.7-6.8) 7.0 (5.4-7.8) 0.022 Wilcoxon signed rank test

Before_lymphocyte percentage(%) 0.2 (0.2-0.3) 0.3 (0.2-0.3) 0.2 (0.2-0.3) 0.16 Wilcoxon signed rank test

Before_tumor markers abnormal 34 (54.8%) 14 ( 60.9%) 20 ( 51.3%) 0.639 chi-square test

normal 28 (45.2%) 9 ( 39.1%) 19 ( 48.7%)

after_BMI(kg/m2) 23.2 (21.7-24.9) 22.8 (21.1-24.7) 23.6 (21.8-25.2) 0.336 Wilcoxon signed rank test

After_weight(kg) 64.0 (57.2-70.0) 60.0 (55.8-66.5) 65.5 (58.5-71.2) 0.085 Wilcoxon signed rank test

after_LDH(U/L) 199.2 (170.0-224.3) 204.0 (176.2-221.2) 193.0 (166.7-223.8) 0.359 Wilcoxon signed rank test

After_albumin(g/L) 40.0 (38.9-42.5) 41.4 (39.0-42.7) 40.0 (38.8-42.1) 0.517 Wilcoxon signed rank test

after_CRP(mg/L) 3.1 (2.2-5.7) 4.2 (2.1-6.6) 2.9 (2.3-5.2) 0.503 Wilcoxon signed rank test

after_WBC(109/L) 4.7 (3.9-5.6) 4.7 (4.0-5.3) 4.6 (4.0-5.8) 0.793 Wilcoxon signed rank test

after_lymphocyte percentage(%) 0.3 (0.2-0.4) 0.3 (0.2-0.4) 0.3 (0.3-0.4) 0.431 Wilcoxon signed rank test

after_tumor markers abnormal 13 (21.0%) 7 ( 30.4%) 6 ( 15.4%) 0.279 chi-square test

normal 49 (79.0%) 16 ( 69.6%) 33 ( 84.6%)

number of immunotherapy cycles two cycles 5 ( 8.1%) 2 ( 8.7%) 3 ( 7.7%) 0.982 chi-square test

three cycles 54 (87.1%) 20 ( 87.0%) 34 ( 87.2%)

four cycles 3 ( 4.8%) 1 ( 4.3%) 2 ( 5.1%)

Classification of immunodrugs domestic 28 (45.2%) 11 ( 47.8%) 17 ( 43.6%) 0.952 chi-square test

imported 34 (54.8%) 12 ( 52.2%) 22 ( 56.4%)

history of tumor no 60 (96.8%) 23 (100.0%) 37 ( 94.9%) 0.719 chi-square test

yes 2 ( 3.2%) 0 ( 0.0%) 2 ( 5.1%)
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(four radiomics traditional features and two clinical features) were

obtained, and the selected six features were combined into one label

using a generalized linear model, and the label score was calculated

for each patient. The label score is calculated as follows: label score =

0.633104796735994 - 0.014906 * original_shape_Flatness +

0.004334 * wavelet-HHL_firstorder_Skewness - 0.037030 *

wavelet-HLH_firstorder_Skewness + 0.052433 * wavelet-

LLL_glcm_Correlation - 0.017086 * gender + 0.014231 * N_stage.

The six features screened by LASSO regression are randomly

divided into a training group and a test group according to the

7:3 ratio. Then, eight common machine learning algorithms are

used to model. The accuracy of the model obtained by 100

random grouping modeling is shown in Figure 7 and Table 6.

Three of the eight models (SVM, KNN, ExtraTrees) had a

maximum accuracy of 1. The mean accuracy of all models was

0.708–0.599.

In the 100 random groupings, the performances of the best

grouping in each model are shown in Figure 7 and Table 7. The

best model was Extratrees. The accuracy, AUC, sensitivity, and

specificity in both training and test sets were 1. So, Extratrees

model data were selected to build the before_rad_cil_signature

for subsequent research.
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After_rad_data extraction and after_rad_cil
model construction

The extraction method for the after_rad_data was consistent

with the before_rad_data, and the data for extracting

quantitative features were derived from CT images of all

patients after NAT. Finally, the resulting quantitative feature

categories and numbers are consistent with the before_rad_data.

Clinicopathological characteristics after neoadjuvant

treatment are shown in Table 8, fused with the after_rad_data

and jointly constructed into a 2D array with a feature number of

1,658. After screening by the Spearman correlation coefficient, 237

features related to the efficacy of neoadjuvant immunotherapy

were obtained. The screened features were randomly divided into

training and testing groups in a 7:3 ratio, further screened by the

LASSO regression model. At Lamba = 0.06866 (Figure 8), nine

features highly correlated with the efficacy of neoadjuvant

immunotherapy (seven radiomics traditional features and two

clinical features) were obtained. The selected nine features were

combined into one label using a generalized linear model, and the

label score was calculated for each patient. The label score is

calculated as follows: Label score = 0.6110867308836403 +

0.012900 * exponential_firstorder_Skewness - 0.150077 *
TABLE 5 Clinicopathological information converged with the before_rad_data.

Gender (men/women) Age (years) Tumor type (squamous /
adenocarcinoma)

Differentiation grade (low/intermediate/well
differentiated)

smoking history (yes / no) history of tumor (yes / no) chronic history (yes / no) beforeweight(kg)

before_LDH(U/L) before albumin(g/L) before_CRP(mg/L) before_WBC(10^9/L)

T stage(I/II/III/IVstage) N stage(I/II stage) Clinical TNM stage(IB-III stage) before tumor markers (normal / abnormal)

before_BMI(kg/m2) before_ percentage of lymphocytes
(%)

height(m)
B CA

FIGURE 6

Regression feature screening. (A) Feature selection plot for the LASSO regression, which was adjusted by a super parameter (Lamba), to achieve
the purpose of screening the optimal features. The vertical dashed line indicates that the corresponding optimal Lamba value when obtaining
the minimum deviation value is Lamba = 0.1048. (B) The convergence graph of characteristic coefficients for feature selection by cross-
validation. Features with non-zero coefficients were screened out corresponding to the vertical lines in the plot, with a total of six best features
selected. (C) Features and weights of LASSO regression screening. The six features screened by LASSO were “original_shape_Flatness,”
“wavelet-HHL_firstorder_Skewness,” “wavelet-HLH_firstorder_Skewness,” “wavelet-LLL_glcm_Correlation,” “gender,” and “N_stage”.
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exponential_glrlm_RunEntropy + 0.015404 * log-sigma-5-0-mm-

3D_fi r s t o rd e r_Kur t o s i s + 0 . 033240 * l o ga r i t hm

_firstorder_Skewness - 0.003723 * original_shape_Elongation -

0.027763 * original_shape_Flatness - 0.006209 * wavelet-

LLH_glcm_ClusterShade - 0.025090 * after_CRP + 0.022022 *

after_percentage of lymphocytes.

The nine features screened by LASSO regression were

randomly divided into a training group and a testing group

according to the ratio of 7:3. Then, eight common machine

learning algorithms are used to model. The accuracy of the

model obtained by 100 random grouping modeling is shown in
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Figure 9 and Table 9. One of the eight models (MLP) had a

maximum accuracy of 1. The maximum accuracy of the other

models ranged from 0.846 to 0.923. The mean accuracy of all

models was 0.602–0.682.

In the 100 random groupings, the performances of the best

grouping in each model are shown in Figure 9 and Table 10. The

best model was XGBoost. The accuracy, AUC, sensitivity, and

specificity in the training set were 1 and in the testing set were

0.923, 0.9, 0.7, and 1, respectively. So, XGBoost model data were

se l ec ted to bu i ld the a f t e r_rad_c i l_s igna ture for

subsequent research.
TABLE 6 Distribution of the accuracy of each model randomly tested 100 times by eight common machine learning algorithms.

model Names SVM KNN DecisionTree RandomForest ExtraTrees XGBoost LightGBM MLP

Number of tests 100 100 100 100 100 100 100 100

Mean accuracy 0.668 0.708 0.599 0.631 0.667 0.621 0.664 0.686

25 % quantile accuracy 0.615 0.615 0.538 0.538 0.615 0.538 0.615 0.615

50% quantile accuracy 0.692 0.692 0.615 0.615 0.692 0.615 0.692 0.692

75% quantile accuracy 0.769 0.769 0.692 0.692 0.769 0.692 0.769 0.769

Maximum accuracy 1 1 0.846 0.923 1 0.846 0.923 0.923
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FIGURE 7

(A) Distribution of the accuracy of each model randomly tested 100 times by eight common machine learning algorithms. (B) Comparison of
the accuracy of the best performing one out of 100 randomizations in eight machine learning algorithms. (C) AUCs of the training set and test
set in the Extratrees model. (D) Confusion matrix for the Extratrees model.
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TABLE 8 Clinicopathological information converged with the before_rad_data.

After_BMI(Kg/m2) After_weight
(kg)

After_LDH(U/L) After_albumin(g/L)

after_CRP(mg/L) after_WBC(10^9/L) After_ percentage of lymphocytes
(%)

After_ tumor markers (normal /
abnormal)

number of immunotherapy cycles (two cycles / three cycles / four
cycles)

Classification of immunodrugs (domestic / imported)
Frontiers in Oncology
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FIGURE 8

Regression feature screening. (A) Feature selection plot for the LASSO regression, which was adjusted by a super parameter (Lamba), to achieve the
purpose of screening the optimal features. The vertical dashed line indicates that the corresponding optimal Lamba value when obtaining the
minimum deviation value is Lamba = 0.06866. (B) The convergence graph of characteristic coefficients for feature selection by cross-validation.
Features with non-zero coefficients were screened out corresponding to the vertical lines in the plot, with a total of nine best features selected. (C)
Twelve features and weights of LASSO regression screening. The nine features screened were “exponential_firstorder_Skewness,”
“exponential_glrlm_RunEntropy,” “log-sigma-5-0-mm-3D_firstorder_Kurtosis,” “logarithm_firstorder_Skewness,” “original_shape_Elongation,”
“original_shape_Flatness,” “wavelet-LLH_glcm_ClusterShade,” “after_CRP,” and “after_percentage of lymphocytes”.
TABLE 7 Each evaluation index of the best performance of 100 random groupings in eight machine learning algorithms.

Model names Accuracy AUC Sensitivity Specificity Sets

SVM 0.878 0.962 0.897 0.95 train

SVM 0.923 1 1 1 test

KNN 0.776 0.863 0.828 0.7 train

KNN 0.923 0.95 0.9 1 test

DecisionTree 1 1 1 1 train

DecisionTree 0.846 0.9 0.8 1 test

RandomForest 0.980 0.997 0.966 1 train

RandomForest 0.846 0.883 0.8 1 test

ExtraTrees 1 1 1 1 train

ExtraTrees 1 1 1 1 test

XGBoost 1 1 1 1 train

XGBoost 0.692 0.9 0.7 1 test

LightGBM 0.776 0.803 0.862 0.7 train

LightGBM 0.692 0.833 1 0.667 test

MLP 0.755 0.916 0.931 0.75 train

MLP 0.923 0.833 1 0.667 test
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Radiomics deep learning model building

Before_dl model building
The resnet50 DL model after fine-tuning was used to extract

features, obtaining 2,048-dimensional DL features from all CT

images obtained before NAT by intercepting the lung window

images at the maximum level of the tumor in the cross section.

The 62-dimensional data set was obtained by PCA

dimensionality reduction and randomly divided into training

and testing groups according to the ratio of 8:2. Then, eight

common machine learning algorithms were used to model. The
Frontiers in Oncology 15
accuracy of the model obtained by 100 random grouping

modeling is shown in Figure 10 and Table 11. One of the eight

models (DecisionTree) had a maximum accuracy of 0.923. The

mean accuracy of all models was 0.469–0.629.

In the 100 random groupings, the performances of the best

grouping in each model were shown in Figure 10 and Table 12.

The best model was DecisionTree. The accuracy, AUC,

sensitivity, and specificity in the training set were 1 and in the

testing set were 0.923, 0.9, 1, and 1. So, DecisionTree model data

were selected to build the before_dl_signature for

subsequent research.
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FIGURE 9

(A) Distribution of the accuracy of each model randomly tested 100 times by eight common machine learning algorithms. (B) Comparison of
the accuracy of the best performing one out of 100 randomizations in eight machine learning algorithms. (C) AUCs of the training set and test
set in the XGBoost model. (D) Confusion matrix for the XGBoost model.
TABLE 9 Distribution of the accuracy of each model randomly tested 100 times by eight common machine learning algorithms.

Model Names SVM KNN DecisionTree RandomForest ExtraTrees XGBoost LightGBM MLP

Number of tests 100 100 100 100 100 100 100 100

Mean accuracy 0.682 0.602 0.611 0.627 0.637 0.645 0.675 0.68

25 % quantile accuracy 0.616 0.538 0.538 0.538 0.538 0.538 0.615 0.615

50% quantile accuracy 0.692 0.615 0.615 0.615 0.615 0.615 0.692 0.692

75% quantile accuracy 0.769 0.692 0.692 0.692 0.692 0.712 0.769 0.769

Maximum accuracy 0.923 0.923 0.846 0.923 0.923 0.923 0.923 1
frontiers
in.org

https://doi.org/10.3389/fonc.2022.937277
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lin et al. 10.3389/fonc.2022.937277
TABLE 10 Each evaluation index of the best performance of 100 random groupings in eight machine learning algorithms.

Model names Accuracy AUC Sensitivity Specificity Sets

SVM 0.796 0.928 0.828 0.9 train

SVM 0.923 0.967 0.9 1 test

KNN 0.776 0.8 0.793 0.75 train

KNN 0.923 0.967 0.8 1 test

DecisionTree 1 1 1 1 train

DecisionTree 0.846 0.783 0.9 1 test

RandomForest 0.980 0.999 0.966 1 train

RandomForest 0.769 0.833 0.5 1 test

ExtraTrees 1 1 1 1 train

ExtraTrees 0.692 0.8 0.5 1 test

XGBoost 1 1 1 1 train

XGBoost 0.923 0.9 0.7 1 test

LightGBM 0.816 0.872 0.862 0.85 train

LightGBM 0.846 0.833 1 0.667 test

MLP 0.714 0.910 0.862 0.9 train

MLP 0.769 1 1 1 test
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FIGURE 10

(A) Each model’s accuracy distribution was randomly tested 100 times by eight common machine learning algorithms. (B) Comparison of the
accuracy of the best performing one out of 100 randomizations in eight machine learning algorithms. (C) AUCs of the training set and test set in
the DecisionTree model. (D) Confusion matrix for the DecisionTree model.
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After_dl model building
The resnet50 DL model after fine-tuning was used to extract

features, obtaining 2,048-dimensional DL features from all CT

images obtained after NAT by intercepting the lung window

images at the maximum level of the tumor in the cross section.

The 62-dimensional data set was obtained by PCA dimensionality

reduction and randomly divided into training and testing groups

according to the ratio of 8:2. Then, eight common machine

learning algorithms were used to model. The accuracy of the

model obtained by 100 random grouping modeling is shown in

Figure 11 and Table 13. Three of the eight models (DecisionTree,

XGBoost, and LightGBM) had a maximum accuracy of 0.923. The

mean accuracy of all models was 0.509–0.603.

In the 100 random groupings, the performances of the best

grouping in each model are shown in Figure 11 and Table 14. The

best model was DecisionTree. The accuracy, AUC, sensitivity, and

specificity in the training set were 1 and in the testing set were

0.923, 0.833, 1, and 1. So, DecisionTree model data were selected

to build the after_dl_signature for subsequent research.
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Entire model

All previously extracted radiomics traditional quantitative

features, radiomics DL features, and clinicopathological

features after deletion and missing value processing were

combined into a 7,421-dimensional joint data set. The

combined data set obtained 4,266 characteristics related to

the efficacy of immune NAT after standardization and

Spearman correlation coefficient screening. The screened

features were randomly divided into training and test groups

in a 7:3 ratio, which was further screened by the LASSO

regression model. At Lamba = 0.0596 (Figure 12), 20 features

highly correlated with the efficacy of immune NAT (six radiomics

traditional features, 11 DL features, and three clinical features) were

obtained, and the selected 20 features were combined into one label

using generalized linear model, and the label score was calculated

for each patient. The label score is calculated as follows: Label score

= 0.6143861851029497 + 0.003364 * exponential_gldm

_DependenceEntropy_before - 0.045913 * wavelet-
TABLE 11 Distribution of the accuracy of each model randomly tested 100 times by eight common machine learning algorithms.

model Names SVM KNN DecisionTree RandomForest ExtraTrees XGBoost LightGBM MLP

Number of tests 100 100 100 100 100 100 100 100

Mean accuracy 0.629 0.492 0.599 0.489 0.469 0.511 0.515 0.472

25 % quantile accuracy 0.538 0.462 0.462 0.385 0.385 0.462 0.462 0.385

50% quantile accuracy 0.615 0.462 0.615 0.462 0.462 0.538 0.538 0.462

75% quantile accuracy 0.692 0.538 0.692 0.615 0.538 0.615 0.615 0.538

Maximum accuracy 0.846 0.769 0.923 0.846 0.692 0.692 0.692 0.769
frontiers
TABLE 12 Each evaluation index of the best performance of 100 random groupings in eight machine learning algorithms.

Model names Accuracy AUC Sensitivity Specificity Sets

SVM 0.673 0.113 0.968 0.059 train

SVM 0.615 0.375 0.5 0.75 test

KNN 0.694 0.659 0.871 0.5 train

KNN 0.385 0.263 1 0 test

DecisionTree 1 1 1 1 train

DecisionTree 0.923 0.9 1 1 test

RandomForest 1 1 1 1 train

RandomForest 0.385 0.425 0.5 0.75 test

ExtraTrees 1 1 1 1 train

ExtraTrees 0.231 0.063 1 0 test

XGBoost 1 1 1 1 train

XGBoost 0.308 0.35 0.5 0.75 test

LightGBM 1 1 1 1 train

LightGBM 0.615 0.2 1 0 test

MLP 0.939 0.996 0.968 1 train

MLP 0.462 0.325 0.125 1 test
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HLH_firstorder_Skewness_before - 0.008996 * wavelet-

HLH_glcm_Correlation_before + 0.058934 * wavelet-

LLL_glcm_Correlation_before + 0.028862 * square_

glszm_SmallAreaLowGrayLevelEmphasis_after - 0.001464 *

wavelet-LHL_glcm_ClusterShade_after - 0.051536 * gender +

0.002784 * age + 0.011369 * N_stage + 0.021636 * 642_before +

0.009017 * 61_after + 0.122782 * 80_after - 0.138473 *

199_after +0.021755 * 284_after + 0.036575 * 802_after -

0.008443 * 965_after + 0.038793 * 1508_after +0.034689 *

1538_after + 0.045343 * 1553_after + 0.000306 * 2030_after.
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Note: “_before” represents the radiomics features

before treatment, and “_after” represents the radiomics

features after treatment. Naming is like “exponential_gldm_

dependenceenterprise_before” for radiomics traditional

features, and the naming is like “80_after” for DL features.

The 20 features screened by LASSO regression are randomly

divided into a training group and a testing group according to

the ratio of 7:3. Then, eight common machine learning

algorithms are used to model. The accuracy of the model

obtained by 100 random grouping modeling is shown in
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FIGURE 11

(A) Each model’s accuracy distribution was randomly tested 100 times by eight common machine learning algorithms. (B) Comparison of the
accuracy of the best performing one out of 100 randomizations in eight machine learning algorithms. (C) AUCs of the training set and test set in
the DecisionTree model. (D) Confusion matrix for the DecisionTree model.
TABLE 13 Distribution of the accuracy of each model randomly tested 100 times by eight common machine learning algorithms.

model Names SVM KNN DecisionTree RandomForest ExtraTrees XGBoost LightGBM MLP

Number of tests 100 100 100 100 100 100 100 100

Mean accuracy 0.603 0.545 0.548 0.547 0.545 0.567 0.568 0.509

25 % quantile accuracy 0.538 0.462 0.462 0.462 0.462 0.462 0.462 0.462

50% quantile accuracy 0.615 0.538 0.538 0.538 0.538 0.538 0.538 0.538

75% quantile accuracy 0.692 0.615 0.615 0.615 0.615 0.635 0.635 0.615

Maximum accuracy 0.846 0.846 0.923 0.846 0.846 0.923 0.923 0.769
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Figure 13 and Table 15. Four of the eight models (SVM,

XGBoost, LightGBM, and MLP) had a maximum accuracy of

1. The mean accuracy of all models was 0.628–0.805.

In the 100 random groupings, the performances of the best

grouping in each model are shown in Figure 13 and Table 16.

The best model was SVM and XGBoost. The accuracy, AUC,

sensitivity, and specificity in both training and test sets were 1.

However, the average accuracy of model SVM in 100 random

grouping tests is higher. So, SVM model data were selected to

build the entire_signature for further research.
Frontiers in Oncology 19
Nomogram

Drawing and calibration of the
before_nomogram

To provide a simple graphical presentation of a clinical

prediction model, our study used previously constructed

before_rad_clinic_signature, before_dl_signature, and clinical

features screened by LASSO to construct a pre-NAT

nomogram (before_nomogram) . According to the

characteristics in Figure 14A, a patient’s corresponding
TABLE 14 Each evaluation index of the best performance of 100 random groupings in eight machine learning algorithms.

Model names Accuracy AUC Sensitivity Specificity Sets

SVM 0.837 0.017 1 0 train

SVM 0.769 0.733 0.6 1 test

KNN 0.735 0.769 0.793 0.65 train

KNN 0.385 0.25 1 NaN test

DecisionTree 1 1 1 1 train

DecisionTree 0.923 0.833 1 1 test

RandomForest 0.980 0.999 0.966 1 train

RandomForest 0.462 0.45 0.5 0.667 test

ExtraTrees 1 1 1 1 train

ExtraTrees 0.615 0.367 1 0 test

XGBoost 1 1 1 1 train

XGBoost 0.462 0.433 0.4 1 test

LightGBM 0.959 0.984 0.966 1 train

LightGBM 0.462 0.433 0.4 1 test

MLP 1 1 1 1 train

MLP 0.308 0.033 1 0 test
frontiersi
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FIGURE 12

Regression feature screening. (A) Feature selection plot for the LASSO regression, which was adjusted by a super parameter (Lamba) to achieve
the purpose of screening the optimal features. The vertical dashed line indicates that the corresponding optimal Lamba value when obtaining
the minimum deviation value is Lamba = 0.0596. (B) The convergence graph of characteristic coefficients for feature selection by cross-
validation. Features with non-zero coefficients were screened out corresponding to the vertical lines in the plot, with a total of 20 best
features selected.
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probability of GPR after treatment can be calculated. Table 17

shows the features in the before_nomogram and the

corresponding scores. Table 18 shows the GPR probability

c o r r e s pond i n g t o d i ff e r e n t t o t a l s c o r e s i n t h e

before_nomogram. Figure 14B shows that the probability of

GPR predicted by the nomogram after 1,000 repeated samplings

and the actual GPR is consistent.
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Drawing and calibration of the
after_nomogram

In our s tudy , we used prev ious ly constructed

be fore_rad_c l in i c_s igna ture , be fore_d l_s igna ture ,

af ter_rad_cl inic_signature, af ter_dl_signature , and

entire_signature to jointly construct a posttreatment

nomogram (after_nomogram). According to the characteristics
B

C D

A

FIGURE 13

(A) Distribution of the accuracy of each model randomly tested 100 times by eight common machine learning algorithms. (B) Comparison of
the accuracy of the best performing one out of 100 randomizations in eight machine learning algorithms. (C) AUCs of the training set and test
set in the SVM model. (D) Confusion matrix for the SVM model.
TABLE 15 Distribution of the accuracy of each model randomly tested 100 times by eight common machine learning algorithms.

model Names SVM KNN DecisionTree RandomForest ExtraTrees XGBoost LightGBM MLP

Number of tests 100 100 100 100 100 100 100 100

Mean accuracy 0.801 0.732 0.628 0.714 0.714 0.723 0.702 0.805

25 % quantile accuracy 0.769 0.692 0.538 0.615 0.615 0.673 0.615 0.769

50% quantile accuracy 0.846 0.769 0.615 0.692 0.692 0.692 0.692 0.846

75% quantile accuracy 0.846 0.846 0.692 0.769 0.769 0.769 0.769 0.923

Maximum accuracy 1 0.923 0.923 0.923 0.923 1 1 1
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in Figure 15A, a patient’s corresponding probability of GPR after

treatment can be calculated. Table 19 shows the features in the

after_nomogram corresponding scores. Table 20 shows the GPR

probability to different total scores in the after_nomogram.

Figure 15B shows that the probability of GPR predicted by the

nomogram after 1,000 repeated samplings and the actual GPR

is consistent.
Frontiers in Oncology 21
Discussion

Lung cancer is still the leading cancer in the world and in China,

where NSCLC is the most common, with an incidence rate of about

85% (2, 3). Surgery is still the main treatment for early and locally

advanced NSCLC (I, II and IIIA, IIIB)(NCCN) (4, 5). However,

great progress has been made in recent years with the application of
BA

FIGURE 14

(A) before_nomogram.Locate on the before_rad_clinic_signature, before_dl_signature, gender, and N stage coordinate axis. Draw a straight line
perpendicular to the first points, calculate and sum the scores corresponding to each straight line, locate on the total points coordinate axis,
and draw a straight line perpendicular to the horizontal axis of the probability of GPR. The corresponding value is the probability of pathological
response to GPR in patients with non-small cell lung cancer after neoadjuvant immunotherapy. (B) Calibration curve corresponding to the
before_nomogram. The consistency between the probability of GPR predicted by the nomogram after 1,000 repeated samplings and the actual
GPR. The 45° red line represents the ideal prediction performance. The black dotted line and the solid green line represent the prediction
performance of the nomogram and the correction of the deviation of the nomogram, respectively. The closer the black dotted line is to the 45°
ideal red line, the higher the model’s prediction accuracy.
TABLE 16 Each evaluation index of the best performance of 100 random groupings in eight machine learning algorithms.

Model names Accuracy AUC Sensitivity Specificity Sets

SVM 1 1 1 1 train

SVM 1 1 1 1 test

KNN 0.816 0.872 0.821 0.810 train

KNN 0.846 0.977 0.909 1 test

DecisionTree 1 1 1 1 train

DecisionTree 0.846 0.705 0.909 1 test

RandomForest 1 1 1 1 train

RandomForest 0.923 1 1 1 test

ExtraTrees 1 1 1 1 train

ExtraTrees 0.923 0.932 0.909 1 test

XGBoost 1 1 1 1 train

XGBoost 1 1 1 1 test

LightGBM 0.898 0.927 0.929 0.857 train

LightGBM 1 1 1 1 test

MLP 0.918 0.986 0.929 0.952 train

MLP 1 1 1 1 test
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ICIs as NAT approach. Immunotherapy-based NAT (nivolumab

360 mg and platinum-containing chemotherapy, once every 3

weeks, for three cycles) has been included in the latest NCCN

guidelines(NCCN) (4, 5). Although PD-L1 and tumor mutation

burden (TMB) can indicate the effect of immunotherapy to some
Frontiers in Oncology 22
extent (32), different types of immune cells in the tumor

microenvironment, such as CD8+ T-cell infiltration, usually

indicate that immunotherapy confers a good response and

prognosis (33).

The combination of different immune cells, such as CD3/CD8/

CD45RO combined with immune score (34), has a certain

suggestive effect on the efficacy of immunotherapy. However,

there is currently no reliable indicator to predict the exact

efficacy of immunotherapy-based NAT. The common endpoints

of clinical trials are progression-free survival (PFS) and overall

survival (OS). Although the pathological response can evaluate the

treatment benefit earlier than the traditional clinical trial

endpoints, the histopathological evaluation can only be

determined after the pathological results of surgical resection. CT

chest is a common diagnostic imaging modality of lung cancer.
TABLE 17 The features in the nomogram and the corresponding scores.

Before_rad_clinic_signature Points Before_dl_signature Points

0 0 0 0

0.2 20 1 38

0.3 30 gender Points

0.5 50 women 0

0.6 60 men 19

0.7 70 N stage Points

0.8 80 0 8

0.9 90 1 4

1 100 2 0
frontie
TABLE 18 GPR probability corresponding to different total scores in
the before_nomogram.

Total Points Probability of GPR

79 0.1

84 0.3

92 0.7

97 0.9
BA

FIGURE 15

(A) After_nomogram.Locate on the before_rad_clinic_signature, before_dl_signature, after_rad_clinic_signature, after_dl_signature, and
entire_signature coordinate axis. Draw a straight line perpendicular to the first points, calculate and sum the scores corresponding to each
straight line, locate on the total points coordinate axis, and draw a straight line perpendicular to the horizontal axis of the probability of GPR.
The corresponding value is the probability of pathological response to GPR in patients with non-small cell lung cancer after neoadjuvant
immunotherapy. (B) Calibration curve corresponding to after_nomogram. The consistency between the probability of GPR predicted by the
nomogram after 1,000 repeated samplings and the actual GPR. The 45° red line represents the ideal prediction performance. The black dotted
line and the solid green line represent the prediction performance of the nomogram and the correction of the deviation of the nomogram,
respectively. The closer the black dotted line is to the 45° ideal red line, the higher the model’s prediction accuracy.
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In contrast, another common efficacy evaluation standard is

RECIST 1.1, which is mainly based on the 2D evaluation of the

number and size of tumors shown on CT (35). From a

quantitative point of view, this method is basic and ignores a

large amount of information in medical images. Based on saving

diagnostic financial costs, radiomics uses high-throughput

technology to extract the conventional features and/or DL

features of medical images together with molecular biological

information such as genes, proteins, and tumor metabolism,

which is then transformed into quantitative features. Combined

with machine learning or/and DL, it can be used for disease

diagnosis, therapeutic efficacy prediction, and prognosis analysis

(22, 23, 25, 26).

Accurate prediction of treatment response is of great

significance for the stratification and selection of patients
Frontiers in Oncology 23
benefiting from immunotherapy. Yang et al. (36) selected 88

radiomics features from the CT images of 92 patients with lung

cancer before immunotherapy and constructed a random forest

model. Combined with clinicopathological information, they

successfully predicted the patients who would benefit from ICI

treatment (the AUCs of the training and validation groups were

0.848 and 0.795, respectively). Similarly, Barabino et al. (37)

extracted the radiomics features of lung lesions from CT scans at

baseline and the first evaluation and calculated their changes by

absolute difference and relative reduction (Delta, D). After
feature screening and model construction, 27 delta features

were identified, which were able to distinguish the response to

NSCLC immunotherapy with statistically significant accuracy.

Moreover, it was found that the changes in the other nine

features were significantly correlated with false progression.

Another report by Shen et al. (38) predicted the effect of

immunotherapy in NSCLC patients through texture feature

extraction and texture analysis of lung enhanced CT before

treatment. The highest prediction efficiency was 88.2%

(sensitivity), 76.3% (specificity), and 81.9% accuracy. These

studies suggest that radiomics can help predict and select the

right NSCLC patient population for immunotherapy. Before

immunotherapy was widely used in the clinic, there have been

studies using radiomics to predict the pathological response after

concurrent neoadjuvant chemoradiotherapy. A study by
TABLE 19 The features in the nomogram and the corresponding scores.

Before_rad_clinic_signature Points After_rad_clinic_signature Points

0 0 0 0

0.2 19 0.1 7

0.3 28 0.2 13

0.5 47 0.3 20

0.6 56 0.4 27

0.7 66 0.5 33

0.8 75 0.6 40

0.9 85 0.7 47

1 94 0.8 53

0.9 60

1 67

after_dl_signature Points total_signature Points

0 0 0 0

1 59 0.1 10

before_dl_signature Points 0.2 20

0 0 0.3 30

1 53 0.4 40

0.5 50

0.6 60

0.7 70

0.8 80

0.9 90

1 100
frontie
TABLE 20 GPR probability corresponding to different total scores in
the after_nomogram.

Total Points Probability of GPR

160 0.1

180 0.3

205 0.7

225 0.9
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Coroller et al. (39) showed that both radiomics features of

primary tumors and lymph node phenotypic information

could predict pathological responses. Also, in another study

(40), they found that seven features could predict pathological

gross residual lesions (AUC >0.6, p < 0.05), in which one

indicator could predict pathological complete response (AUC

= 0.63, p = 0.01), and tumors with poor response to neoadjuvant

chemoradiotherapy were more likely to show well-

circumscribed (spherical nonproportional, AUC = 0.63, p =

0.009) and spiculated lesions (LoG 5 mm 3D-GLCM entropy,

AUC = 0.61, p = 0.03). At present, there is no relevant research

on radiomics that predicts the efficacy of neoadjuvant

immunotherapy. To explore the role of radiomics in

predicting the pathological remission of NSCLC after

neoadjuvant immunotherapy, this study extracted the

conventional radiological features and DL features from the

CT images of NSCLC patients before and after neoadjuvant

immunotherapy combined with clinicopathological information

to construct models that can predict the pathological remission

of NSCLC patients after immunotherapy-based NAT.

The before_rad_cil model was constructed after feature

screening. Four radiomics traditional features (“original_

shape_Flatness, ” “wavelet-HHL_firstorder_Skewness, ”

“wavelet-HLH_firstorder_Skewness, ” and “wavelet-

LLL_glcm_Correlation”) and two clinical features (“sex” and

“N stage”) were obtained. Eight common machine learning

algorithms model the selected features: SVM, KNN,

DecisionTree, RandomForest , ExtraTrees, XGBoost,

LightGBM, and MLP. After 100 random groupings of 5-fold

cross-validation, the average prediction accuracy of the

KNN model was the highest, 0.708. Conventional radiomics

features were extracted from the CT images of NSCLC

patients after immunotherapy-based NAT and combined with

the cl inicopathological information obtained after

immunotherapy-based NAT. The after_rad_cil model was

constructed. After feature screening, seven radiomics

traditional features (“exponential_firstorder_Skewness,”

“exponential_glrlm_RunEntropy,” “log-sigma-5-0-mm-

3D_firstorder_Kurtosis,” “logarithm_firstorder_Skewness,”

“original_shape_Elongation,” “original_shape_Flatness,” and

“wavelet-LLH_glcm_ClusterShade”) and two clinical features

(“after_CRP” and “after_percentage of lymphocytes”)

were obtained.

After the selected features were modeled and cross-verified

by eight common machine learning algorithms, the average

prediction accuracy of the SVM model was the highest (0.682).

After fine-tuning resnet50, the before_dl model extracted DL

features from the CT images of NSCLC patients before

immunotherapy-based NAT. The DL features only reflected

the relationship between features and outcomes without exact

physical meaning. Eight common machine learning algorithms
Frontiers in Oncology 24
then modeled the features after dimensionality reduction by

PCA: SVM, KNN, DecisionTree, RandomForest, ExtraTrees,

XGBoost, LightGBM, and MLP. After 100 random groupings

of 5-fold cross-validation, the average prediction accuracy of the

SVM model was the highest, 0.629.

In the after_dl model constructed by the DL features

ex t rac t ed f rom the CT images o f pa t i en t s a f t e r

immunotherapy-based NAT like the before_dl model, the

average prediction accuracy of SVM was the highest (0.603).

The entire model was a prediction model constructed by

combining the conventional features of radiomics, DL features,

and clinicopathological features before and after NAT. After

being modeled by eight common machine learning algorithms

and 100 random groupings of 5-fold cross-validation, the

average prediction accuracy of the MLP model was the

highest, which was 0.805.

Nomograms can graphically describe biological information,

characteristics, and clinical variables as a statistical prediction

model and estimate the individualized risk according to the

characteristics of patients and diseases. It is a simple, easy-to-

understand, and user-friendly clinical decision-making tool (41)

and was widely used in individualized prognostic evaluation of

breast cancer (42), rectal cancer (43), prostate cancer (44),

glioma (45), and lung adenocarcinoma (46).

We combined prognostic variables obtained in the

before_rad_clinic model, gender, N stage, before_ rad_ clinic_

signature, and before_dl_signature, to construct the

before_nomogram, while the before_rad_clinic_signature,

b e f o r e_d l _ s i gna tu r e , a f t e r _ r ad_ c l i n i c _ s i gna tu r e ,

after_dl_signature, and entire_signature were used to construct

the after_nomogram. The calibration curve showed that the

nomogram before and after treatment had a good predictive

effect on the GPR.

Our results suggest that radiomics can predict the

pathological remission of NSCLC after immunotherapy-based

NAT. Similar to previous studies (19, 47–49), the prediction

efficiency of the entire model is higher than that of the single DL

model and the radiomics traditional features combined clinical

features model. CT images and clinicopathological information

obtained before NAT were constructed as the before_rad_cil

model. After classification using the KNN algorithm, the average

prediction accuracy was 0.708. Combining GPR-related clinical

variables was done to construct the before_nomogram. It shows

that clinicians can judge the probability of achieving GPR before

treatment in each patient who intends to receive

immunotherapy-based NAT.

The entire model had the highest predictive efficacy after

classification using the MLP algorithm with an average

pred ic t ive accuracy of 0 .805 , combined with the

be fore_rad_c l in i c_s igna ture , be fore_d l_s igna ture ,

after_rad_clinic_signature, and after_dl_signature to construct
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the after_nomogram, which can predict the probability that

patients are obtaining GPR after immunotherapy-based NAT

ahead of surgery. If the follow-up data show that patients who

achieved GPR after immunotherapy-based NAT have significant

survival benefits after surgery or not, reducing the scope of

surgery or avoiding surgical treatment altogether may have the

same survival benefits as patients with total resection or

extended resection.

Although the results are satisfactory, our study also has some

limitations. First, the sample size of this retrospective study is

limited, and the consistency test between observers was not

carried out. Although we used various methods for feature

selection and compared the prediction results of various

machine learning methods to select the best model, the limited

data set may lead to insufficient generalization of the model.

Therefore, in future research, we will strive to conduct a

multicenter study and aim to construct large samples with

diversified data sets to evaluate the proposed model and verify

the robustness and effectiveness of our model through

prospective studies.

Secondly, previous studies (50) have shown that

adenocarcinoma (ADC) and squamous cell carcinoma (SCC)

have different imaging phenotypes on CT scans: peripheral hair

glass shadows are more common in ADC, and SCC is more

likely to show necrosis. Different imaging phenotypes may lead

to different prediction performances. Due to the limited number

of cases in this study, the data sets of different histopathological

types (ADC and SCC) cannot be hierarchically modeled

and verified.

The model constructed by merging the two tumors may lead

to a decline in prediction efficiency. Therefore, larger data sets

should be used in future research, and the two histological

subtypes should be hierarchically modeled and verified. This

study only analyzed the predict ive effect of some

clinicopathological features, conventional radiomics features,

and DL features extracted from CT images before and after

immunotherapy-based NAT for NSCLC. Studies have shown

that the pathological characteristics (51) of patients, genes (52),

and protein expression (53) can also affect the prognosis. In

future studies, if we combine pathology, genomics, proteomics,

and comprehensive clinical information, it is expected to further

improve the prediction efficiency of the model. Finally, another

limitation of this study is manually sketching the ROI, in which

the operator may have different sketching regions, which is time-

consuming and laborious. Some studies (54, 55) have begun to

attempt to automatically sketch ROIs and automatically extract

conventional radiomics features and DL features to construct

end-to-end models (56) to complete the research objectives. In

case the constructed model has stable performance and accurate

efficacy, it may give patients a relatively accurate prediction

within a few minutes after obtaining patient-related information,

which is convenient for clinical application and makes precise

individualized treatment possible.
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Conclusion

CT-based radiomics has a good predictive ability for GPR in

NSCLC patients receiving immunotherapy-based NAT. Among

the radiomics features combined with the clinicopathological

information model, DL feature model, and the entire model, the

entire model had the highest prediction accuracy.
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