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Metastatic and drug-resistant melanoma are leading causes of skin cancer–associated
death. Mitogen-associated protein kinase (MAPK) pathway inhibitors and
immunotherapies have provided substantial benefits to patients with melanoma.
However, long-term therapeutic efficacy has been limited due to emergence of
treatment resistance. Despite the identification of several molecular mechanisms
underlying the development of resistant phenotypes, significant progress has still not
been made toward the effective treatment of drug-resistant melanoma. Therefore, the
identification of new targets and mechanisms driving drug resistance in melanoma
represents an unmet medical need. In this study, we performed unbiased RNA-
sequencing (RNA-seq) and assay for transposase-accessible chromatin with
sequencing (ATAC-seq) to identify new targets and mechanisms that drive resistance
to MAPK pathway inhibitors targeting BRAF and MAPK kinase (MEK) in BRAF-mutant
melanoma cells. An integrative analysis of ATAC-seq combined with RNA-seq showed
that global changes in chromatin accessibility affected the mRNA expression levels of
several known and novel genes, which consequently modulated multiple oncogenic
signaling pathways to promote resistance to MAPK pathway inhibitors in melanoma
cells. Many of these genes were also associated with prognosis predictions in melanoma
patients. This study resulted in the identification of new genes and signaling pathways that
might be targeted to treat MEK or BRAF inhibitors resistant melanoma patients. The
present study applied new and advanced approaches to identify unique changes in
chromatin accessibility regions that modulate gene expression associated with pathways
to promote the development of resistance to MAPK pathway inhibitors.
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INTRODUCTION

Melanoma is the deadliest form of skin cancer, and aggressive or drug-resistant forms of
melanoma can metastasize to various distal organs (1, 2). Genomic sequencing has identified
oncogenic BRAF mutations in greater than 50% of melanoma tumors (3, 4). Acquired oncogenic
BRAF mutations result in the constitutive activation of BRAF!MEK!ERK (MAPK) pathway,
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which is necessary for melanoma growth and progression (5–
7). These findings have led to the development of several BRAF
and MEK inhibitors (BRAFi and MEKi, respectively) that have
received approval by the US Food and Drug Administration
(FDA) for use in the treatment of unresectable metastatic
melanoma (8–10). However, despite an initial robust
response to BRAF- and MEK-targeted therapies, patients
with melanoma typically acquire treatment resistance within
a few months, resulting in disease progression (11, 12). Due to
the high prevalence of acquired resistance to BRAFi and MEKi,
intensive efforts have focused on identifying the underlying
mechanisms (4, 12, 13), contributing to substantial progress
in the treatment of advanced and drug-resistant melanoma
(14, 15). However, in a subset of cases, the mechanisms
underlying acquired BRAFi and MEKi resistance remain
unknown, and continued efforts toward identifying the
drivers of treatment resistance in these cases remain
necessary to identify more efficient, durable, and potentially
personalized treatment options.

Mechanism of resistance to BRAF/MEK inhibitors can be
MAP kinase pathway dependent and independent. The goal of
our study was to investigate the role of MAP kinase pathway
independent- reprogramming of chromatin landscape in
MAPK pathway inhibitor resistant melanoma cells. Here, we
focused on identifying alterations in genomic distribution of
accessible chromatin site and its impact on transcriptional
network to identify the functional genes and pathways that
can be targeted for the treatment of MAPK pathway inhibitor
resistant melanoma. To do so, in this study we performed
deep-sequencing analyses in BRAFi resistant and sensitive
melanoma cells, after confirming their growth phenotype. Our
results revealed that the combined use of MAPK pathway
inhibitors significantly inhibited the growth of BRAFi-
sensitive cells but had only modest effects on BRAFi-
resistant cells . RNA-sequencing (RNA-seq) analysis
identified altered expression patterns for several genes
involved in various functional pathways in BRAFi-resistant
cells compared with BRAFi-sensitive cells. Assay for
transposase-accessible chromatin with high-throughput
sequencing (ATAC-seq) was performed to measure
alterations in chromatin accessibility, which revealed that
chromatin accessibility was altered in both the promotor, in
between and downstream regions of several genes. These
changes resulted in alterations in the expression of several
functional pathways, promoting resistance. An integrated
analysis combining the RNA-seq and ATAC-seq datasets
identified a group of genes for which changes in chromatin
accessibility aligned with the changes in mRNA expression
levels. Pathway analysis of these differentially expressed genes
revealed the involvement of several oncogenic signaling
pathways in the development of resistance to MAPK
pathway inhibitors in melanoma cells. The present study
describes the application of new and advanced approaches
for identifying changes in chromatin accessibility that
modulate gene expression and signaling pathway activities
to promote MAPK pathway inhibitor resistance in BRAF-
mutant melanoma cells.
Frontiers in Oncology | www.frontiersin.org 2
MATERIALS AND METHODS

Cell Culture
M229 parent andM229 BRAFi-resistant lines were gifts from Roger
Lo, University of California, Los Angeles, and Neil Rosen, Memorial
Sloan Kettering Cancer Center, New York. They weremaintained in
a humidified atmosphere of 5% CO2 at 37°C in Dulbecco’s modified
Eagle medium (Life Technologies, Carlsbad, CA, USA)
supplemented with 10% fetal bovine serum (Life Technologies)
and 1% penicillin/streptomycin (Life Technologies).

Cell Viability Assay (MTT Assay)
For MTT assays, 3 × 103 melanoma cells (M229-Par and M229-
Res) were plated in triplicate in a volume of 100 µL in 96-well
plates. After 24 h, the cells were treated with different
concentrations of inhibitors. Cell viability was evaluated 5 days
after treatment. To measure cell viability, 20 µl 5 mg/mL MTT
solution dissolved in 1× phosphate-buffered saline was added to
each well of the 96-well plate and incubated for 2 h at 37°C. The
MTT solution was then removed, and 100 µL dimethyl sulfoxide
(DMSO) was added to each well. After the contents were mixed by
pipetting, absorbance was measured at 590 nm and 630 nm using
the Biotek Synergy MX Multi Format Microplate Reader (Biotek,
Winooski, VT, USA). The average absorbance at 630 nm was
subtracted from the average absorbance at 590 nm, and the growth
rate was plotted relative to the growth rate of vehicle-treated cells.

Soft-Agar Assay
Soft-agar assays were performed by seeding 1 × 104 melanoma
cells (M229-Par and M229-Res) onto 0.4% low melting–point
agarose (Sigma-Aldrich, Burlington, MA, USA) layered on top of
0.8% agarose. After 24 h, the cells were treated with different
concentrations of inhibitors, as shown in the Figure 1, or DMSO
(control). After 3–4 weeks of incubation, colonies were stained
with 0.005% crystal violet and imaged under a microscope.
Colony sizes were measured using ImageJ software (https://
imagej.nih.gov/ij/) and plotted as percent relative colony size
compared with control colonies. Statistical analysis was
performed by Student’s t-test in GraphPad Prism 8.0
(GraphPad, San Diego, CA, USA).

Clonogenic Assay
The clonogenic abilities of vehicle-treated (control) and
inhibitor-treated melanoma cells (M229-Par and M229-Res)
were measured in triplicate using clonogenic assays in which
0.5 × 103 cells were seeded in a 6-well plate. After 24 h, the cells
were treated with different concentrations of inhibitors, as shown
in the Figure 1, or DMSO (control). After 1–2 weeks of
treatment, colonies were fixed with a fixing solution containing
50% methanol and 10% acetic acid, followed by staining with
0.05% Coomassie blue (Sigma-Aldrich). The relative number of
colonies was calculated by counting the number of colonies in
each sample and plotting the average number of colonies.

RNA-Sequencing
Total RNA was extracted from frozen cell pellet samples using
the Qiagen RNeasy Plus Universal mini kit, according to the
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manufacturer’s instructions (Qiagen, Hilden, Germany). RNA
samples were quantified using a Qubit 2.0 Fluorometer (Life
Technologies), and RNA integrity was verified using an Agilent
TapeStation 4200 (Agilent Technologies, Palo Alto, CA, USA).
RNA-seq libraries were prepared using the NEBNext Ultra RNA
Library Prep Kit for Illumina, according to the manufacturer’s
instructions (NEB, Ipswich, MA, USA). Briefly, mRNAs were
initially enriched with Oligo d(T) beads. Enriched mRNAs were
fragmented for 15 minutes at 94°C. First-strand and second-
Frontiers in Oncology | www.frontiersin.org 3
strand cDNA were subsequently synthesized. cDNA fragments
were end-repaired and adenylated at the 3’ends, and universal
adapters were ligated to cDNA fragments, followed by index
addition and library enrichment by PCR with limited cycles. The
sequencing library was validated on the Agilent TapeStation and
quantified using a Qubit 2.0 Fluorometer and by quantitative
PCR (KAPA Biosystems, Wilmington, MA, USA).

The sequencing libraries were clustered on two lanes of a
flowcell. After clustering, the flowcell was loaded on the Illumina
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FIGURE 1 | Effects of MAPK pathway inhibitors on M229-Par and M229-Res melanoma cell growth. (A–C) The indicated melanoma cell lines were treated with the
indicated concentrations of dabrafenib, vemurafenib, or trametinib for 5 days and subjected to MTT assays. Cell viability is plotted relative to DMSO-treated cells. (D) The
indicated melanoma cell lines were treated with either 10 nM dabrafenib or 1 nM trametinib, alone or in combination, for 5 days and subjected to MTT assays. Cell viability is
plotted relative to DMSO-treated cells. (E) The indicated melanoma cell lines were treated with either 0.5 µM vemurafenib or 1 nM trametinib, alone or in combination, for 5
days and subjected to MTT assays. Cell viability is plotted relative to DMSO-treated cells. (F) The indicated melanoma cell lines were treated with either 10 nM dabrafenib or
1 nM trametinib, alone or in combination, and subjected to clonogenic assays. Representative images are shown. (G) The indicated melanoma cell lines were treated with
either 0.5 µM vemurafenib or 1 nM trametinib, alone or in combination, and subjected to clonogenic assays. Representative images are shown. (H) The indicated melanoma
cell lines were treated with either 10 nM dabrafenib or 1 nM trametinib, alone or in combination, and subjected to soft-agar assays. Representative images are shown. (I) The
indicated melanoma cell lines were treated with either 0.5 µM vemurafenib or 1 nM trametinib, alone or in combination, and subjected to soft-agar assays. Representative
images are shown. (J–K) Relative colony sizes in the images shown in panels (H, I), respectively. Data represent the mean ± standard error of three biological replicates. ns =
not significant, *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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HiSeq instrument (4000 or equivalent), according to the
manufacturer’s instructions. The samples were sequenced using
a 2 × 150-bp paired-end configuration. Image analysis and base
calling were conducted using HiSeq Control Software. Raw
sequence data (.bcl files) generated from Illumina HiSeq were
converted into fastq files and de-multiplexed using Illumina
bcl2fastq 2.17 software. One mismatch was allowed for index
sequence identification.

RNA-Sequencing Analysis
After investigating the quality of the raw data, sequence reads
were trimmed to remove possible adapter sequences and
nucleotides with poor quality using Trimmomatic v.0.36. The
trimmed reads were mapped to the reference genome available
on ENSEMBL using the STAR aligner v.2.5.2b. The STAR aligner
uses a splice aligner that detects splice junctions and incorporates
them to help align entire read sequences. BAM files were
generated during this step. Unique gene hit counts were
calculated using feature counts from the Subread package
v.1.5.2. Only unique reads that fell within exon regions
were counted.

Differentially expressed genes were identified using the
DESeq2 program (17). Genes showing altered expression with
p < 0.05 and fold change > 1.5 were considered to be differentially
expressed. Goseq (18) was used to perform the gene ontology
(GO) enrichment analysis, and Kobas was used to perform the
KEGG pathway analysis (19).

ATAC-Sequencing and Data Analysis
M229-Par and M229-Res cells were washed and treated with
DNAse I (Life Tech, Cat. #EN0521) to remove genomic DNA
contamination. Live cell samples were quantified and assessed
for viability using a Countess Automated Cell Counter
(ThermoFisher Scientific, Waltham, MA, USA). After cell lysis
and cytosol removal, nuclei were treated with Tn5 enzyme
(Illumina, Cat. #20034197) for 30 min at 37°C and purified
with a MinElute PCR Purification Kit (Qiagen, Cat. #28004) to
produce tagmented DNA samples. Tagmented DNA was
barcoded with a Nextera Index Kit v2 (Illumina, Cat. #FC-131-
2001) and amplified via PCR prior to an SPRI Bead cleanup to
yield purified DNA libraries.

The reads were first mapped to the latest UCSC genome set
using Bowtie2 version 2.1.0 (16). Mitochondrial reads, duplicate
reads, and non-unique reads were removed before peak calling.
MACS2 was used for peak calling using BAMPE mode (20).
Differentially expressed peaks were identified using the DEseq2
program (17). Peaks showing altered expression with p < 0.05
and fold change > 1.5 were considered differentially expressed.
Downstream genes of the differential peaks were used for GO
and pathway enrichment analysis. Goseq (18) was used to
perform the GO enrichment analysis, and Kobas was used to
perform the KEGG pathway analysis (19).

Integrated Analysis of RNA-Seq and
ATAC-Seq Data
RNA-seq and ATAC-seq data were analyzed to identify same-
direction changes in mRNA expression and chromatin
Frontiers in Oncology | www.frontiersin.org 4
accessibility. This integration was used to assess pathway
enrichment using KEGG pathway analysis (KEGG; www.
genome.jp/kegg/pathway.html).

Statistical Analysis
All experiments were conducted in three biological replicates.
The results for individual experiments were expressed as the
mean ± SEM. P-values were calculated by t-test using GraphPad
Prism version 8.0h for Macintosh, GraphPad Software, San
Diego, California, USA (www.graphpad.com).
RESULTS

Effects of MAPK Pathway Inhibitors on the
Growth of BRAFi-Resistant and BRAFi-
Sensitive Melanoma Cells
BRAFi-resistant M229 cells (M229-Res) were generated
through the continuous exposure of BRAFi-sensitive M229
cells (M229-Par) to increasing concentrations of vemurafenib
(PLX4032) in vitro, which allowed these cells to acquire a
resistant phenotype (21). To determine whether the M229-
Res cells generated by continuous vemurafenib exposure were
also resistant to more potent and stronger BRAFi, such
as dabrafenib, or to MEKi, such as trametinib, we
performed short-term 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) survival assays.
Vemurafenib is a potent inhibitor of B-RafV600E, with a half-
maximal inhibitory concentration (IC50) of 31 nM in a cell-free
assay (22). Vemurafenib shows a 10-fold increase in selectivity
for B-RafV600E compared with wild-type B-Raf in enzymatic
assays, and cellular selectivity can exceed 100-fold for B-
RafV600E compared with wild-type B-Raf (23). Dabrafenib is
also a specific inhibitor of BRAFV600 mutants, with an IC50 of
0.7 nM in cell-free assays, and presents with 7- and 9-fold less
potency against wild-type B-Raf and c-Raf, respectively (24).
Dabrafenib is approximately 50 times more effective than
vemurafenib for inhibiting B-RafV600E (25). Trametinib is a
highly specific and potent MEK1/2 inhibitor, with an
IC50 ranging from 0.92 to 1.8 nM in cell-free assays and
displaying no inhibitory effects against the kinase activities of
c-Raf, B-Raf, or ERK1/2 (26–28). Using the MTT assay, we
found that the inhibition of the BRAF!MEK!ERK pathway
by vemurafenib, dabrafenib, or trametinib resulted in stronger
effects in M229-Par cells than in M229-Res cells (Figures 1A–
C). We also observed that BRAFi and MEKi when used in
combination, strongly inhibited the growth of M229-Par cells
with modest effects on M229-Res cells (Figures 1D, E).
Combined BRAFi and MEKi treatment also strongly inhibited
the growth of M229-Par cells compared with M229-Res cells
in clonogenic (Figures 1F, G) and soft-agar assays
(Figures 1H–K). These results indicate that M229-Res cells
generated by continuous exposure to vemurafenib also
developed resistance against the more potent BRAFV600
inhibitor dabrafenib and the MEK1/2 inhibitor trametinib,
both alone and in combination.
June 2022 | Volume 12 | Article 937831
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RNA-Sequencing Analysis Identifies
Alterations in the Transcriptome of BRAFi-
Resistant Relative to BRAFi-Sensitive
Melanoma Cells
To identify transcriptional changes in BRAF-mutant M229
BRAFi-resistant cells as compared to BRAFi-sensitive cells, we
performed RNA-seq comparing M229-Res cells with M229-Par
cells. RNA-seq identified 12,314 differentially expressed genes
(adjusted p-values ≤ 0.05), including 6,139 downregulated and
6,175 upregulated genes (Figure 2A; Supplementary Table S1)
in M229-Res cells compared with M229-Par cells. A heat map
showing the top 100 affected genes (50 upregulated and 50
downregulated) and a volcano plot showing the top 30 genes
Frontiers in Oncology | www.frontiersin.org 5
(15 upregulated and 15 downregulated), based on the log2 fold
change values, were plotted (Figures 2B, C).

To explore the functional pathways likely to be activated or
repressed by changes in gene expression, we performed
functional pathway analysis using the Kyoto Encyclopedia of
Genes and Genomes (KEGG). Our results showed that genes
upregulated in M229-Res cells compared with M229-Par cells
were associated with the activation of many oncogenic pathways,
including phosphoinositide 3-kinase (PI3K)–protein kinase B
(AKT), MAPK, focal adhesion, and proteoglycan-based signaling
cascades (Figure 2D). Additionally, the identified downregulated
genes were associated with the inhibition of anti-proliferative
pathways, such as cellular senescence, autophagy, and
A

B

D

E

C

FIGURE 2 | RNA-sequencing identified differentially expressed mRNAs between M229-Par and M229-Res cells. (A) Total number of upregulated or downregulated
genes with adjusted p-values ≤ 0.05 in M229-Res compared with M229-Par samples. (B) Heat map showing differentially expressed genes (up- or downregulated)
in the indicated comparisons. The top 50 upregulated and the top 50 downregulated genes based on p-values are shown. (C) Volcano plot showing differentially
expressed genes (up- or downregulated) in the indicated comparisons. The top 15 upregulated and the top 15 downregulated genes based on p-values are also
labeled. (D, E) KEGG pathway analysis showing key upregulated (D) and downregulated (E) biological pathways associated with differentially expressed mRNAs in
M229-Res cells compared with M229-Par cells.
June 2022 | Volume 12 | Article 937831
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glycosaminoglycan degradation (Figure 2E). Our results
demonstrate that transcriptional changes in M229-Res cells
promote the activation of pro-oncogenic signaling pathways
and the inhibition of anti-cancer pathways.

ATAC-Sequencing Analysis Identifies
Alterations in Chromatin Accessibility
Regions in BRAFi-Resistant Compared
With BRAFi-Sensitive Melanoma Cells
Open chromatin accessible regions contain cis-regulatory elements
that might modulate gene expression and activity (29, 30). We,
therefore, performed chromatin accessibility profiling analyses in
both M229-Par and M229-Res cells using ATAC-seq. We identified
a total of 71,542 (adjusted p-values ≤ 0.05) accessible regions in
Frontiers in Oncology | www.frontiersin.org 6
M229-Res cells compared with M229-Par cells, including 37,814
regions with negative chromatin accessibility and 33,728 regions
with positive chromatin accessibility (Figures 3A, B;
Supplementary Table S2). Altered chromatin accessibility regions
were distributed across upstream, intergenic, and downstream
regions (Figure 3C). A heat map showing the top 100 genes (50
upregulated and 50 downregulated) due to changes in chromatin
accessibility was plotted (Figure 3D). To understand how changes
in chromatin accessibility impact the regulation of functional
pathways involved in the development of resistance to
MAPK pathway inhibitors in M229 cells, we performed
functional pathways analysis using KEGG. Our results showed
that changes in chromatin accessibility upregulated the expression
of genes involved in several oncogenic pathways, such as the Rap1,
A B

D
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F

C

FIGURE 3 | ATAC-sequencing identified differentially expressed mRNAs between M229-Par and M229-Res cells. (A) Heatmaps showing differential genomic regions
with increased or decreased chromatin accessibility based on ATAC-seq in M229-Res compared with M229-Par samples. (B) Chromatin-immunoprecipitation (ChiP)
peaks over chromosomes analyzed by ATAC-seq in M229-Res and M229-Par samples. (C) Pie-chart for the indicated samples mapping the locations of annotated
peaks identified by ATAC-seq. (D) Heat map showing the top 50 upregulated and the top 50 downregulated genes with increased and decreased chromatin accessibility
based on p-values. (E, F) KEGG pathway analysis showing key upregulated (E) and downregulated (F) biological pathways associated with genes located in regions with
increased or decreased chromatin accessibility in M229-Res cells compared with M229-Par cells.
June 2022 | Volume 12 | Article 937831

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Reddi et al. MAPKi Resistance Alters Gene Signature
Hippo, and extracellular matrix receptor interaction–dependent
signaling cascades (Figure 3E). Apoptosis, among other pathways,
was downregulated in M229-Res cells compared with M229-Par
cells (Figure 3F). These results demonstrate that M229-Res cells
display a unique chromatin accessibility profile that supports the
development of MAPK pathway inhibitor resistance.

Integrated ATAC-Sequencing and RNA-
Sequencing Data Analysis Identifies
Alterations in Chromatin Accessibility
Regions That Align With Changes in mRNA
Expression Level in BRAFi-Resistant
Compared With BRAFi-Sensitive
Melanoma Cells
To identify correlations between accessible chromatin regions and
mRNA expression levels, we integrated the data obtained from
ATAC-seq and RNA-seq analyses, which revealed 5,646 significant
changes in chromatin accessibility (adjusted p-values ≤ 0.05) aligned
with significant changes in mRNA expression levels (adjusted p-
values ≤ 0.05). Chromatin accessibility increased for 2,038 regions,
associated with the upregulation of mRNA expression, whereas
3,608 chromatin regions became less accessible, inhibiting mRNA
expression (Supplementary Table S3). A heat map was plotted to
display the top 100 genes (50 upregulated and 50 downregulated)
based on the log2 fold changes in mRNA expression among those
aligned with changes in chromatin accessibility (Figure 4A). These
included transcriptional regulators, ion channels, enzymes, kinases,
phosphatases, growth factors, G-protein coupled receptors and
transmembrane receptors (Figure 4B). A subset of top
upregulated and downregulated genes owing to their association
with the pathways involved in promoting MAPK pathway inhibitor
resistance and treatment failure, predicted 3-year survival outcomes
among melanoma patients (Figure 4C).

To identify which functional pathways were affected by these
gene expression changes, we performed KEGG pathway analysis
(Supplementary Table S3) and identified several key biological
processes enriched in M229-Res cells compared with M229-Par
cells (Figures 4D, E), which may be involved in promoting a
treatment-resistant phenotype. In particular, we observed the
significant upregulation of PI3K–AKT, MAPK, Rap1, Ras, and
proteoglycan, actin cytoskeleton and ECM receptor interaction
dependent signaling pathways in M229-Res cells compared with
M229-Par cells (Figure 4D). We also observed the inhibition of
tumor growth inhibitory pathways, such as autophagy and the
programmed death-ligand 1 (PD-L1) and programmed cell death
protein 1 (PD-1) checkpoint pathway (Figure 4E). These results
suggest that changes in the global chromatin state in M229-Res cells
lead to altered gene expression associated with biological pathways
that promote MAPK pathway inhibitor resistance in BRAF-mutant
melanoma cells. Additionally, the expression of many genes
predicted survival among melanoma patients.
DISCUSSION

BRAF is a member of the Raf kinase family, and the oncogenic
V600E mutation in BRAF has been identified in 90% of
Frontiers in Oncology | www.frontiersin.org 7
melanoma cases, leading to the activation of the MAPK
pathway (31–33). Several oncogenic BRAF-targeting inhibitors
have been approved by the US FDA, including vemurafenib and
dabrafenib, for the clinical treatment of metastatic melanoma (8,
34, 35). Although BRAFi therapy results in an impressive initial
clinical response against BRAF-mutant metastatic melanoma,
the durability of this response is limited by the rapid emergence
of acquired BRAFi resistance, which often occurs within a few
months of treatment initiation (36–39). In the clinic, BRAFi
therapy is often combined with other MAPK pathway inhibitors,
such as MEKi, to obtain durable effects for the suppression of
melanoma growth and the avoidance of drug resistance (6, 10,
12). However, acquired resistance to these agents remains a
major hurdle preventing the success of targeted therapies and
limiting their benefits. One approach to overcoming this
limitation is to understand the mechanisms underlying
acquired resistance (40–42), which can contribute to modifying
therapeutic regimens or developing combination therapies to
prevent the emergence of drug resistance.

In this study, we performed a large-scale, deep-sequencing
analysis to investigate reprogramming of chromatin landscape, a
MAP kinase pathway independent mechanism in acquired
MAPK pathway inhibitor resistance in melanoma. Our results
are summarized in Figure 4F. We found that melanoma cells
that are resistant to the BRAFi vemurafenib are also resistant to
the more potent BRAFi dabrafenib and to combination
treatment including both BRAFi (vemurafenib and dabrafenib)
and MEKi (trametinib). Previous studies have shown that cancer
cells have distinct genetic, epigenetic and transcriptional states,
which allows them to exist in heterogeneous functional
populations and that poses a major obstacle to cancer
diagnosis and treatment (43). To identify the differential
chromatin state, MAPK pathway inhibitor–resistant and
sensitive melanoma cells were analyzed using high-throughput
sequencing methods. Analysis of the results let us to discover
global changes in chromatin accessibility regions located
upstream, in between, and downstream of numerous genes,
resulting in changes in mRNA expression. These genes that
were enriched in MAPK pathway inhibitor–resistant
melanoma cells belonged to distinct functional classes which
includes kinases, phosphatases, transcription regulator,
transporters, growth factor, enzyme, g-protein coupled
receptors. Previous studies have provided the evidence that
kinases (44, 45), phosphatases (46), transcription regulator
(47), transporters (48), growth factor (49, 50), enzymes (51), g-
protein coupled receptors (52) drive drug resistance in cancer
and provides the opportunity for targeting them to combat drug
resistance. Additionally, the expression levels of many of these
altered genes were able to predict survival in melanoma patients.
Thus, in the future, these candidate genes may serve as
biomarkers that can predict the subgroup of patients able to
benefit from MAPK pathway inhibitor therapy, identify patients
who will develop resistance to MAPK pathway inhibitors early
on and select the optimal therapeutic approaches for treating
these patients.

Pathway analysis performed with the genes identified as
potentially upregulated due to changes in chromatin
June 2022 | Volume 12 | Article 937831
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accessibility were associated with several known oncogenic
signaling pathways involved in tumor growth, metastasis, and
cancer drug resistance, such as Ras signaling (21, 53), the MAPK
pathway (12, 54), and PI3–AKT signaling (55, 56). In addition to
known tumor-promoting signaling cascades, our study identified
pathways that never been investigated for their role in promoting
resistance to MAPK pathway inhibitors in melanoma, such as
relaxin, calcium, and Rap1 signaling. Additionally, our study
identified many genes that were downregulated due to closed
chromatin, associated with the suppression of anti-growth
signaling pathways, such as senescence and apoptosis.
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Apart from genes that changed at both chromatin accessibility
level and transcription level, there were candidates that only
changed at the mRNA level. This was because of the limitation of
these two methods. Fundamentally, the transcriptome measured
via RNA seq is the result of transcription, posttranscriptional
regulation and RNA degradation, while the chromatin
accessibility changes measured via ATAC seq provides
information on chromatin accessibility across the genome that
effect transcriptional initiation site availability at that particular time
point. Additionally, the probability of ATAC-seq to not accurately
predict all the changes in chromatin accessibility also exist.
A

B

D

E

F

C

FIGURE 4 | Integrated analysis of ATAC-sequencing and RNA-sequencing to identify differentially expressed genes between M229-Par and M229-Res cells for
which changes in mRNA expression aligned with changes in chromatin accessibility. (A) Heatmap for the top 100 (50 upregulated or with increased chromatin
accessibility and 50 downregulated or with reduced chromatin accessibility) genes showing similar patterns in both the ATAC-seq and RNA-seq analyses in M229-
Res cells compared with M229-Par cells. (B) Genes obtained integrated from analysis categorized based on function. (C) Survival analysis (3-year) for patients with
melanoma according to high and low expression levels of genes showing similar patterns in both the ATAC-seq and RNA-seq analyses in M229-Res cells compared
with M229-Par cells using the Human Protein Atlas dataset. (D, E) KEGG pathway analysis showing key upregulated (D) and downregulated (E) biological pathways
associated with genes that display coherence between changes in chromatin accessibility and changes in mRNA expression levels in M229-Res cells compared with
M229-Par cells. (F) Model: ATAC-seq integrated with RNA-seq is a new and advanced approach for identifying unique changes in chromatin accessibility regions
that modulate gene expression and signaling pathway activities to promote the MAPK pathway inhibitor resistance.
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These are few limitations of using ATAC seq and RNA seq together
to identify the genes that are altered in drug resistant state as
compared to the sensitive state and has to be considered while
concluding the results. Although important, to resolve this issue is
beyond the current scope of our manuscript.

In sum, our results suggest that the development of drug
resistance in cancer cells is a complex process. Hence, a deeper
understanding of these newly identified mechanisms will provide
better insights into the development of MAPK pathway inhibitor
resistance in melanoma and potentially lead to more efficient
treatment options. These studies also lay the foundation for
further examinations of newly identified genes and pathways
involved in the development of resistance to MAPK pathway
inhibitors in our study in preclinical mouse models of melanoma.
Collectively, our study results provide insight into the
comprehensive changes in chromatin accessibility changes that
regulate the transcriptional outputs and signaling cascades to
promote resistance to MAPK pathway inhibitors in melanoma.
Our study also identified new biomarkers, targets, and signaling
pathways that can be investigated to formulate new melanoma
treatments, particularly for patients who have developed resistance
to MAPK pathway inhibitors (BRAFi + MEKi).
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