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related gene signature for
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Background: Cellular senescence plays crucial role in the progression of

tumors. However, the expression patterns and clinical significance of cellular

senescence-related genes in bladder cancer (BCa) are still not clearly clarified.

This study aimed to establish a prognosis model based on senescence-related

genes in BCa.

Methods: The transcriptional profile data and clinical information of BCa

were downloaded from TCGA and GEO databases. The least absolute

shrinkage and selection operator (LASSO), univariate and multivariate Cox

regression analyses were performed to develop a prognostic model in the

TCGA cohort. The GSE13507 cohort were used for validation. Gene

ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and

single-sample gene set enrichment analysis (ssGSEA) were performed to

investigate underlying mechanisms.

Results: A six-gene signature (CBX7, EPHA3, STK40, TGFB1I1, SREBF1, MYC)

was constructed in the TCGA databases. Patients were classified into high risk

and low risk group in terms of the median risk score. Survival analysis revealed

that patients in the higher risk group presented significantly worse prognosis.

Receiver operating characteristic (ROC) curve analysis verified the moderate

predictive power of the risk model based on the six senescence-related genes

signature. Further analysis indicated that the clinicopathological features

analysis were significantly different between the two risk groups. As

expected, the signature presented prognostic significance in the GSE13507

cohort. Functional analysis indicated that immune-related pathways activity,

immune cell infiltration and immune-related function were different between

two risk groups. In addition, risk score were positively correlated with multiple

immunotherapy biomarkers.
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Conclusion: Our study revealed that a novel model based on senescence-

related genes could serve as a reliable predictor of survival for patients with BCa.
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Introduction
Bladder cancer (BCa) is one of the most life-threatening

cancer worldwide, with nearly 8,3730 new cases and 1,7200

deaths in the United States in 2021 according to cancer statistics

(1). BCa ranges from non–muscle-invasive bladder carcinoma

(NMIBC) and muscle invasive bladder carcinoma (MIBC)

according to whether the tumors invades the muscle layer of

the bladder (2). Despite undergoing radical cystectomy, nearly

50% of MIBC patients still have lethal metastatic recurrence,

with the 5-year overall survival rate <50% (3). Therefore, it is

crucial to explore the possible therapeutic target and novel

prognostic biomarkers for improving the clinical outcome of

patients in BCa to guide clinical practice.

Cellular senescence is a durable cell cycle arrest wherein cells

fail to proliferate but remain metabolically active (4). Cellular

senescence is a very complex stress response that manipulating

several physiological and pathological processes, including

embryogenesis (5), wound healing (6), tissue reprogramming

(7) and ageing (8). In recent years, the complex relationship

between cellular senescence and cancer has incited growing

interest (9, 10). In cancer, senescence works as a potent

inhibitor of cell cycle to suppress the proliferation of cancer

cells in mammals (11, 12). Thus, because of its tumor-

suppressive effects, therapy-induced senescence, such as

cytotoxic chemotherapy or radiation, also can represent a

therapeutic regimen for cancer (13, 14). Paradoxically,

senescence cells can evade the immune system and accumulate

in tissues and secrete a variety of pro-inflammatory and growth-

stimulatory molecules, commonly referred to as the senescence-

associated secretory phenotype (SASP) which is now recognized

as a significant driver of tumor growth, relapse, and metastasis

(15, 16). Consistent with this notion, mounting evidence

demonstrated that cellular senescence can promote cancer

initiation, invasion, and metastasis via the SASP that can act

in autocrine and paracrine fashion to recruit proinflammatory

cells that can modify the tumour microenvironment, which in

turn can modulate tumour development (17, 18). In recent years,

a growing studies have investigated gene expression patterns for

risk stratification of patients and constructing survival

prediction models in cancer (19, 20). However, the expression
02
patterns and the potential clinical prognosis value of senescence-

related genes in BCa have not yet been systematically analyzed.

In the present study, a prognostic model was constructed

based on the six senescence-related genes signature in the TCGA

cohort. Then, we validated the predictive power of the model in

the GEO cohort. Finally, functional enrichment analysis were

performed to investigate the underlying mechanisms.
Materials and methods

Data and resources

The data of RNA-sequencing data (FPKM values) and

corresponding clinical information of BCa were downloaded

from TCGA database (https://genomecancer.ucsc.edu) as

training cohort. Patients were excluded if one or more clinical

characteristics were incomplete. Finally, a total of 406 patients

were included from TCGA database. The GSE13507 was

downloaded from the gene expression omnibus database (GEO:

https://www.ncbi.nlm.nih.gov/geo/) as a validation cohort.
Identification of senescence-related
differentially expressed genes

The list of senescence-related genes were collected from the

CellAge database (Supplementary Table 1). The “limma” R

package used to identify the senescence-related differentially

expressed genes (DEGs) between tumor tissues and normal

tissues based on the screening criteria of false discovery rate

(FDR) < 0.05 and |log2FC| > 1.
Construction and validation of a
prognostic senescence-related
gene model

Univariate Cox regression analysis was used to screen

senescence-related genes with prognostic values (P < 0.05).

The Least Absolute Shrinkage and Selection Operator

(LASSO) regression with “glmnet” R package was applied in
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order to avoid overfitting. Subsequently, the candidate genes

selected into multivariate Cox regression analysis in order to

determine final prognostic senescence-related genes. Finally, the

risk score of each samples was calculated based on the amount of

senescence-related genes expression and corresponding

coefficients. The calculation formula was as follows: risk score

=bmRNA1×ExpressionmRNA1+bmRNA2×ExpressionmRNA2

+bmRNA3×ExpressionmRNA3+…+ bmRNAn×ExpressionmRNAn.

The patients were classified into high risk and low risk group

based on the median value of the risk score. Kaplan-Meier

analysis was performed to compare the overall survival

between high risk and low risk group.The receiver operating

characteristic (ROC) curve analysis was used to evaluate the

predictive accuracy of the senescence-related genes signature.

Parameters including age, gender, grade, TNM staging

system, stage, and risk score were analyzed by univariate

analysis. The candidate parameters p < 0.05 in univariate

analysis selected into multivariate analysis in order to

determine independent prognostic factors.
Comprehensive analysis of the
prognostic model

Parameters including age, gender, grade, TNM staging

system, stage, and risk score were analyzed by univariate

analysis. The candidate parameters P < 0.05 in univariate

analysis selected into multivariate analysis in order to

determine independent prognostic factors.

To further investigate the correlations between the two risk

groups, clinical variables and senescence-related genes, we

compared the differences in age, gender, grade, TNM staging

system, stage, and senescence-related genes between the high

risk and low risk group. The results were displayed as a heatmap.
Functional and pathway enrichment
analysis

The “limma” R package was applied to analyze the DEGs

between the high risk and low risk group based on the screening

criteria of false discovery rate (FDR) < 0.05 and |log2FC| > 1.

Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes

and Genomes (KEGG) pathway analysis were conducted to

identify the biological functions and the signaling pathways

that were associated with the DEGs.
Depicting immune infiltration
characteristics

Single-sample gene set enrichment analysis (ssGSEA) was

used to estimate the infiltrating scores of the 16 immune cells
Frontiers in Oncology 03
subsets and 13 immune-related pathways between the high risk

and low risk groups.
Evaluation of inflammatory response–
related genes characteristics and EMT
phenotype

Inflammatory response–related genes were downloaded

from the Molecular Signatures Database (MSigDB)

(Supplementary Table 1) and compared between the high risk

and low risk groups. The epithelial-to-mesenchymal transition

(EMT) phenotype was evaluated based on the expression of

EMT marker genes including SNAI1, SNAI2, ZEB1, ZEB2,

TWIST1, Vimentin, Fibronectin, N-cadherin, and E-cadherin.
RNA extraction and quantitative real-
time PCR analysis

Total RNA was extracted from 5 paired human BCa tissues

and adjacent non-tumorous tissues using TRIzol Reagent

(Invitrogen). The reverse transcription was conducted with

PrimeScript™ RT reagent Kit (TaKaRa). Q-PCR was done

with SYBR green Premix Ex Taq II (Takara). GAPDH was

selected as an internal control. The sequence of primers were

listed in Supplementary Table 2.
Statistical analysis

The statistical analyses were performed using the R software

(Version R-4.1.2) and GraphPad Prism 8.0. Student’s t-test was

applied to compare the difference between binary groups with

continuous variables. P < 0.05 was considered statistically

significant. P values were showed as: ns, not significant; *, P<

0.05; **,P< 0.01; ***, P< 0.001.
Results

Identification of prognostic cellular
senescence-related gene of bladder
cancer in the TCGA cohort

The flow diagram of the study is presented in Figure 1.

Among 278 cellular senescence-related genes, 47 were

differentially expressed between tumor samples and normal

samples, including 24 downregulated genes and 23

upregulated genes (Figures 2A, B). Through univariate Cox

regression analysis, we identified 13 prognostic cellular

senescence-related genes associated with overall survival, as

detailed in Figure 2C.
frontiersin.org

https://doi.org/10.3389/fonc.2022.937951
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Luo et al. 10.3389/fonc.2022.937951
Construction of a prognostic model in
the training cohort

LASSO Cox regression analysis was conducted to screen the

key genes among the cellular senescence-related genes based on

univariate Cox regression analysis results (Figures 2D, E). Then,

ten genes were selected into multivariate Cox regression analysis

according to the optimal value of l. Finally, six genes signature,
namely, CBX7, EPHA3, STK40, TGFB1I1, SREBF1, and MYC,

was constructed. The risk score of each patient was calculated

according to the following formula: risk score = (-0.474 × the

expression level of CBX7) + (0.354 ×the expression level of

EPHA3) + (0.283 × the expression level of STK40) + (0.244 × the

expression level of TGFB1I1) + (0.287× the expression level of

SREBF1) + (0.104 × the expression level of MYC). Patients were

stratified into high risk group (n=203) and low risk group

(n=203) based on the median risk score. As shown in

Figures 3A, B, patients in the high risk group had higher
Frontiers in Oncology 04
probability of death than that in the low risk group. Patients

in the high risk group had high expression of EPHA3, TGFB1I1,

STK40, SREBF1, and MYC but low expression of CBX7

(Figure 3C). The Kaplan-Meier analysis demonstrated that

patients in the high risk group had significantly poorer overall

survival (OS) than those in the low risk group (Figure 3D). The

ROC curves was conducted to evaluate the predictive accuracy of

the risk model for OS.The results demonstrated that the area

under ROC curve (AUC) reached 0.671 at 3 year and 0.708 at 5

year (Figure 3E).
Validation of the prognostic risk model in
the validation cohort

To evaluate whether the risk model constructed from the

TCGA cohort was robust, the patients from the GSE13507 were

categorized into high risk group and low risk group according to
FIGURE 1

Flow chart of the analysis process in our study.
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the median value calculated with the same formula as the

training cohort. Similar to the results obtained from the

training cohort, patients in the high risk group of validation

cohort were more likely to encounter a higher probability of

death (Figures 3F, G). Likewise, patients in the high risk group

had high expression of EPHA3, TGFB1I1, STK40, SREBF1, and

MYC but low expression of CBX7 (Figure 3H). As expected,

patients exhibited worse OS in the high risk group. (Figure 3I).

The AUC value reached 0.703 at 3 year, 0.691 at 5

years (Figure 3J).
Correlation between the
cellular senescence-related gene
signature model and the
clinicopathological features

To evaluate whether the prognostic model based on cellular

senescence-related gene was an independent risk factor for OS,

the Cox regression analysis was performed. The results obtained

from univariate Cox regression analysis indicated that the risk

score was significantly correlated with OS in the training cohort

(HR 1.651, 95% CI:1.437–1.898, P < 0.001) and validation cohort

(HR 1.562, 95% CI: 1.095–2.226, P = 0.014) (Figures 4A, C).

Multivariate Cox regression demonstrated that riskScore (HR

1.513, 95% CI 1.303–1.757, P < 0.001) would be an independent
Frontiers in Oncology 05
risk factors for OS in the training cohort (Figure 4B), however,

the result was not observed in the validation cohort (Figure 4D).

Subsequently, the relevance between the risk score and

clinicopathological parameters of patients was evaluated and

exhibited as a heatmap in the training cohort (Figure 4E) and

validation cohort (Figures 4G). The results confirmed that the

risk score had strong correlations with the tumor grade, N stage,

T stage and TNM stage in the training cohort (Figure 4F). The

similar results were observed from the validation cohort

(Figure 4H). All these results verified that as the risk score

increased, the probability of progressing to a later clinical

phenotypes gradually increased, suggesting that cellular

senescence-related gene signature would be a valuable cancer

prognostic model in the progression of BCa.
Analysis expression of the genes from
the signature in bladder cancer patients

We detected mRNA expression of the genes from this

signature in 5 paired human BCa tissues and adjacent normal

tissues. The results indicated that the expression of EPHA3,

TGFB1I1, STK40 and CBX7 were down-regulated in BCa tissues

than that in adjacent normal tissues. The expression of SREBF1

and MYC were up-regulated in BCa tissues than that in adjacent

normal tissues (Supplementary Figure 1).
B C

D E

A

FIGURE 2

Identification of the candidate senescence-related genes in the TCGA cohort. (A). Venn diagram to identify differentially expressed senescence-
related genes between normal and tumor tissue. (B). The 47 overlapping genes were differently expressed in normal and tumor tissue. (C).
Forest plots showing the results of the univariate Cox regression analysis between overlapping genes and overall survival. (D, E) LASSO Cox
regression analysis was conducted to screen the key genes.
frontiersin.org

https://doi.org/10.3389/fonc.2022.937951
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Luo et al. 10.3389/fonc.2022.937951
Functional enrichment analyses in
training cohort

To investigate underlying biological functions and

pathways that were related to the risk score, the GO

enrichment and KEGG pathway analyses were performed

using the DEGs between the high risk group and low risk

group. The GO analysis results demonstrated that the

biological process (BP) of DEGs mainly focused on
Frontiers in Oncology 06
extracellular matrix organization, extracellular structure

organization, humoral immune response, regulation of

cellular response to growth factor, and so on (Figures 5A, B).

KEGG pathway analysis revealed that DEGs were significantly

enriched in PI3K-Akt signaling pathway, Proteoglycans in

cancer, ECM-receptor interaction, AGE-RAGE signaling

pathway, Transcriptional misregulation in cancer, TGF-beta

signaling pathway, Bladder cancer, IL-17 signaling pathway

(Figures 5C, D).
B

C

D

E

F

G

H

I

J

A

FIGURE 3

Construction of a prognostic model of senescence-related genes in the TCGA cohort and validation in GSE13507 cohort. (A) Distribuion of
patients’ risk scores, (B) survival status, (C) Prognostic signature signal heatmap, (D) Kaplan-Meier curves for the overall survival, and (E). ROC
curve of the prognostic signature in the TCGA cohort. (F) Distribuion of patients’ risk scores, (G) survival status, (H) Prognostic signature signal
heatmaps, (I). Kaplan-Meier curves for the overall survival, and (J). ROC curve of the prognostic signature in the GSE13507 cohort.
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Differential immune infiltration
characteristics landscape

To evaluate the correlation between the risk score and

immune activity, the ssGSEA algorithm was performed for the

purpose of calculating the infiltrating scores of the different

immune cell subsets, as well as immune-related function. The

scores of Treg, TIL, Th2_cells, Th1_cell, Tfh, T_helper_cells,

pDCs, Neutrophils, Mast_cells, Macrophages, iDCs, DCs, CD
Frontiers in Oncology 07
+_T_cells, B_cells and aDCs were significantly higher in high

risk group than that in the low risk group in the training cohort

(Figures 6A, B), suggesting immune cell abundance was

significantly correlated with the riskScore. In addition, as

shown in Figure 6C, the scores of immune function in the

high risk group was stronger than that in the low risk group.

Interestingly, the scores of Th1_cell, Tfh, T_helper_cells, pDCs,

Neutrophils, Macrophages, DCs, and aDCs were significantly

higher in the high risk group than that in the low risk group in
B

C

D

E
F

G
H

A

FIGURE 4

The independent prognostic factors for overall survival. (A, B) Univariate and multivariate cox regression of prognostic factors in the TCGA
cohort. (C, D) Univariate and multivariate cox regression of prognostic factors in the GSE13507 cohort. (E, F) The relationship between risk score
and clinicopathological parameters in the TCGA cohort. (G, H) The relationship between risk score and clinicopathological parameters in the
GSE13507 cohort. P values were showed as: ns, not significant; *, P < 0.05; **,P < 0.01; ***, P < 0.001.
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validation cohort (Figures 6D, E). Moreover, compared with the

low risk group, the scores of T_cell_co-stimulation, T_cell_co-

inhibition, Inflammation-promoting, Check-point, CCR were

significantly higher in the high risk group (Figure 6F). All these

results, together, confirmed that the risk score had strong

correlations with immune cell infiltration and immune-

related function.

Considering the important role of immune checkpoint

molecules such as PD-1, PD-L1, LAG3 and CTLA-4 in tumor

immune microenvironment, the expression levels of these

molecules were explored between two groups. Interestingly,

PD-1, PD-L1, LAG3 and CTLA-4 of the high risk group were

highly expressed in the training cohort (Figures 7A, B). In

addition, we utilized validation cohort for exploring the

molecules expression levels. Results presented that although

the expression of PD-1 was no statistical difference, PD-L1,

LAG3 and CTLA-4 were significantly high in the high risk group

(Figures 7C, D).
Frontiers in Oncology 08
Differences in inflammatory response–
related genes characteristics and EMT
phenotype between high and low risk
group

Due to the close connection between the senescence-

associated secretory phenotype (SASP) and inflammatory

response and epithelial mesenchymal transition (EMT), we

decided to further investigate the differences in inflammatory

response–related genes characteristics and EMT phenotype

between two groups. First, The inflammatory response–related

DEGs were identified between two groups by the “limma” R

package based on the screening criteria of false discovery rate

(FDR) < 0.05 and |log2FC| > 1. We found that these

inflammatory response–related DEGs were highly expressed in

high risk group and lowly expressed in low risk group in training

cohort (Figure 8A). The similar results were observed from the

validation cohort (Figure 8B). Next, EMT hallmark genes
B

C D

A

FIGURE 5

GO and KEGG analyses in TCGA cohort. (A, B) GO enrichment analysis in the TCGA cohort. (C, D) KEGG enrichment analysis in the TCGA cohort.
frontiersin.org

https://doi.org/10.3389/fonc.2022.937951
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Luo et al. 10.3389/fonc.2022.937951
expression were explored between high and low risk group. As

illustrated in Figures 8C, D, significantly higher expression of

EMT hallmark genes including SNAI2, N-cadherin, Vimentin,

ZEB1, ZEB2, SNAI1, Fibronectin and TWIST1 were observed in

high risk group in the training cohort, along with the low

expression of E-cadherin, suggesting that risk score was

positively correlated with cell EMT pathway. Subsequently,

these genes expression levels were explored in validation

cohort. Results presented that although the expression of

ZEB1, SNAI2 and E-cadherin were no statistical difference,

ZEB2, TWIST1, SNAI1, Fibronectin and N-cadherin were

significantly higher in the high risk group (Figures 8E, F),

which was in accordance with our results that risk score was

positively correlated with cell EMT pathway.
Frontiers in Oncology 09
Discussion

BCa is an extremely frequent genitourinary malignancy.

Despite the therapeutic strategies and individualized therapies

improvement, a significant proportion of patients with muscle

invasive bladder carcinoma (MIBC) undergoing radical

cystectomy still experience local recurrence and distant

metastasis. Unfortunately, effective clinical treatments for these

patients are relatively limited. Therefore, it is of great importance

to identify novel molecular biomarkers to better advance cancer

therapies and predict the prognostic of patients with BCa.

Cellular senescence is a state of durable growth arrest

induced by various stresses (21). Several common features of

cellular senescence include high expression of the cell cycle
B

C

D

E

F

A

FIGURE 6

Comparison of the ssGSEA scores. (A) Relationship heatmap of the risk scores and ssGSEA scores, (B) Box plots showing the scores of immune
cells, (C) Box plots showing the scores of immune function between the high risk and low risk group in the TCGA cohort. (D) Relationship
heatmap of the risk scores and ssGSEA scores, (E) Box plots showing the scores of immune cells, (F) Box plots showing the scores of immune
function between the high risk and low risk group in the GSE13507 cohort. P values were showed as: ns, not significant; *, P < 0.05; **,P < 0.01;
***, P < 0.001.
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inhibitor p16Ink4a, and a distinctive senescence-associated

secretory phenotype (SASP) that involves cytokines,

chemokines, matrix metalloproteinases, growth factors and

angiogenic factors (22). Emerging evidence has shown that

ce l lu lar senescence plays a crucia l ro le in tumor

microenvironment (TME) and tumor growth (23, 24). In this

study, the prognostic signature was constructed based on

senescence-related genes in the TCGA cohort. Then, we

validated the predictive power of the model in the GSE13507

cohort. The vast majority of patients in the TCGA are MIBC.

The GSE13507 dataset include 101 NMIBC and 62 MIBC.

Finally, six genes, including CBX7, EPHA3, STK40, TGFB1I1,

SREBF1, and MYC were filtered out to construct the

prognostic model.

CBX7 (Chromobox protein homolog 7) is reported to belong

to the Chromobox protein family (25). Previous studies revealed

that CBX7 expression was down-regulated in multiple human

carcinomas and the loss of CBX7 expression was associated with

increasing malignancy (26, 27). A recent study indicated that
Frontiers in Oncology 10
CBX7 acted as a tumor suppressor in BCa and could suppress

cancer cell aggressiveness by inhibiting ERK signaling (25).

EPHA3 is a member of the Eph receptor tyrosine kinases and

can bind cell membrane ligands to mediate cell communication

regulate biological function, including tumour growth,

angiogenesis and metastasis (28). EPHA3 is one of the

potential anticancer targets, with up-regulation and tumor-

promoting roles in a range of human cancers (29). However,

the expression pattern and function of EPHA3 in BCa remains

unclear, and further exploration are needed. STK40 (Serine/

threonine kinase 40), also known as SHIK, which had been

confirmed as a negative regulator of NF-kB transcription (30).

A recent evidence displayed that STK40 acted as a tumor

inhibitor in patients with Triple-negative breast cancers (31).

The expression details and functions of STK40 in various cancer

types still warrants further investigation. TGFB1I1, a scaffold

protein, is also known as HIC-5, which can be expressed under

the induction of TGF-b and hydrogen peroxide (32). Previous

studies revealed that TGFB1I1 acted as key roles in a variety of
B

C D

A

FIGURE 7

The expression of immune checkpoint molecules including PD-1, PD-L1, LAG3 and CTLA4. (A) Heatmap of immune checkpoint molecules
expression, (B) Box plots showing the checkpoint molecules expression between the high risk and low risk group in the TCGA cohort. (C)
Heatmap of immune checkpoint molecules expression, (D) Box plots showing the checkpoint molecules expression between the high risk and
low risk group in the GSE13507 cohort. P values were showed as: ns, not significant; **,P < 0.01; ***, P < 0.001.
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pathological processes, including liver fibrosis (32),

atherosclerosis (33), tumorigenesis and progression (34).

TGFB1I1 have been verified to be acted as an oncogene in

several cancers, including esophageal squamous cell carcinoma

(35), breast tumor (36), ovarian cancer (37), and osteosarcoma

(38). SREBP1, a well-recognized transcriptional regulator of

lipid metabolism (39). Previous studies have verified high

expression of SREBP1 was related with a poor prognosis in

multiple human tumors (40–42). MYC, one of the most
Frontiers in Oncology 11
frequently investigated proto-oncogene, has been reported as

one of the most highly amplified oncogene contributes to the

initiation and development of many human cancers (43, 44). A

recent study revealed that MYC inhibitor not only suppressed

tumor growth in mice, but also increased T cell immune

infiltration, enhanced PD-L1 expression on tumors, and

increased tumor sensitivity to anti-PD1 immunotherapy (45).

The patients were divided into high risk and low risk group

based on the median risk score. Compared to the low risk group,
B

C D

E F

A

FIGURE 8

The landscape of inflammatory response–related genes and EMT hallmark genes including SNAI1, SNAI2, ZEB1, ZEB2, TWIST1, Vimentin,
Fibronectin, N-cadherin, and E-cadherin. (A). Heatmap of inflammatory response–related DEGs expression between the high risk and low risk
group in the TCGA cohort. (B) Heatmap of inflammatory response–related DEGs expression between the high risk and low risk group in the
GSE13507 cohort. (C) Heatmap of EMT hallmark genes expression, (D). Box plots showing the EMT hallmark genes expression between the high
risk and low risk group in the TCGA cohort. (E) Heatmap of EMT hallmark genes expression, (F). Box plots showing the EMT hallmark genes
expression between the high risk and low risk group in the GSE13507 cohort. P values were showed as: ns, not significant; *, P < 0.05; **,P <
0.01; ***, P < 0.001.
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patients in the high risk group had a higher probability of death.

Survival analyses indicated that patients with high risk had a

significantly poor prognosis. ROC curves indicated that higher

consistency was existed between actual and predicted survival

rate. Consistently, the percentage of patients with worse

malignant phenotype, such as higher tumor grade, lymph

node metastasis, and advanced TNM stage, was significantly

higher in the high risk group.

We further reproduce the model in validation cohort to

confirm the robustness of the risk model. As expected, results

revealed that patients in the high risk group had a significantly

increased risk of poor prognosis than that in the low risk group,

which were consistent with our previous results. GO and KEGG

analysis were performed based on DEGs between different risk

groups to investigate the biological processes and signaling

pathways that were related to the risk score. The results

presented that DEGs were significantly enriched in extracellular

matrix organization, humoral immune response, regulation of

cellular response to growth factor, PI3K-Akt signaling pathway,

TGF-beta signaling pathway, Bladder cancer, IL-17 signaling

pathway. These biological processes are involved in immune

biological processes and pathways (46–49).The extracellular

matrix (ECM) is a combination of proteins and proteoglycans

with structural and functional roles (50). Proteases and matrix

metalloproteinases (MMPs) participate in ECM remodelling.

Many evidence indicated that MMPs, such as MMP-7, MMP-

10, associated with the progression in patients with BCa (51, 52).

BCa is an immunogenic. Numerous studies found the influence of

the immune microenvironment on BCa development and

immunotherapy was applied for the treatment of BCa (53, 54).

The development and progression of BCa has been associated

with abnormal expression of a number of genes or aberrant

activation of signaling pathways. Among them, PI3K-Akt

pathway abnormally activated is crucial for BCa progression

(55). Ruan et al. reported that inhibition of PI3K-Akt pathway

significantly inhibited migration and invasion of BCa cells (56).

TGF-b expression is up-regulated in tumor cells and TGF-b
signaling pathway was notably associated with several hallmarks

of cancer, such activating invasion and metastasis, inducing

angiogenesis and drug resistance (57). Chen et al. found that

TGF-b facilitated BCa cell proliferation, migration and invasion

both in vitro and in vivo by inducing EMT (58). Liang et al.

reported that ablation of TGF-b signaling suppressed the BCa cell

proliferation and EMT, hence inhibited BCa progression in a BCa

mouse model (59).The IL-17 cytokine family includes six ligands

(IL-17A to IL-17 F) and five receptors (IL-17RA to IL-17RE) (60).

Previous study indicated that IL-17F protein served as an

oncogene in BCa (61). IL-17A levels were significantly elevated

in peripheral blood in patients with BCa than that in healthy

control (62). Wang et al. found that IL-17A facilitated BCa

growth in animal experiments (63).
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BCa is considered as an immune cell infiltrating tumor. At

present, many immune checkpoint inhibitors, including

atezolizumab, durvalumab, nivolumab, pembrolizumab, and

avelumab, have been approved by FDA for the treatment of

advanced urothelial carcinoma (64–70). In this study, two risk

group confirmed by us had significantly different immune

characteristics. High risk group had a significantly correlated

with higher infiltrating scores of immune-cell and immunity-

related pathways. Moreover, the expression of immune

checkpoint molecules including PD-1, PD-L1, LAG3, and

CTLA4 was significantly higher in the high risk group in

training cohort. Similar to this results, in the validation cohort,

the patients with high risk had a significantly higher expression

of PD-L1, LAG3, and CTLA4. These results suggested that

patients in the high risk group may have a more favorable

response to immune checkpoint inhibitor therapy than that in

the low risk group.

Inflammation were widely involved in the tumorigenesis and

progression of tumor, immune escape, and tumor

microenvironment formation (71, 72). We further investigated

the inflammatory response–related genes (IRGs) expression

abundance between the high risk and the low risk group. It is

found that most of the differentially expressed IRGs were

significantly higher expression in the high risk group than that

in the low risk group. Moreover, based on the expression of EMT

hallmark genes including SNAI2, N-cadherin, Vimentin,

ZEB1, ZEB2, SNAI1, Fibronectin, TWIST1 and E-cadherin,

we found that patients with high risk score distinctly

exhibited a mesenchymal phenotype, suggesting a higher

tumor malignancy.

In our study, six genes signature, namely, CBX7, EPHA3,

STK40, TGFB1I1, SREBF1, andMYC, was constructed. Sun et al.

identified a four-cell-senescence-regulator-gene prognostic

index to predict the prognosis of patients with BCa (73).

These four genes were PSMD14, PSMB5, PRPF19 and TPR.

Zhou et al. developed an 8 immunosenescence-related gene pair

signature to evaluate the overall survival of patients with BCa

(74). These 8-gene pair were EGFR∣MAPK1, TFRC∣IRF1,
ADIPOR2∣GBP2, CTSS∣THBS1, GBP2∣CCN2, PSMD11∣SRC,
KIR2DL4∣NOX4, and MAP2K1∣ELAVL1. In TCGA cohort

and GSE13507 cohort, we found that the high risk group and

low risk group identified using cellular senescence-related gene

in our study is not similar to the high risk group and low risk

group identified in the Sun et al. and Zhou et al. papers

(Supplementary Tables 3 and 4).

The risk score using gene signatures proposed in the Sun

et al. and Zhou et al. papers were calculated. In TCGA cohort,

the risk score calculated using gene signature proposed in our

paper is not highly correlated with the risk score calculated using

gene signatures proposed in the Sun et al. paper (r=0.282) and

Zhou et al. papers (r=0.135). In GSE13507 cohort, the risk score
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calculated using gene signature proposed in our paper is not

highly correlated with the risk score calculated using gene

signatures proposed in the Sun et al. paper (r=0.115) and

Zhou et al. paper (r=0.552) (Supplementary Figure 2).

Therefore, the prognostic gene signature proposed in our

study has uniqueness and novelty.

Some limitations should be acknowledged in our study. First,

data from the BCa cohort in our clinical center are incomplete,

thus, we cannot used our own BCa cohort to validate the

predictive power of the model. We will improve the clinical

data in the future to further validate the predictive power of the

model. Second, as our prognostic model was constructed and

validated with retrospective data, a multi-center prospective

study with larger population is required to confirm the clinical

value of the model. Third, further experimental studies are

needed to clarify the biological regulatory mechanisms of

cellular senescence-related genes in the progression of BCa.
Conclusion

In summary, we established a novel prognostic model for

BCa based on cellular senescence-related genes. Moreover, the

model is capable of providing a reliable predictor for OS, clinical

characteristics, and immune infiltration, which can serve as a

valuable biomarker for bladder prognosis and progression.
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