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Cholesterol metabolism is often dysregulated in cancer. Squalene

monooxygenase (SQLE) is the second rate-limiting enzyme involved

in cholesterol synthesis. Since the discovery of SQLE dysregulation in cancer,

compelling evidence has indicated that SQLE plays a vital role in cancer initiation

and progression and is a promising therapeutic target for cancer treatment. In

this review, we provide an overview of the role and regulation of SQLE in cancer

and summarize the updates of antitumor therapy targeting SQLE.
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Highlights
1. Squalene monooxygenase (SQLE) as the second rate-limiting enzyme involved in

cholesterol synthesis, is dysregulated in tumors.

2. The dysregulation of SQLE is associated with poor prognosis and resistance to

some therapies (radiation, hormone deprivation therapy).

3. SQLE promotes tumor growth, while inhibition SQLE can restrain tumor growth

across various types of cancer. Targeting SQLE may be a potential direction for

novel anti-cancer therapy.
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Introduction

Squalene monooxygenase (SQLE) catalyzes the oxidation of

squalene to (S)-2,3-epoxysqualene (1). For quite a long time, it has

been investigated as an anti-fungal target because the

epoxysqualene derivative lanosterol is a component of the

fungal membrane (2, 3). In human cells, the gene encoding

SQLE is located at chromosome region 8q 24.1 (4). SQLE is a

direct target of sterol regulatory element binding protein-2

(SREBP2), a transcription factor that regulates genes involved in

cholesterol biosynthesis and homeostasis in a cholesterol-

dependent manner; SQLE protein also contains a cholesterol

sensing domain that can regulate proteasomal degradation of

SQLE (5). Therefore, like 3-hydroxy-3-methylglutaryl-CoA

reductase (HMGCR), SQLE activity is also precisely regulated

by intracellular cholesterol level in the form of feedback, which

makes it a second rate-limiting step in cholesterol synthesis (2, 3).

Numerous studies have revealed that the deregulation of

SQLE results in cholesterol metabolism disorder and is

associated with many diseases, including Alzheimer’s disease,

hypercholesterolemia, stroke, and cancer (6). Tumor cells

exhibit a high requirement for energy and materials to meet

the demands for rapid tumor growth. SQLE is crucial for cancer

cells to meet the requirement for cholesterol. A high abundance

of SQLE has been identified in multiple cancer types and has

emerged as a hot topic in the field of cancer treatment (7).

In this review, we discuss the regulation of SQLE, its roles and

its clinical relevance in cancers. Cholesterol metabolism centered

on SQLE is described in brief. Finally, the latest developments in

antitumor therapies targeting SQLE are summarized.
Brief overview of
cholesterol metabolism

Cholesterol plays manifold roles in normal cells and tumor

regression. As an essential lipid component of the mammalian

cell membrane, cholesterol is vital for cell survival and

proliferation. By maintaining the stability of lipid rafts,

cholesterol can coordinate the signal transduction of multiple

membrane receptors. In addition, cholesterol can act as a

signaling molecule to directly regulate the activation of

signaling pathways in cancer cells. The cellular cholesterol

level is determined by a complex network, mainly including

cholesterol biosynthesis, uptake, export, and esterification (7).

Almost all mammalian cells can de novo synthesize

cholesterol from acetyl-CoA to cholesterol through more than

20 enzymatic reactions, including the mevalonate (MVA)

pathway, squalene biosynthesis and subsequent reactions

(Figure 1). In the cholesterol synthesis pathway, two rate-

limiting enzymes, HMGCR and SQLE, are essential players

(8). SQLE is responsible for the first oxygenation step in
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cholesterol synthesis, which converts squalene to 2,3-

epoxysqualene (9). SQLE can also divert 2,3-epoxysqualene

into 2,3(S),22(S),23-dioxidosqualene, especially when the

activity of lanosterol synthase, the enzyme that converts 2,3-

epoxysqualene to lanosterol, is low (10). The end product of this

shunt pathway, 24(S),25-epoxycholesterol, is the ligand for liver

X receptors, which can upregulate ATP-binding cassette

transporter A1 (ABCA1) levels to promote cholesterol efflux.

Loss of 24(S),25-epoxycholesterol can induce acute cholesterol

synthesis by increasing HMGCR expression processed by

SREBP2 (11). Collectively, reactions catalyzed by SQLE are

crucial for cholesterol metabolism.
SQLE is highly expressed in cancer

Cancer is a complex disease involving the dysregulation of

cell proliferation, energy metabolism, angiogenesis, and immune

surveillance (12). Given the characteristics of tumors and the

function of cholesterol, cholesterol metabolic reprogramming is

a milestone in cancer development. In recent years, SQLE has

garnered increasing attention for its association with cancer.

Various cancers have been found to exhibit high levels of SQLE

protein/mRNA or have SQLE copy number alterations (13).
FIGURE 1

The simplified scheme of cholesterol biosynthesis. The
biosynthesis pathway converts acetyl-CoA into cholesterol more
than 20 enzymatic reactions, among which HMG-CoA reductase
(HMGCR) and squalene epoxidase (SQLE) are the two key speed-
limiting enzymes. Besides, SQLE can divert 2,3-epoxysqualene
into dioxidosqualene. The end product of the shunt pathway, 24
(S),25-epoxycholesterol can regulate the cholesterol metabolism
in turn. IPP: Isopentenyl-PP, FPP: Farnesyl-PP, FDPS: Farnesyl-
diphosphate farnesyltransferase 1, FDFT1: Farnesyl-diphosphate
farnesyltransferase 1.
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As an oncogene for breast cancer, gene amplification and

overexpression of SQLE have been reported in cancer tissues/

ductal carcinoma in situ tissues compared with normal tissues

(14–17). Race expression differences have been reported: the

expression of SQLE in African-Americans is higher than that in

Caucasians in luminal A breast tumors and basal-like breast

cancers (18, 19). In prostate cancer, the expression of SQLE is

upregulated during the progression of cancer (20, 21). In

pancreatic cancer, SQLE is upregulated and sqle gains in tumor

tissues. In colorectal cancer, SQLE is upregulated in tumor tissues

compared with normal tissues, but SQLE in stages I, II, and III is

higher than that in stage IV (22, 23). Similarly, SQLE is

upregulated in nasopharyngeal cancer (13), head and neck

squamous cell carcinoma (24), leukemia (25), hepatocellular

cancer (26–28), and squamous lung cancer (29, 30).
The mechanisms that regulate SQLE
expression in cancer

SQLE, as the second rate-limiting enzyme of cholesterol

synthesis, is regulated exquisitely by a complex network,

including the transcription program, posttranscriptional

program, and posttranslational program. Recent studies have
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reported novel mechanisms that result in the high expression of

SQLE in cancer (Figure 2).
Transcriptional regulation

The transcription factor SREBP2 directly regulates the

mRNA levels of enzymes involved in sterol metabolism,

including HMGCR, LDL, and SQLE, by binding the sterol-

regulatory element (SRE) sequence in the promoters of target

genes (31–33). The maturation of SREBP2 and its translocation

depend on the intracellular cholesterol level. When the

cholesterol level in the endoplasmic reticulum (ER) membrane

increases, SREBP2 is retained at the ER due to its binding

partner SREBP2 cleavage-activating protein (SCAP) interacting

with an ER membrane anchor protein insulin-induced gene

(Insig-1) protein. When the ER membrane cholesterol level

decreases, SCAP undergoes a conformational change and

dissociates from the Insig-1 protein and then convoys SREBP2

from the ER to the Golgi complex, where SREBP2 is

proteolytically cleaved by site-1 protease (S1P) and site-2

protease (S2P) (34). The N-terminal domain of SREBP2 then

enters the nucleus, binding with SRE to upregulate the mRNA

level of SQLE (32).
FIGURE 2

The mechanisms that regulate SQLE expression in cancer. Squalene monooxygenase (SQLE) can be regulated at the transcriptional level mainly
via sterol regulatory element-binding protein 2 (SREBP2), the posttranscriptional level via microRNA (miRNA)/long noncoding RNA (lncRNA), and
the posttranslational level via cholesterol feedback regulation. Mature SREBP2 promotes the transcription of SQLE by binding to the sterol-
regulatory elements (SREs) of sqle (the gene encoding SQLE). When the cholesterol content in the endoplasmic reticulum membrane decreases,
the SREBP2/SCAP complex dissociates from Insig-1 on the endoplasmic reticulum (ER) and is convoyed to the Golgi complex, where SREBP2 is
cleaved by site-1 protease (S1P) and site-2 protease (S2P) and releases the mature form in the Golgi complex. Oxysterol binding protein like 2
(OSBPL2) deficiency can promote SREBP2 and specificity protein (Sp1) activation by inhibiting AMPK. P53 and MYC also regulate SQLE at the
transcriptional level. MiR-133b and miR-205 promote SQLE mRNA degradation, while Lnc030 prevents SQLE mRNA degradation by forming a
poly(rC) binding protein 2 (PCBP2)/Lnc030/SQLE 3’-UTR complex. Cholesterol (CHO) feedback regulation occurs via ubiquitin-proteasomal
degradation of SQLE, which requires ubiquitin-conjugating enzyme E2 J2 (UBE2J2), membrane-associated RING finger 6 (MARCH6) and
conformational change of SQLE N-100. Valosin-containing protein (VCP) extracts SQLE from the ER to proteasomes. Squalene and unsaturated
fatty acids (USFAs) can disrupt the interaction between SQLE N-100 and MARCH6 by regulating SQLE and MARCH6, respectively, and suppress
ubiquitin-proteasomal degradation.
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In addition, specificity protein 1 (Sp1) and nuclear factor Y

(NF-Y) may be required to coregulate SQLE levels with SREBP2,

as evidenced by their binding sites on the SQLE gene (32, 33).

The deficiency of oxysterol binding protein like 2 (OSBPL2) can

also activate SREBP2 and Sp1, coregulating the expression of

SQLE by inhibiting the adenosine 5’-monophosphate (AMP)-

activated protein kinase (AMPK) pathway (35).

The gain of oncogenes and the loss of cancer suppressor

genes are also involved in the transcriptional regulation of SQLE

independent of SREBP2. MYC upregulates the transcription

program of SQLE by binding the response element 1 (RE1) of

the SQLE gene in cancer (36, 37). The cancer suppressor protein

p53 suppresses the transcription of SQLE by directly binding to

the RE of the SQLE gene in hepatocellular carcinoma cells. Loss

of p53 can augment the expression of SQLE, even under normal

or elevated ER membrane cholesterol levels (38).
Post transcriptional regulation

Long noncoding RNA (lncRNA) and microRNA (miRNA)

can interact with SQLE mRNA and then influence the stability of

SQLE mRNA. In breast cancer, lnc030 is highly expressed to

stabilize SQLE mRNA, especially in cancer stem cells. The

stabilization function of lnc030 requires poly(rC) binding

protein 2 (PCBP2), the 3’ untranslated region (3’UTR) of

SQLE mRNA and lnc030 to form a complex. Lnc030 interacts

with the K homology domains 2 of PCBP2, while the 3’UTR of

SQLE mRNA binds to K homology domains 3 of PCBP2 (39).

MiR-133b is downregulated in esophageal squamous cell

carcinoma and can bind directly to the 3’UTR of SQLE mRNA.

In vitro, ectopic expression of miR-133b can decrease the mRNA

and protein levels of SQLE (40). Another miRNA, miR-205, has

also been reported to suppress the expression of SQLE by

binding to the 3′-UTR of SQLE mRNA in progressive prostate

cancer, where its expression is decreased (41).
Post translational regulation

Cholesterol, the end product of SQLE, plays an important role

in regulating SQLE stability mainly via the cholesterol-

membrane-associated RING finger 6 (MARCH6)-proteasomal

degradation axis (42–44). The first 100 amino acids of SQLE

(SQLE N-100), which can sense the cholesterol level in the

cytoplasm (45, 46), can be attached to the ER membrane by a

re-entrant loop. The Gln62–Leu73-sequence can form the

amphipathic helix buried reversibly in the membrane, which is

required for cholesterol-dependent degradation (47, 48). The

accumulation of intracellular cholesterol thickens the anchoring

of SQLE to the ER membrane, leading to the exposure of the

hydrophobic core to the aqueous phase and triggering

conformational changes in the re-entrant loop and amphipathic
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helix. Proteasomal degradation would be absent if these changes

were disrupted (45).

The ubiquitin-proteasomal degradation system also requires

the E2 ubiquitin-conjugating enzyme J2 (UBE2J2) and the E3

ubiquitin ligase MARCH6, unidentified deubiquitinases (48–

51). MARCH6 ubiquitinates serine residues near the flanking

amphipathic helix of SQLE deformed by excess cholesterol (51,

52). UBE2J2 is an important partner of MARCH6 in the

cholesterol-stimulated degradation of SQLE. Valosin-

containing protein (VCP), known to mediate the degradation

of ubiquitinated endoplasmic reticulum-associated degradation

(ERAD) substrates (53), is recruited downstream of

ubiquitination, extracting SQLE from the ER and allowing

proteasomal degradation (48). Excess cholesterol can stabilize

MARCH6 by inhibiting its ubiquitination-proteasomal

degradation, which in turn stimulates the degradation of

SQLE (54).

Proteasomal degradation via MARCH6-VCP can also

partially degrade SQLE from the N-terminus in a distinct

ubiquitination pathway independent of cholesterol regulation,

converting full-length SQLE to trunSQLE in various cell types.

The enzymatic activity of trunSQLE is cholesterol-resistant,

preventing the complete ablation of SQLE function under excess

cholesterol levels (46). TrunSQLE might confer a supplemental

route of cholesterol metabolism in pathophysiological contexts,

especially in cancer.

Not only cholesterol but also squalene, the substrate of

SQLE, can regulate SQLE expression by posttranslational

modification. Squalene can directly bind to the SQLE N-100

domain, which is also squalene-sensitive, thereby inhibiting the

interactions between MARCH6 and the SQLE N-100 domain.

Thus, the accumulation of squalene can stabilize SQLE by

preventing its proteasomal degradation (55–57). Unsaturated

fatty acids (USFA) can also stabilize SQLE by blocking

ubiquitination (58). The mechanism of USFA-mediated

stabilization appears to occur through regulating MARCH6.

In breast cancer, upregulation of the transmembrane

microprotein cancer-associated small integral membrane

open reading frame 1 (CASIMO1) increases the level of

SQLE via interaction with SQLE proteins (59). The

interaction of CASIMO1 and SQLE proteins may prevent the

degradation of SQLE.

In summary, the cholesterol-dependent feedback regulation

of SQLE via SREBP2 transcriptional regulation and ubiquitin-

proteasomal degradation are the main mechanisms of SQLE

regulation in various cells. In tumor tissues, the activation of

SREBP2 leads to the high expression of SQLE. In addition, the

activation of oncogenes, the loss of cancer suppressor genes, and

the dysregulation of some lncRNAs, miRNAs and cancer-

associated proteins also contribute to the upregulation of

SQLE. The dysregulation of SQLE may be the result of

multiple events in cancer, while a specific mechanism might

prevail in a specific subset of tumor cells.
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Tumor promotion by high
SQLE expression

As mentioned above, cholesterol metabolic reprogramming

is a hallmark in various cancer types and has been confirmed to

promote tumor initiation and progression (7). As the key

enzyme in the steps of cholesterol synthesis, the activity of

SQLE determines the abundance of cholesterol and cholesterol

derivatives in cancer (13, 39). SQLE can promote tumor growth

via cholesterol/cholesteryl ester accumulation and the

subsequent activation of multiple oncogenic pathways, such as

PI3K/AKT signaling (13, 39). Some studies emphasized the role

of cholesteryl ester rather than cholesterol in promoting tumor

cell growth, as evidenced by the fact that the inhibition or

knockdown of sterol O-acyltransferase (SOAT1/2) abolished

the growth-promoting effect of SQLE (13, 28).

In addition to cholesterol-dependent effects, SQLE can also

activate AKT by silencing PTEN in NAFLD-induced

hepatocellular carcinoma (HCC). NADPH is required for the

conversion of squalene to 2,3-epoxysqualene catalyzed by SQLE.

The exhaustion of NADPH by SQLE induces oxidative stress,

leading to the epigenetic modification of PTEN by the activation

of DNA methyltransferase 3A (DNMT3A). Loss of PTEN

activates AKT/mTOR pathways, subsequently activating the

expression of SOAT1/2 and contributing to the accumulation of

cholesteryl ester and NAFLD-inducedHCC (28). Cholesteryl ester

accumulation driven by the PTEN/PI3K/AKT/mTOR pathway in

prostate cancer cells and subsequent activation of SOAT1 were

reported previously (60). Collectively, these staggered cascade

reactions amplify the cancer-promoting effect of SQLE.

In multiple cancer types, extracellular signal-regulated kinase

(ERK), a crucial oncogenic signaling molecule, has been reported

to be regulated by SQLE (26, 59, 61). Recently, HE L et al. revealed

the underlying mechanism of ERK activation by SQLE. In

colorectal cancer, knockdown of SQLE reduced calcitriol, the

active metabolite of VitD3, leading to a reduction in cytochrome

P450 family 24 subfamily A member 1 (CYP24A1) levels, which

suppressed the phosphorylation and activation of ERK (22).

In addition to cell intrinsic effects, SQLE partially promotes

tumor growth via host-microbiota interaction. The gut dysbiosis

and altered the metabolism of the gut metabolism caused by

elevated expression of SQLE, triggered the gut barrier defects

and pro- inflammatory factors. Inquiringly, Transplantation of

fecal bacteria from Sqle transgenic mice to germ-free mice can

impair gut barrier function and stimulate cell proliferation,

compared with fecal bacteria from control mice (62).

However, there is a report that cholesterol accumulation in

colorectal cancer can downregulate SQLE and in turn promote

tumor metastasis by activating epithelial-mesenchymal

transition (EMT)-related pathways. Depletion of SQLE

dissociates glycogen synthase 3b (GSK3b) and p53 and

upregulates Mdm2, subsequently promoting the degradation of
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p53 and activation of b-catenin. Consequently, E-cadherin is

downregulated, indicating the induction of EMT (23). However,

many other studies revealed that EMT factors are upregulated

with increased levels of SQLE in cancers, including colorectal

cancer (63), pancreatic adenocarcinoma (64), and esophageal

squamous cell carcinoma (40). These studies indicated that

SQLE is associated with EMT but need to be further studied in

certain tumor types (Figure 3).
Clinical relevance of SQLE in cancer

SQLE can promote cell proliferation (24) and cell migration

(65), adjust the cell cycle, and repress cell apoptosis (13, 28),

contributing to the different phenotypes of tumors. Deregulated

SQLE is associated with tumor aggressiveness and therapy

resistance, indicating the poor prognosis of cancers, as

reported in previous studies (Table 1).

In prostate cancers, SQLE, which is involved in hormonal

signaling, is associated with a high Gleason score, which implies

poor biological behavior and prognosis of tumors (71, 72). After

Gleason score matching, the expression of SQLE is higher in high-

grade acinar cancer than in ductal carcinoma of the prostate, an

unusual subtype of prostate cancer (73). This may imply that the

role SQLE plays is different in different subtypes of cancer. High

expression of SQLE was reported to be associated with poor

outcomes in several case–control studies (72, 74). Higher SQLE

is associated with metastasis (P = 1.1e-08, HR=3.7 [2.3−5.9]) in

prostate tumors (65), and SQLE can predict metastasis combined

with TPD52L2 (75). In locally advanced prostate cancer, the

expression of SQLE is negatively associated with progression-free

survival (PFS) (rs=-0.40) (76). Of note, both the primary tumor

lesion and metastatic lesion overexpressed SQLE, which suggested

that SQLE is involved in tumor growth and tumor metastasis (65).

Androgen deprivation therapy (ADT) is the gold standard for

hormone-sensitive metastatic prostate cancer (mHSPC) (77).

However, mHSPC eventually develops into metastatic castration-

resistant prostate cancer (mCRPC), which indicates poor prognosis

after ADT. Overexpression of SQLE is involved in the resistance to

castration mediated by metabolic reprogramming. Knockdown of

SQLE can reverse this resistance (78).

In breast cancers, SQLE overexpression often indicates a

more aggressive tumor (17) and is associated with tumor

recurrence and short overall survival time, including estrogen

receptor-positive (ER(+)) breast cancer and estrogen receptor-

negative breast cancer or luminal A subtype and luminal B

subtype (14, 16, 79, 80). Consistently, as early as 2007, it was

reported that the amplification of 8q24.11-13 (regions including

the SQLE gene) was associated with worse prognosis (81).

BROWN D N et al. pinpointed that this amplification was

associated with SQLE overexpression (17). The level of SQLE

can also predict the response to estrogen deprivation therapy in
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FIGURE 3

Pathways regulated by SQLE. SQLE can activate multiple oncogenic pathways, such as PI3K/AKT/mTOR signaling and the ERK pathway, via
cholesterol/cholesteryl ester accumulation. Knockdown of SQLE can also reduce calcitriol, the active metabolite of VitD3, leading to a reduction
in cytochrome P450 family 24 subfamily A member 1 (CYP24A1) levels, which suppresses the phosphorylation and activation of ERK. The
exhaustion of NADPH during the conversion of squalene to 2,3-epoxysqualene by SQLE can induce oxidative stress and subsequently activate
DNA methyltransferase 3A (DNMT3A), leading to the epigenetic silencing of PTEN. Loss of PTEN activates AKT/mTOR pathways, contributing to
SOAT-mediated cholesteryl ester accumulation and NAFLD-induced HCC. However, there is also a report that depletion of SQLE can dissociate
GSK3b and p53 and upregulate Mdm2, promoting the degradation of p53 and activation of b-catenin in colorectal cancer.
TABLE 1 Clinical relevance of SQLE in cancer.

Cancer type Clinicopathological variable relevance Therapy response Prognosis

Prostate cancer Positive correlation with Gleason score (71, 72)
Higher SQLE in high grade acinar cancer
compared with ductal carcinoma of the prostate
(73)

SQLE overexpression involved in
the resistance to ADT (castration)
(78)

Higher SQLE associated with metastasis, poor PFS,
OS (72, 74)

Breast cancer SQLE overexpression associated with larger tumor
size, advanced TNM stage, HER2(+) status and
lymph node metastasis (16, 17)

SQLE overexpression associated
with the resistance to EDT
(letrozole) (15)

Higher SQLE associated with poor OS, tumor
recurrence (14, 16, 79, 80)

Hepatocellular cancer SQLE overexpression is associated with advanced
TNM stage, a-fetoprotein elevation (82)

No relevant research Higher SQLE associated with poor prognosis (82)
Independent prediction of poor prognosis (28)

Pancreatic cancer No relevant research SQLE associated with radiation-
resistance in pancreatic cancer (84)

Higher SQLE associated with poor OS (20)

Colorectal cancer SQLE overexpression is associated with
lymphovascular invasion, tumor budding,
advanced pT stage, and regional lymph node
metastasis (63)

No relevant research Higher SQLE associated with poor OS in patients
with stage II, III tumor
Lower SQLE predicts poor prognosis in T4 or stage
IV tumors (63)

Lung squamous cell
cancer

SQLE overexpression is associated with poor
differentiation, TNM stage and lymph nodes
metastasis (30, 61)

No relevant research Overexpression of SQLE protein/mRNA is
associated with poor OS (30, 61)

Uveal melanoma No relevant research No relevant research Higher SQLE/mRNA is associated with poor OS,
PFS and DFS (24, 85)

Nasopharyngeal cancer No relevant research No relevant research Higher SQLE is associated with poor OS (13)

Head and neck
squamous cell cancer

SQLE associated with T stage, tumor
microenvironment (24)

No relevant research Higher SQLE is associated with poor OS and PFS
(24)

leukemia No relevant research Higher SQLE in Daunorubicin-
resistant leukemia cells (25)

Higher SQLE predicts poor OS and EFS (104)
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ER (+) breast cancer. Tumor patients with SQLE overexpression

commonly exhibited poor response to letrozole (P=0.38) and

poor PFS under adjuvant tamoxifen (P<0.001, HR=2.02, 95%

CI=1.5-2.7) (15). Larger tumor size, advanced TNM stage, HER2

(+) status and lymph node metastasis are also associated with

SQLE overexpression (16, 17).

In HCC, overexpression of SQLE is associated with poor

prognosis (82). Similarly, copy number gains on 8q24.13-24.3

(area containing the SQLE gene) also indicated poor survival

(83). Multivariate Cox analysis also suggested that SQLE was an

independent biomarker of overall survival (28). High SQLE

expression was associated with advanced TNM stage (p=0.045)

and a-fetoprotein elevation (p=0.029) (82). For pancreatic

cancer, the clinical relevance of SQLE is limited. SQLE

overexpression is associated with poor overall survival (20),

but no evidence has shown that SQLE is an independent

prognostic factor for pancreatic cancer (20, 64). SQLE is

associated with radio resistance in pancreatic cancer cells, but

the correlation is much weaker than that of FDPS and IDI1 (84).

For colorectal cancer, a higher level of SQLE is associated

with lymphovascular invasion, tumor budding, advanced

pathological T stage, and regional lymph node metastasis (63).

However, the prognostic prediction effect of SQLE seems to shift

during tumor progression. A higher level of SQLE in tumors is

associated with worse overall survival in a cohort mainly

containing stage II and III patients (63). However, lower SQLE

expression in T4 or stage IV tumors predicts worse prognosis.

For lung squamous cell carcinoma, SQLE is associated with poor

survival and clinicopathological variables, including poor

differentiation and lymph node metastasis (30, 61). SQLE

overexpression is also associated with worse survival in uveal

melanoma (85), nasopharyngeal carcinoma (13), and head and

neck squamous cell carcinoma (24). Daunorubicin-resistant

leukemia cells express higher levels of SQLE than

daunorubicin-sensitive leukemia cells (25). SQLE is associated

with immune cell infiltration in tumors in head and neck

squamous cell carcinoma based on bioinformatics analysis (24).

In most tumors, a high SQLE level predicts poor prognosis

(except T4 or stage IV colorectal cancer), including tumor

recurrence, tumor metastasis, higher-grade clinicopathological

variables, and short overall survival time. In addition, as the key

enzyme in cholesterol (the precursor of sex hormones) synthesis,

overexpression of SQLE is associated with a poor response to

hormone therapy. Collectively, considering the role of SQLE in

tumorigenesis and tumor progression evidenced by basic studies

and clinical analysis, SQLEmay be a novel target for cancer therapy.
SQLE-targeted therapeutic
strategies for cancer treatment

In the fungus, the inhibition of SQLE leads to a lack of

ergosterol and the accumulation of squalene (86). Hence, SQLE
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inhibitors are widely used against fungal infections (87, 88). SQLE

inhibitors can be classified into allylamines, squalene derivatives,

natural compounds and derivatives according to their structure.

Naftifine, the first antifungal agent and a representative allylamine

inhibitor (89), paves the way for next-generation inhibitors:

terbinafine, NB-598, Cmpd-4, FR194738, etc.

Given SQLE deregulation in cancers and its tumor

promotion function, targeting SQLE is believed to be a novel

and promising antitumor therapy. Allylamines, as pioneers of

SQLE inhibitors, were investigated for antitumor therapy. In a

retrospective cohort study, patients with prostate cancer

receiving systemic use of terbinafine had a decreased risk of

overall death (HR=0.64; 95% CI, 0.52–0.77) and a decreased risk

of death from prostate cancer (HR, 0.64; 95% CI, 0.52–0.77),

while the topical use of terbinafine seemed not to bring survival

benefits (90). Recently, four patients with rapidly progressive

end-stage metastatic prostate cancer after multiple prior

treatment modalities, excluding ADT and radiation, were off-

label administered terbinafine orally. A drop in prostate-specific

antigen (PSA) levels in three of the four patients was observed,

suggesting that SQLE blockade can reduce biochemical markers

of disease progression in prostate cancer (41).

SQLE inhibitors (terbinafine and NB-598) have been

confirmed to suppress cell proliferation, blunt cell viability,

promote cell death in vitro, and retrain tumor growth in vivo

across various types of cancers in a dosage-dependent manner (17,

22, 66). Retardation of the cell cycle at the G0/G1 phase and

enhancement of apoptosis are involved in the antitumor function

of terbinafine, while there is no impact on normal cells (91). For

the arrest of the cell cycle at G0/G1 phase, cell cycle regulators

exhibit corresponding changes: a decrease in the levels of CDK4,

phosphorylation of Rb, CDK2, and the p53-activated signaling

pathway is involved in terbinafine-induced cell cycle arrest (66, 91,

92). The evidence of apoptosis includes the increased expression

of cleaved caspase-7 and cleaved caspase-9 and DNA strand

breaks caused by endonuclease (13, 91).

The mechanism underlying the suppression of tumor

growth by SQLE inhibitors was investigated in previous

studies. In nonalcoholic fatty liver disease (NAFLD)-induced

HCC, terbinafine enhanced the degradation of SQLE via

autophagy and then reversed the expression of PTEN, which

in turn inhibited AKT/mTOR signaling (28). Consistently,

terbinafine can also downregulate AKT activity, probably by

decreasing cholesteryl ester (13). In breast cancer cell lines, the

inhibition of SQLE by terbinafine decreased the phosphorylation

of ERK (59). The accumulation of squalene induced by SQLE

inhibitors can also be toxic to tumor cells. The detrimental effect

of squalene can be accentuated when the cholesterol biosynthetic

flux is increased, while lipid droplets can constrict the toxic

effects by storing squalene (68, 93). Squalene has been thought to

be nontoxic to cells for quite a long time (94). This detrimental

effect of squalene may largely depend on the metabolic status in

tumors. This speculation was evidenced in a subset of lymphoma
frontiersin.org

https://doi.org/10.3389/fonc.2022.938502
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zou et al. 10.3389/fonc.2022.938502
cells that lack SQLE, while squalene accumulation can prevent

oxidative cell death (95).

It should be noted that the antitumor function of SQLE

inhibitors might also be independent of SQLE. In HCC,

terbinafine still exerts its anticancer function even after SQLE

knockdown. Instead, terbinafine suppressed mTORC1 by

activating AMPK in a SQLE-independent manner (66). In oral

squamous cell carcinoma cells, terbinafine repressed cell growth

by inhibiting the KSR1-Raf-MEK-ERK pathway, but the role of

SQLE was not investigated in the study (67).

Preclinical studies have revealed the toxicity of SQLE

inhibitors when used as antitumor agents. In small cell lung

cancer, dogs and monkeys treated with allylamine inhibitors

(NB-598 and cmpd-4’’) via oral gavage cannot tolerate predicted

efficacious exposures, with dose-limiting toxicity due to dose-

limiting gastrointestinal toxicity, accompanied by skin toxicity.

When naftifine and terbinafine were used as antifungal agents,

the reported adverse reaction profiles were similar to these

preclinical toxicology profiles (96, 97). This toxicity might

limit the potential therapeutic utility for cancer treatment (98).

The IC50 values of allylamine inhibitors in mammalian cells are

several orders of magnitude higher than those in fungi (2, 99,

100). With increasing dosage to achieve antitumor efficacy, the

tolerability of adverse reactions needs to be assessed carefully.

Insights into the structure of SQLE in complex with allylamines

offer further understanding of the mechanism of inhibition and

new drug development. For allylamines, the tertiary amine motif

is a common feature that interacts with the hydroxyl moiety of

Y195 in the catalytic domain to form a hydrogen bond and can

explain its noncompetitive inhibition (5).
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For other types of SQLE inhibitors, such as natural

compounds and derivatives, their special properties may

enable themselves to be potential antitumor agents or a

starting point to develop clinically safe SQLE inhibitors.

(-)-Epigallocatechin 3-O-gallate (EGCG) extracted from green

tea has been proven to be a potent (IC50 = 0.69 mM) and safe

SQLE inhibitor, and few side effects have been reported even

when it is consumed at high doses (101). The antitumor effect of

EGCG has been widely investigated (69, 70), but it is currently

unknown whether the association between SQLE and EGCG

contributes to the effect. Selenocystine (IC50 = 65 mM) and S-

allylcysteine (IC50 = 110 mM), the components extracted from

garlic (102), ellagitannins isolated from various plants (103), etc.,

might also be potent SQLE inhibitors.

Taken together, SQLE inhibitors are potential antitumor

agents considering their antitumor effects in various cancers

(Table 2). Diverse types of SQLE inhibitors offer different

frameworks to develop new SQLE inhibitors to ablate side

effects and improve affinity.
Conclusion

As an oncogenic gene in various cancers, the dysregulation

of SQLE correlates with suppressing apoptosis and increasing

cell proliferation and aggressiveness. The high abundance of

SQLE in tumors indicates worse prognosis. Therefore, SQLE

seems to be an attractive target for novel anticancer therapy.

Delightfully, an increasing number of preclinical studies have

revealed the antitumor effects and related mechanisms.
TABLE 2 SQLE-targeted therapies in cancer.

SQLE
inhibitors

Clinical development
for cancer treatment

Cancer type Action Reference

Allylamines

terbinafine Off-label use Prostate cancer PSA level drop in three of the four patients (41)

Preclinical development NAFLD-induced HCC repress the viability of cancer cell via SQLE autophagy/PTEN/AKT
restrain the tumor growth

(28)

Preclinical development Nasopharyngeal cancer Suppress cell growth via cholesteryl ester/AKT
Enhance apoptosis-related genes
Restrain tumor growth and improve the survival of mice

(13)

Preclinical development Breast cancer Repress cell viability via SQLE/ERK (59)

Preclinical development HCC Repress cell proliferation via AMPK-mTOR (independent of SQLE) (66)

Preclinical development oral squamous cell carcinoma Reduce proliferation and induce apoptosis via KSR1-Raf-MEK-ERK (67)

Preclinical development Colorectal cancer repress the viability of cancer cell
induce G0/G1 arrest
inhibit tumor growth

(22)

NB-598 Preclinical development neuroendocrine cancer Inhibit cell growth via squalene accumulation
Inhibit tumor growth

(68)

Preclinical development Colorectal cancer Disrupt cell proliferation and cell cycle
Inhibit tumor growth

(22)

natural compounds and derivatives

EGCG Preclinical development Various cancers Induce cell apoptosis, inhibit cell proliferation (69, 70)
fro
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However, the SQLE inhibitors applied in preclinical antitumor

studies are mainly terbinafine, which is less selective to human

SQLE, and the toxicity may limit antitumor therapy. The

insights of the SQLE structure offer further understanding of

new drug development to reduce adverse reactions and improve

selectivity. Moreover, the metabolic status of tumor cells needs

to be investigated before the application of SQLE inhibitors.
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Glossary

3’UTR 3’ untranslated region

ABCA1 ATP-binding cassette transporter A1

ADT Androgen deprivation therapy;

AMPK adenosine 5’-monophosphate (AMP)-activated protein kinase

CASIMO1 cancer-associated small integral membrane open reading frame 1

CYP24A1 cytochrome P450 family 24 subfamily A member 1

DNMT3A DNA methyltransferase 3A;

EGCG epigallocatechin-3-gallate

EMT epithelialmesenchymal transition

ER(+) estrogen receptor-positive

ER endoplasmic reticulum

ERAD endoplasmic reticulumassociated degradation

ERK extracellular signal-regulated kinase

GSK3b glycogen synthase 3b

HCC hepatocellular carcinoma

HMGCR 3-hydroxy-3-methylglutaryl-CoA reductase

LncRNA Long noncoding RNA

MARCH6 membrane-associated RING finger 6

mHSPC hormonesensitive metastatic prostate cancer

miRNA microRNA;

MVA mevalonate

NAFLD nonalcoholic fatty liver disease;

NF-Y nuclear factor Y

OSBPL2 oxysterol binding protein like 2

PCBP2 poly(rC) binding protein 2

RE1 response element 1

S1P site-1 protease

S2P site-2 protease

SCAP SREBP2 cleavage-activating protein

SOAT1/2 sterol Oacyltransferase;

Sp1 specificity protein 1

SQLE squalene monooxygenase

SRE sterol-regulatory elements

SREBP2 sterol regulatory element-binding protein 2

UBE2J2 E2 ubiquitin-conjugating enzyme J2

USFA unsaturated fatty acids

VCP Valosin-containing protein
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