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Metabolic reprogramming
enables the auxiliary diagnosis
of breast cancer by automated
breast volume scanner
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1Clinical Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University,
Dalian, China, 2College of Integrative Medicine, Dalian Medical University, Dalian, China, 3Department of
Ultrasound, The First Affiliated Hospital of Dalian Medical University, Dalian, China, 4Breast Surgery, The
First Affiliated Hospital of Dalian Medical University, Dalian, China, 5Department of General Surgery,
The First Affiliated Hospital of Dalian Medical University, Dalian, China
Breast cancer is the leading cause of female cancer-related deaths worldwide.

New technologies with enhanced sensitivity and specificity for early diagnosis

and monitoring of postoperative recurrence are in critical demand. Automatic

breast full volume scanning system (ABVS) is an emerging technology used as

an alternative imaging method for breast cancer screening. Despite its

improved detection rate of malignant tumors, ABVS cannot accurately stage

breast cancer preoperatively in 30–40% of cases. As a major hallmark of breast

cancer, the characteristic metabolic reprogramming may provide potential

biomarkers as an auxiliary method for ABVS.

Objective: The objective of this study was to identify differential metabolomic

signatures between benign and malignant breast tumors and among different

subtypes of breast cancer patients based on untargeted metabolomics and

improve breast cancer detection rate by combining key metabolites and ABVS.

Methods: Untargeted metabolomics approach was used to profile serum

samples from 70 patients with different subtypes of breast cancer and benign

breast tumor to determine specific metabolomic profiles through univariate

and multivariate statistical data analysis.

Results:Metabolic profiles correctly distinguished benign andmalignant breast

tumors patients, and a total of 791 metabolites were identified. There were 54

different metabolites between benign and malignant breast tumors and 17

different metabolites between invasive and non-invasive breast cancer.

Notably, the missed diagnosis rate of ABVS could be reduced by differential

metabolite analysis. Moreover, the diagnostic performance analyses of

combined metabolites (pelargonic acid, N-acetylasparagine, and cysteine-S-

sulfate) with ABVS performance gave a ROC area under the curve of 0.967 (95%

CI: 0.926, 0.993).
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Conclusions: Our study identified metabolic features both in benign and

malignant breast tumors and in invasive and non-invasive breast cancer.

Combined ultrasound ABVS and a panel of differential serum metabolites

could further improve the accuracy of preoperative diagnosis of breast

cancer and guide surgical therapy.
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Introduction

Breast cancer (BC) is the most commonly diagnosed cancer

and one of the leading causes of cancer death among women

worldwide (1). So, it badly threatened the female’s health, and

the occurrence showed a young trend. In 2012, nearly 1.7 million

women were diagnosed with the disease, making it a global

priority (2). The reliable and timely diagnosis of BC can

significantly affect treatment. There are diverse diagnostic

techniques for detecting and categorizing BC, for example,

ultrasound (US), X-ray mammography, magnetic resonance

imaging (MRI), and biopsy. The current gold standard in BC

diagnosis is biopsy. However, this technique is invasive, time

consuming, and can yield some negative results to some extent

(3). In addition, BC is a biologically variable disease with

different subtypes, showing different biological behavior and

response to treatment and prognosis. Thus, non-invasive, fast,

sensible, and precise methods for early diagnosis and

distinguishing different BC subtypes are in critical demand.

Automatic breast full volume scanning system (ABVS) is

one of the latest technological breakthroughs that have been

proposed as a suitable alternative for BC screening (4). It is a

safe, painless, radiation-free, and non-invasive technology. It is a

three-dimensional volume imaging system that can provide data

from the entire breast. ABVS has some advantages, including

non-radioactivity, sensitivity to dense breast, three-dimensional

reconstruction, time saving, and repeatability (5). Although

ABVS has improved the detection rate of malignant tumors, it

still cannot accurately stage BC preoperatively in 30–40% of

cases (3). Therefore, can it be combined with other bio-

molecules to improve the accuracy of BC diagnosis?

Metabolomics provides changes in metabolites in biological

systems in response to pathophysiological stimuli or genetic

variation (6). Metabolomics has been widely used as a promising

strategy for the identification of disease markers, which might be

an auxiliary method for ABVS. As the final downstream

products of gene transcription, metabolites are closely linked

to biological functions and phenotypes, so they could offer

important insights into disease mechanisms and identify
02
potential diagnostic or prognostic biomarkers (7, 8). For breast

tumors, regardless of benign, malignant, or multiple subtypes of

BC, it implies the uniqueness of the interactions between tumor

and a specific patient population, which could lead to distinct

metabolic changes in each group (9). Herein, we designed this

study to identify differential metabolomic signatures between

benign and malignant breast tumors and among different

subtypes of BC patients based on untargeted metabolomics

and to explore whether metabolomics can be an auxiliary

method for ABVS to add early diagnosis information in

individuals with breast neoplasm.
Materials and methods

Reagents and solutions

Methanol, acetonitrile, isopropanol, formic acid, and

ammonium acetate were purchased from Thermo Fisher

Scientific (Fair Lawn, NJ). Ammonium bicarbonate (LC-MS

grade) and methyl tert-butyl ether (MTBE) were purchased

from Sigma-Aldrich (St. Louis, MO). Ultra-pure water (18.2 m

w cm) was prepared in house by a Milli-Q purified water system

(Merck KGaA, Darmstadt, Germany).
Participants and ethics

A total of 70 patients with benign and malignant tumors of

breast were enrolled from July 2019 to July 2020 at the breast

surgery of the First Affiliated Hospital of Dalian Medical

University. All subjects included 21 women with benign breast

diseases (BE) and 49 women with malignant breast diseases

(BC). Diagnoses in the benign breast diseases were 17 with

fibroadenoma and four with papilloma. Malignant breast

diseases included 38 with invasive carcinoma (28 with non-

specific invasive carcinoma, five with invasive lobular

carcinoma, and five with papillary carcinoma) and 11 with

non-invasive carcinoma (intraductal carcinoma). The ABVS
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examination was carried out on all the patients. The preoperative

ABVS diagnosis contained eight false negative (two with

nonspecific invasive carcinoma and six with intraductal

carcinoma) and three false positive (three with a papilloma),

which were used as the validation set. The criteria for selection

included at last 18 years old with histological confirmation of

patients with benign and malignant breast tumor, no detectable

macro metastatic disease and no prior anticancer treatment in

BC group, and none of the patients with benign breast diseases

had any malignancy diseases in their past history. Exclusion

criteria: Subjects without ABVS tests or BC patients with

malignant metastasis diseases were excluded. The demographic

characteristics and clinical diagnosis of these subjects are

summarized in Table 1. This study was approved by the Ethics

Committee of the First Affiliated Hospital of Dalian Medical

University (PJ-KS-KY-2019-78), and informed consent was

obtained from all participants.
Automated Breast Volume Scanner

It was performed using Acuson S2000 Automated Breast

Volume Scanner (ABVS; Siemens, Munich, Germany), a

computer-based system for evaluating the whole breast, with

the patient in a supine position. First, two-dimensional hand-

held Doppler US was used to check the size, location, nature,

boundary, shape, and blood supplement of the mass, and then a

technician maintained appropriate contact pressure and vertical

orientation to the breast surface during ABVS examination.

After full scanning of all sections, it is transmitted to the
Frontiers in Oncology 03
computer for data processing to form three-dimensional

images. The results were interpreted by two senior US experts.

It is divided into no abnormality and abnormality (including

angulation, burr, calcification, and aggregation), which had a

malignant tendency.
Serum sample preparation
and processing

The blood samples were collected in anticoagulant-free

blood collection tubes in the morning after at least 8h of

fasting before surgery. All patients had not received any

medication, anesthetic, or other therapy. The samples were

centrifuged at 1500g for 10 min at 4°C after standing for 1h at

4°C to obtain the serum. The serum samples were isolated,

aliquoted, and immediately stored at -80°C until further use.

Take 150 ml of each serum sample and place it in the 96-Deep

Well plates (Thermo Fisher Scientific, Delaware, USA). Then,

add 600 ml of polar extract (mixture of methanol and

acetonitrile) to the sample. After that, swirl the mixture for

5 min and centrifuge it at 5300 RPM for 20 min (4°C). After

centrifugation, two doses of 200 ml of supernatant were

transferred to the 96-well plates (Thermo Fisher Scientific).

Then, the samples were concentrated and dried in a vacuum

lyophilizer. The 50%methanol was added to these two plates and

redissolved, followed by positive and negative ion detection and

subsequent untargeted metabolomics analysis. Mix the

remaining top layers of all remaining samples; take 150 ml
from each of them as quality control (QC) samples.
TABLE 1 Demographic and clinical pathological characteristics of study population.

Parameters Malignant group Benign group
(n = 49) (n = 21)

Age (median, range) 56(30–75) 48(19–82)

Fibroadenoma, n (%) n.a. 17(81.0)

Papilloma, n (%) n.a. 4(19.0)

Non-specific invasive carcinoma, n (%) 28(57.1) n.a.

Invasive lobular carcinoma, n (%) 5(10.2) n.a.

Papillary carcinoma, n (%) 5(10.2) n.a.

Intraductal carcinoma, n (%) 11(22.4) n.a.

TNM stage-0 8(16.3) n.a.

TNM stage-Ia 23(46.9) n.a.

TNM stage-IIa 11(22.4) n.a.

TNM stage-IIb 3(6.1) n.a.

TNM stage-IIIa 3(6.1) n.a.

TNM stage-IIIc 1(2) n.a.

ABVS (0)* 8 (false negative) 18

ABVS (1)* 41 3(false positive)
*Resulting visibility values dichotomized “0” and “1” for ABVS (“0” represents no abnormality and “1” represents abnormal).
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Untargeted metabolomic analysis

An Ultimate 3000 ultra-high performance liquid

chromatography (UHPLC) and Q Exactive Quadrupole-Orbitrap

High-Resolution Mass Spectrometer (HRMS; Thermo Fisher

Scientific) were used for untargeted metabolomics analysis. The

metabolite extracts were profiled with reversed-phase

chromatographic separation mode with positive and negative

ionization detection, respectively. For the positive detection mode,

an ACE C18-PFP column (1.8 mm, 2.1 × 100 mm; ACE Co.,

Leicestershire, United Kingdom) was used and eluted by 0.1%

formic acid in water as mobile phase A and acetonitrile as mobile

phase B. A linear gradient was used ramping from 2% organic

mobile phase to 98% in 10min. For the negative detectionmode, the

mobile phasesAandB that contain 400-mg ammoniumbicarbonate

buffer salt was used to elutemetabolites and separated on anAcquity

HSS C18 column (Waters Corporation, Milford, MA, 1.8 mm,

2.1 mm × 100 mm). The mobile phase gradient was as follows:

phase B from 0min 2% ramped to 100% in 10 min and followed by

5 min of column washing and equilibration. The flow sampling

volume and column temperature of positive and negative modes

were the same, which were 0.4 ml/min 5 ml 50°C, respectively.
Metabolites were detected by using a heated electrospray

source, and the same ionization parameters were set except

ionization voltage, including 45 arb of sheath gas and 10 arb

of aux gas, heater temperature to 355°C, capillary temperature to

320°C, and S-Lens RF level to 55%. The metabolomic extracts

were analyzed with full scan mode under 70,000 FWHM

resolution with AGC 1 × 106 and 200 ms max injection time

by using a scan range of 70–1,000 m z−1 to obtain data.
Data processing

There are secondary annotations that need to be paid attention

to according to the recommendations of the Metabolomics

Standardization Initiative (MSI) (10). First, the chromatographic

retention time and primary and secondary mass spectrometry

information should be consistent with the standard. The second

is to annotate the structure of polar metabolites by searching against

a local library created using authentic standards as well as mzCloud

library (Thermo Fisher Scientific, San Jose, CA). In addition, m/z of

MS1 spectra was searched against a local HMDB metabolite

chemical database (11). Mass accuracy of precursor within ±5

ppm was a prerequisite for metabolite identification or structural

annotation. The area under curve values as extracted as quantitative

information of polar metabolites with TraceFinder software

(Thermo Fisher Scientific).
Statistical analysis

The metabolomic data from different measurements were

normalized and merged. Variables were deleted with missing value
Frontiers in Oncology 04
percentages above 50% and then input the missing values with the K-

nearest algorithm (KNN sample wise). The metabolites detected by

various methods are retained only once to ensure their uniqueness of

the metabolites. Sample calibration, data conversion and data scaling

are three steps in the normalization of untargeted metabolomics data.

First, sample calibration corrected sample reproducibility during

testing due to batch effects or systematic errors. Next, in order to

convert the data to a normal distribution, we performed Log

transformations on the untargeted metabolomics data. Finally, the

potential structure discriminant analysis (PLS-DA) data were

preprocessed by orthogonal projection using UV scaling

transformation. Multivariate analysis, such as the PLS-DA and

orthogonal PLS-DA (OPLS-DA) were conducted with SIMCA-P

14.1 software (metrics, Sweden). Univariate analysis including

independent sample t-test and the false discovery rate (FDR;

adjusted p < 0.05) and fold change (FC; adjusted p < 0.05) adjusting

with Benjaminiand Hochberg method and a heat map was drawn to

perform on the MetaboAnalyst website (http://www.metaboanalyst.

ca). We applied the R software package “neuralnet” to an artificial

neural network model of the differentially expressed metabolites

(DEMs; p < 0.05). First, the calculation of model ber was based on

the premise of out-of-band data. Set 57 to the optimal number of trees

contained in the random forest. Next, the decreasing accuracymethod

(Gini coefficient method) was used to obtain the dimension

importance value of the random forest model on the premise of

constructing the random forest model first. Then, the top three

metabolites with the highest AUC area were selected for subsequent

modeling.We used the R software package “neuralnet” to construct an

artificial neural network model of the essential variables after the

normalization of the data. We set five hidden layers for the model

parameters and then use the obtained metabolite weight information

to construct the breast-cancer-classification model. The sum of the

product of weight score and the metabolite expression level was used

as the disease classification score to evaluate the diagnostic

performance of the model. The pROC software package was used

to demonstrate the performance of the neural network model more

intuitively (12). In addition, we used GraphPad Prism 8.0 Software

(GraphPad Software Inc.) to plot receiver operating characteristic

(ROC) curves and calculated 95% confidence interval (95% CI) cutoff

values for the area under the curve (AUC), and plotted volcanoes to

find highly varied metabolites, and then box plots were drawn to

describe the specific metabolites that differ between the two groups.

For the combined indicators, logistic regression analysis was based on

SPSS Statistics 26.0 software (IBM).
Results

Study design and clinical characteristics

A workflow of the study is shown in Figure 1. First, we tried

to characterize the molecular alterations in the serum of patients

with benign and malignant breast lesions. Second is to identify
frontiersin.org
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differential metabolomic signatures in invasive and non-invasive

breast cancer. Finally, combined with ABVS examination and

key metabolites to improve the detection rate of preoperative

breast malignant tumors. Sera from 49 malignant and 21 benign

breast lesions were enrolled. Details of the inclusion and

exclusion criteria are described in the part of the method. The

clinical features of the participants are shown in Table 1.
Metabolic features of benign and
malignant breast lesions

Untargeted metabolomics was employed to describe the

characteristics of serum metabolism among patients with benign

and malignant breast lesions. A total of 791 metabolites (786

metabolites remaining after data screening and cleaning) were

identified. The coefficient of variation (CV) distribution of QC,

which was used to demonstrate the reproducibility of the method,

was shown in Supplementary Figure S1. Polar metabolite OPLS-DA

(Figure 2A) was drawn to illustrate metabolic changes between the

benign and malignant groups, from which we observed an overall

separation between the two groups. The volcano map (Figure 2B)

showed the levels of expression of compounds between the two

groups. There were 28 upregulated metabolites, such as pelargonic

acid, FFA (9:0), alpha-ketoisovaleric acid, sphinganine, and so on
Frontiers in Oncology 05
whereas 26 downregulatedmetabolites, such asN-Acetylasparagine,

Cysteine-S-sulfate, and so on (Supplementary Table S1). These were

enriched in seven pathways (Figure 2D); the most significant of

which were the biosynthesis and degradation of valine, leucine and

isoleucine, taurine and hypotaurine metabolism, and the

sphingolipid metabolism. A heat map visually exhibited the

relative concentration differences of these metabolites between the

two groups (FDR-adjusted p =< 0.05, Figure 2C). The differentially

represented metabolites was shown in the boxplot graph

(Figures 2E), including fatty acids (e.g., pelargonic acid, FFA 9:0,

FC = 1.2, p < 0.01), organic acid (e.g., alpha-ketoisovaleric acid, FC

=1.81, p < 0.05), and amino acids (e.g., N-Acetylasparagine, FC =

0.68, P < 0.001 and cysteine S-sulfate, FC = 0.69, P < 0.01). The

detailed list of metabolite differences was shown in Supplementary

Table S1. The above results illustrated that significantly altered fatty

acids, amino acids, organic acids, and so forth might be related to

the pathogenesis of BC.
Metabolic features of invasive and non-
invasive breast cancer

According to the pathological classification of breast cancer,

we further divided the malignant group into non-invasive and

invasive cancer. Similarly, OPLS-DA was used to illustrate
FIGURE 1

The design and workflow of this study.
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FIGURE 2

Polar metabolites in benign and malignant breast tumor group. OPLS-DA score plots of metabolites between benign and malignant group (A).
The volcano plots of metabolites, the red dots of the metabolites in the volcano plots indicated an increase and the blue dots indicate a
decrease in the malignant group (B). The relative concentration of metabolites in each sample in benign and malignant group was visualized
using a heat map (C). Metabolic pathway enrichment analysis based on KEGG database was performed to determine differentially enriched
pathways between benign and malignant group (D). Relative concentration of pelargonic acid (FFA (9:0), alpha-ketoisovaleric acid, N-
Acetylasparagine, and cysteine S-sulfate in benign and malignant group (E).
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metabolic changes between the two groups (Figure 3A). The

results suggested that there were significant differences between

the two groups. Significantly, differential polar metabolites in

invasive and non-invasive BC were visualized on volcano plots

(Figure 3B). Among them, there were eight upregulated and nine

downregulated metabolites in the invasive group compared to

the non-invasive group (Supplementary Table S2), which also

caused changes in metabolic pathways (Figure 3D), including

histidine metabolism, lysine biosynthesis, pyrimidine

metabolism, alanine, aspartate, and glutamate metabolism and

so on. A heat map was used to visualize the relative

concentration differences of metabolites in the two groups

(FDR-adjusted p =< 0.05, Figure 3C). The expression levels of

key metabolites in the two groups were represented by box plots

(Figure 3E), the levels of aminoadipic acid (FC = 1.39, p < 0.05)

and Human Fibrinopeptide B residual (FC = 1.25, p < 0.05)

increased obviously, while L-Histidine (FC = 0.35, p < 0.01)

decreased in patients with invasive BC comparing with BE. They

were involved in lysine biosynthesis, fibrinogen oligopeptide

degradation, and histidine metabolism, respectively, which

probably are associated with tumor metastasis.

Distinguish the cases whose ABVS
examination was inconsistent with
postoperative pathological diagnosis
based on metabolomics

Although ABVS has improved the detection rate of malignant

breast tumors and shows some advantages, it still has the possibility

of missed diagnosis (false negative) and misdiagnosis (false

positive). In our enrolled subjects, three cases returned false

positive (misdiagnosing a benign patient as having cancer) and

eight cases returned false negative (missing the malignant tumor as

it spreads). Toward to these 11 patients, OPLS-DA analysis was

performed to detect whether these cohort, including false negative

and false positive cases, could be recognized correctly based on the

previous differential metabolites between benign and malignant

breast tumors. Fortunately, the results showed that only one missed

case was located between benign and malignant groups. The

remaining seven cases were correctly distributed in the malignant

group; however, the other three misdiagnosed cases were not

identified and existed in the malignant group (Figure 4A).

Nevertheless, the detection of metabolites greatly recognized

malignant cases, which could provide a reference for clinicians

and reduce the missed diagnosis rate.

Combining a panel of metabolites and
ABVS examination to improve the
efficacy of discriminating the malignant
breast tumors from benign tumors

The observed separation tendencies in our multivariate

approach indicated the possibility of compiling a panel of
Frontiers in Oncology 07
metabolites to discriminate the malignant breast tumors from

benign tumors. An artificial neural network model of combing a

panel of metabolites and ABVS performance was constructed,

and a receiver operator characteristic (ROC) curve analysis was

used to intuitively show the effectiveness of the model in

distinguishing benign and malignant breast tumors. ROC

curves for the significantly altered metabolites were drawn to

distinguish the benign and malignant groups (Supplemental

Table S3). The top 3 metabolites with the highest AUC area

were N-acetylasparagine, pelargonic acid (FFA[9:0]) and

cysteine-S-sulfate. The levels of these molecules changed

significantly in malignant group relative to benign group. The

level of pelargonic acid, FFA(9:0), was much higher in malignant

than in benign tumors, with AUC values of 0.779 (95% CI: 0.650,

0.908) (Figures 2E, 4B). The serum levels of N-acetylasparagine

and cysteine-S-sulfate (Figure 2E) were descended in malignant

relative to benign tumors with AUC values of 0.796 (95% CI:

0.677, 0.913, Figure 4C) and 0.763 (95% CI: 0.632, 0.894,

Figure 4D), respectively. The AUC value of the three

metabolites combined was 0.911 (95% CI: 0.823, 0.998,

Figure 4E). Notably, the AUCs were greatly improved when

combining these three metabolites with ABVS performance

(AUC = 0.967, 95% CI: 0.926, 0.993, Figure 4F). The results

highlighted that combining with the serum differential

metabolites could improve the efficacy of ABVS to

discriminate the malignant breast tumors from benign tumors.
Discussion

As in most malignant diseases, early breast cancer detection

is crucial for effective diagnosis and treatment, enhanced patient

survival, and reduced death rate (13). Although, ABVS has

improved the detection rate of malignant tumors, a certain

proportion of cases that cannot be accurately identified before

operation (3). Therefore, it is necessary to develop novel

biomarkers to auxiliary differentiate benign and malignant

breast tumors and improve the accuracy of diagnosis. Breast

cancer has been associated with marked metabolic shifts (14, 15),

and metabolomics has been widely applied to refine molecular

sub-typing of breast cancer, cancer progression, cancer

metastasis, and prediction of treatment sensitivity (16–18).

This study identified metabolic reprogramming both in benign

and malignant breast tumors and in invasive and non-invasive

breast cancer. In addition, to verify whether the metabolites can

correctly distinguish the cases that cannot be recognized by

ABVS. Our study tested the hypothesis of an improvement in the

diagnostic sensitivity of breast cancer using candidate

metabolites and ABVS.

Some significantly changed metabolites were identified from

the samples, which may be related to tumorigenesis. First,

pelargonic acid, FFA(9:0); nonylic acid; and pelargic acid. Callol-

Sanchez et al. found a significantly elevated level of nonanoic acid in
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FIGURE 3

Polar metabolites in non-invasive (NIC) and invasive breast cancer (IC) group. OPLS-DA score plots of metabolites between non-invasive and
invasive groups (A). Volcano plots of metabolites. The red dots of the metabolites in the volcano plots indicated an increase, and the blue dots
indicate a decrease in the invasive cancer group (B). Relative concentration of metabolites in each sample in non-invasive and invasive group
was visualized using a heat map (C). Metabolic pathway enrichment analysis based on KEGG database was performed to determine differentially
enriched pathways between non-invasive and invasive groups (D). Relative concentration of L-Histidine, aminoadipic acid, and Human
Fibrinopeptide B residual in the non-invasive and the invasive cancer group (E).
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exhaled breath of patients with lung cancer compared with chronic

obstructive pulmonary disease (COPD) patients and healthy

subjects (19). In addition, it was also reported that the nonanoic

acid was increased in patients with oral cancer (20) and prostate

cancer (21). Another study showed that nonanoic acid (C9:0),

which belongs to odd-chain fatty acids, is present in trace levels in

human tissue. It was reported that odd-chain fatty acids acted as

histone deacetylases (HDACs) inhibitors, whereas the dysregulation

of HDACs is closely associated with tumorigenesis (22). Moreover,

they also found that this kind of odd-chain fatty acids could

promote the acetylation of a-tubulin in MCF-7 breast and A549

lung cancer cells dose-dependently and had moderate anti-

proliferative effects (22). In our study, the serum pelargonic acid,

FFA(9:0), was elevated in breast cancer patients with an AUC of

0.78 (Figure 4B). The specific mechanism needs to be further

studied. Interestingly, we also found that the levels of some

acetylated metabolites decreased significantly, such as N-

acetylasparagine (FC = 0.68, P < 0.001, Figure 2E) with a higher

AUC of 0.795 (Figure 4C), N-acetyl-l-tyrosine (FC = 0.79, P < 0.05)

and N-acetylglutamine (FC = 0.81, P < 0.05). It might be related to

the disorder of enzymes associated with acetylation

and deacetylation.

In addition, alpha-ketoisovaleric acid (KIV), a kind of

branched-chain a-keto acids (BCKAs), is metabolized from
Frontiers in Oncology 09
branched-chain amino acids—valine. This reaction is catalyzed

by branched-chain aminotransferase (BCAT) (23). In this study,

KIV was significantly elevated in breast cancer (Figure 2E), and

it was involved in valine, leucine, and isoleucine biosynthesis and

degradation, which had been shown significant changes in

metabolic pathway analysis (Figure 2D). BCAAs are not

synthesized from BCKAs in humans as essential amino acids.

However, in myeloid leukemia cells, BCAT is intensively

expressed and promotes a reverse reaction to synthesize

BCAAs from BCKAs (24). Other studies have shown that

BCAT is related to breast cancer, non-small cell lung cancer,

ovarian cancer and liver cancer (25–28). Therefore, we

speculated the mutual transformation between KIV and BACC

may be involved in the pathogenesis of breast cancer.

Moreover, we found that sphinganine was increased in

patients with breast cancer compared with benign tumors (FC

= 1.54, p < 0.05, Supplementary Figure S2). It is also elevated in

other cancers, such as pancreatic cancer (29) and endometrial

cancer (30). Sphinganine is an intermediate of sphingoid base

biosynthesis (31, 32). Upregulation of sphinganine suggests that

sphingolipid metabolism is hampered in cancer progression

(29), which has been confirmed in our metabolic pathway

analysis (Figure 2D). Sphinganine can be catalyzesd by

Sphingosine kinase 1 (SPHK1) to generate sphingosine-1-
A B

D E F

C

FIGURE 4

Combining a panel of metabolites and ABVS examination to improve the efficacy of discriminating the malignant breast tumors from benign
tumors. OPLS-DA score plots of metabolites among benign, malignant, and ABVS missed diagnosis group (A). Receiver-operating characteristic
(ROC) curves of the three biomarkers and their combination (B–E). ROC curve analysis was used to intuitively show the effectiveness of the
model (combing a panel of metabolites and ABVS performance) in distinguishing benign and malignant breast tumors (F).
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phosphate (S1P) (33), which has played an important role in

regulating the death and survival of cancer cells (34, 35).

In addition, sphingosine kinase 1 (SPHK1) was overexpressed

in triple-negative breast cancer and promoted metastasis via

nuclear factor kappa B/sphingosine kinase 1 (NFkB/SPHK1)

signaling pathway activation (36). Therefore, sphinganine might

implicate in the initiation and progression of breast cancer.

Last, we also paid attention to the significant decline of two

metabolites in breast cancer. One is cysteine S-sulfate, which is a

glutamate receptor agonist that can lead to calcium influx in

nerve cells and neurotoxicity when present at high levels (37, 38).

A previous investigation reported the heritability of plasma

cysteine S-sulfate to be 46.8%, suggesting that both genetic and

environmental factors strongly influence it. A recent study

showed that lower levels of the amino acid cysteine S-sulfate

was associated with poorer executive function with increasing

age (39), whereas high levels of cysteine S-sulfate may be

detrimental to cognitive function earlier in life (39). In this

study, we also found that the level of cysteine S-sulfate

descended in the serum of patients with breast cancer

compared with benign tumors (FC = 0.69, p < 0.01,

Figure 2E), with an AUC of 0.763 (Figure 4D). However,

further study will be crucial to understand the mechanisms by

which cysteine S-sulfate could have protective effects on

breast cancer.

Taurine, a b-amino acid produced by the liver, is distributed

in various tissues at high concentrations and helps in maintaining

the functions of the central nervous system, retinal neurons, heart,

and skeletal muscles. Increasing evidence has shown that

exogenous taurine has the anti-tumor activity against different

cancers in vitro and in vivo (40), such as breast cancer (41, 42),

colorectal cancer (43), and lung cancer (44). The mechanism of

taurine inhibiting the growth and metastasis of breast cancer

involves multiple targets and pathways (41). Another research

found that serum antioxidant taurine in breast cancer group

exhibited a significantly lower level than that in the control

group. The results suggested that taurine had the potential to be

a novel tumor marker for enhanced detection of breast cancer in

the early diagnosis (45). Coincidentally, we also found decreased

content of serum taurine in breast cancer patients (FC = 0.84, p <

0.05, Supplementary Table S1), which may weaken its protective

effect and promote tumorigenesis.

Among invasive and non-invasive breast cancer patients, we

found some metabolites with significant differences, such as L-

histidine, human fibrinopeptide B, and aminoadipic acid. It is

reported that L-histidine could play a role in preventing or

suppressing tumor development (46). However, it decreased

obviously in the invasive group (FC = 0.35, p < 0.01,

Figure 3E). Human fibrinopeptides A and B were released

from fibrinogen during blood coagulation. Research showed

that fibrinogen levels were significantly elevated in breast

cancer than that in the control group, and metastatic patients

exhibited significantly higher D-dimer values when compared
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with early breast cancer patients (47), which is consistent with

our results. In this study, human fibrinopeptides A and B were

significantly increased in the malignant group (Supplementary

Figure S2) and invasive breast cancer (Figure 3E), respectively.

Moreover, aminoadipic acid, a product of lysine degradation,

increased in patients with invasive breast cancer (Figure 3E). It

has also been found elevated in chemotherapy recipients after 6

months (48) and suggested as a predictive biomarker for the

development of diabetes (49). Nevertheless, multiple studies

have shown that lactate and lactate dehydrogenase(LDH)may

play a role in the progression of breast cancer, especially LDH. A

meta-analysis showed that serum LDH could act as a diagnostic

factor for patients with breast cancer (50). It has been reported

that the concentration of lactic acid in serum and tumor tissue of

breast cancer patients is increased (51, 52), but it is still

controversial. This study found that the serum lactate level of

non-invasive patients was higher than that of invasive patients.

The specific mechanism needs to be further studied by

expanding the sample size.

Breast cancer is a heterogeneous disease consisting of

distinct histopathological subtypes with different clinical

outcomes (53). There is a certain probability of missed

diagnosis(false negative)and misdiagnosis(false positive)in

ABVS detection. Among the samples that we enrolled, there

were eight false negative (two with nonspecific invasive

carcinoma and six with intraductal carcinoma) and three false

positive (three with a papilloma). Among the false negative, six

cases were intraductal carcinoma. This could be attributed to the

fact that the tumor was located in the mammary duct, so ABVS

has no characteristic manifestations. Takayoshi also confirmed

some breast tumors such as ductal carcinoma in situ and

invasive lobular carcinoma were easily missed on US because

of the nature of the lesions (54). While metabolomics might

make up for this defect and could identify these patients

(Figure 4A). Three false positives were all papilloma. The main

manifestations of papilloma and papillary carcinoma were

unclear boundaries from ABVS detection and hard to be

distinguished, which might be due to the situation that fibrosis

at the edge of papillomas often entraps glands and creates the

spurious impression of invasion (55). In this study, however, it

also could not be well distinguished based on metabolomics. A

larger sample size of papilloma and papillary carcinoma might

be conducive to distinguish them. Conclusively, detection of

metabolites greatly recognized malignant cases from benign and

reduce the misdiagnosis rate of ABVS.

Although our study provided original insights into

the metabolic reprogramming enabled the auxiliary diagnosis of

breast cancer by AVBS, there were still some limitations. First, the

sample size was relatively small and, therefore, no further

hierarchical analysis was performed for different molecular

subtypes. Second, although metabolomic testing can greatly

improve the missed diagnosis rate of ABVS, it is better to be

validated in a larger cohort. Finally, this study aimed to improve
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breast cancer detection rate by combining key metabolites and

ABVS. If more other clinical indicators could be added for

correlation analysis, it would be benefit to validate the

metabolomic results.
Conclusions

Our study tested the hypothesis of an improvement in the

diagnostic sensitivity of breast cancer by combining key

metabolites (pelargonic acid, N-acetylasparagine, and cysteine-

S-sulfate) and ABVS examination. The missed diagnosis rate of

ABVS was obviously reduced by differential metabolite analysis.

This study indicated that noninvasive ABVS examination and

potential biomarkers derived from characteristic metabolic

reprogramming could provide doctors and patients with more

accurate and valuable diagnostic references before operation.
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