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Background: Laryngeal cancer is a type of head and neck tumor with a poor prognosis
and survival rate. The new cases of laryngeal cancer increased rapidly with a higher
mortality rate around the world.

Objective: The current research work was focused to unveil the in vitro antitumor effects
of ononin against the laryngeal cancer Hep-2 cells.

Methodology: The cytotoxic effects of ononin against the laryngeal cancer Hep-2 cells
and normal HuLa-PC laryngeal cells were studied using an 3-(4,5-dimethylthiazol-2-yl)-
2,5-diphenyl tetrazolium bromide (MTT) assay. The intracellular Reactive Oxygen Species
(ROS) generation, apoptotic cell death, Mitochondrial Membrane Potential (MMP), and cell
adhesion on the 25 and 50 µM ononin-treated Hep-2 cells were detected using respective
staining assays. The levels of TBARS and antioxidants were assayed using specific kits.
The expressions of c-Jun N-terminal kinase 1/2 (JNK1/2), Extracellular Signal-regulated
Kinase 1/2 (ERK1/2), p38, Phosphatidylinositol-3 Kinase 1/2 (PI3K1/2), and protein
kinase-B (Akt) in the ononin-treated Hep-2 cells were investigated using Reverse
Transcription-Polymerase Chain Reaction (RT-PCR) assay.

Results: The ononin treatment effectively inhibited the Hep-2 cell viability but did not affect
the viability of HuLa-PC cells. Furthermore, the ononin treatment effectively improved the
intracellular ROS accumulation, depleted the MMP, and triggered apoptosis in Hep-2
cells. The Thiobarbituric acid reactive substances (TBARS) were improved, and
Glutathione (GSH) levels and Superoxide dismutase (SOD) were depleted in the
ononin-administered Hep-2 cells. The ononin treatment substantially inhibited the JNK/
ERK/p38 axis in the Hep-2 cells.

Conclusion: Together, the outcomes of this exploration proved that the ononin has
remarkable antitumor activity against laryngeal cancer Hep-2 cells.
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INTRODUCTION

Laryngeal cancer is a common head and neck tumor with
increased occurrence and death rates. In 2018, approximately
177,000 new cases with 94,000 mortalities were recorded
worldwide due to laryngeal cancer (1). The aged persons
particularly men have a higher chance of developing laryngeal
cancer (2). The cancer initiation is primarily triggered by the
array of alterations in the cell genome. These alterations provoke
the cells to incessantly multiplication and evade apoptosis, thus
disturbing the tissue homeostasis (3).

Most of the signaling cascades that mediate the tumor cell
apoptosis are Mitogen-Activated Protein Kinase (MAPK) family
members (4). The Extracellular Signal-regulated Kinase (ERK), c-
Jun N-terminal kinase (JNK), and p38 kinase are the well-known
MAPK subfamily proteins. c-Jun N-terminal kinase (JNK)
enhances apoptosis via two distinct events. The stimulated c-Jun
N-terminal kinase (JNK) translocation to the nucleus elevates the
pro-apoptotic gene expressions via triggering the c-Jun–dependent
events. In contrast, the stimulated c-Jun N-terminal kinase (JNK)
translocates to mitochondria and phosphorylates pro-apoptotic
proteins, in that way antagonizing anti-apoptotic proteins and
lastly exhibiting anti-apoptotic activity (5). Extracellular Signal-
regulated Kinase (ERK) is a well-known anti-apoptotic protein that
is regularly deregulated in cancer cells because of the mutations in
several proteins. It primarily possesses an anti-apoptotic upshot via
enhancing the anti-apoptotic protein expressions and hindering
pro-apoptotic protein expressions (6).

Because of the vast developments in the medical field, the
death rate of communicable diseases is decreased remarkably;
meanwhile, the cancer-associated deaths were increased by 40%
in recent decades (7). This is because of the fact that every tumor
has its own characteristics, for example, tumor cells behave
differently by means of multiplication, survival, and metastasis.
In addition, tumor cells can acquire resistance to presently
employed chemotherapeutic drugs (8).

The first-line treatment options for laryngeal cancer are chemo-
and radiotherapy subsequent to the surgical removal. At present,
the total laryngotomy is acknowledged as amost hopeful technique
to treat laryngeal cancer, although it possesses some serious adverse
effects, like problems with voice and swallowing (9). It was already
proved that the promotion of tumor cell apoptosis is one of the
hopeful techniques for cancer treatment (10). Although early-stage
laryngeal cancer can be treated by radiotherapy or surgery, for the
most of victims in the developed stage, there is still a lack of
development standard care (11). Nevertheless, because of the lack
of effectiveness of chemotherapy, patients have a poor prognosis
due to the metastasis and local recurrence (12, 13). Consequently,
the exploration of novel bioactive agents with the capacity of
destroying the growth and metastasis of cancer cells is
highly needed.

Themedicinal plants havebeenenrichedwith immensebioactive
compounds with anticancer properties (14–16). In addition, natural
products are inexpensivewhen related to synthetic agents.Ononin is
a natural isoflavone that is extensively dispersed in several food
plants likeAstragalus membranaceus, kudzu, broccoli, soybean, and
lupine (17). It has already been described that ononin owns anti-
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inflammatory (18), antidiabetic (19), and antitumor activities (20).
Meng et al. (21) mentioned that ononin treatment showed effective
in vitro antiarthritic activity. Pan et al. (22) reported the
cardioprotective properties of ononin. Ononin demonstrated an
effective anti-angiogenic activity (23). Nonetheless, no reports were
found on the antitumor property of ononin against laryngeal cancer.
As a result, this research work was focused to explore the in vitro
antitumor property of ononin against the laryngeal cancer Hep-2
cells through the ERK/JNK/p38 signaling inhibition.
MATERIALS AND METHODS

Chemicals
Ononin (≥99.0%), Fetal Bovine Serum (FBS), Dimethyl Sulfoxide
(DMSO), and other chemicals were purchased from Sigma-
Aldrich (USA). The marker-specific kits for the biochemical
examinations were attained from MyBioSource and
Thermofisher (USA), respectively.

Collection and Maintenance of Hep-2 Cells
Laryngeal cancer Hep-2 cells and normal HuLa-PC laryngeal
cells were purchased from the American Type Culture Collection
(ATCC) (USA). The collected cells were grown on a Dulbecco's
Modified Eagle Medium (DMEM) enriched with Fetal Bovine
Serum (FBS) (10%) at 37°C in a moistened CO2 (5%) incubator.
The cultured cells were trypsinized after gaining the 80%
confluency and utilized for further studies.

Cytotoxicity Assay
The cytotoxic property of ononin against the Hep-2 and HuLa-
PC cells was studied by 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyl tetrazolium bromide (MTT) cytotoxicity assay. Both
cells were loaded separately on a 96-well plate at 5 × 103 cells per
well for 24 h at 37°C. Afterward, the medium containing cells was
supplemented with the various concentrations (10–100 mM) of
ononin for 24 h. Then, 20 ml of MTT along with Dulbecco's
Modified Eagle Medium (DMEM) (100 µl) was mixed in all wells
and stood for 4 h. The developed formazan crystals were
liquefied using Dimethyl Sulfoxide (DMSO) (100 ml) and
measured at 570 nm.

Dual Acridine Orange/Ethidium Bromide
(AO/EB) Staining
The apoptosis-inducing capacity of ononin on the Hep-2 cells
was studied using AO/EB staining technique. Hep-2 cells were
loaded onto the 24-well plate at 5 × 105 cells per well. Then, Hep-
2 cells were supplemented with the varied dosages (25 and 50
mM) of ononin for 24 h. Afterward, cells were stained by the
addition of AO/EB (1:1) dye mixture (100 mg/ml) for 5 min, and
lastly, cells were studied using a fluorescent microscope.

Measurement of Reactive Oxygen Species
(ROS)
The 2'-7'dichlorofluorescin diacetate (DCFH-DA) staining was
employed to detect the ROS accumulation in control and
ononin-supplemented Hep-2 cells. For this, Hep-2 cells were
July 2022 | Volume 12 | Article 939646
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placed on a 24-well plate and treated with the ononin (25 and 50
mM) for 24 h. Cells were then stained by the addition of 10 ml of
DCFH-DA stain for 1 h. Last, the production of ROS in the
ononin-supplemented Hep-2 cells was examined under a
fluorescent microscope.

Mitochondrial Membrane Potential
The mitochondrial membrane potential (MMP) level in the
ononin-supplemented and control Hep-2 cells was studied
using Rh-123 staining. Hep-2 cells were placed on the 24-well
plate and then treated with ononin (25 and 50 mM) and
maintained for another 24 h at 37°C. Then, Rh-123 dye (10
mg/ml) was used to stain the cells for 30 min, and then, MMP was
examined under a fluorescence microscope.

Propidium Iodide Staining
The apoptotic levels were investigated using the propidium
iodide (PI) staining technique. Hep-2 cells were loaded on a
24-wellplate for 24 h. Later, Hep-2 cells were supplemented with
varied dosages (25 and 50 mM) of ononin for 24 h. Afterward,
cells were stained with 5 µl of PI dye for 20 min, and then,
apoptosis in the control and ononin-administered Hep-2 cells
was monitored under a fluorescent microscope.

Cell Adhesion Assay
The cell adhesion level in control and ononin-supplemented
Hep-2 cells was studied, and, for this, Hep-2 cells were placed on
a gelatin-coated plate and then supplemented with the various
dosages (25 and 50 mM) of ononin for 60 min at 37°C. After that,
cells were rinsed with saline and then trypan blue was utilized to
stain the cells for the identification of adhesive levels and
observed under an optical microscope.

Measurement of Oxidative Stress
and Antioxidants
The level of TBARS, glutathione (GSH), and SOD activity in the
control and ononin (25 and 50 mM)–supplemented Hep-2 cells
were assessed by assay kits using protocols described by the
manufacturer (MyBioSource, USA).

RT-PCR Analysis
The totalRNAwas separated fromtheHep-2cells using aTRIzolkit
(Thermofisher, USA). After that, the isolated RNA was utilized to
construct the cDNA using a PCR kit. The gene expressions were
scrutinized by RT-PCR assay using manufacturer protocols
(Takara, Japan). The primer sets are as follows: ERK1/2 sense: 5′-
TCAAGCCTTCCAACCTC-3′, antisense: 5′-GCAGCCCACAG
ACCAAA-3′; JNK1/2 sense: 5′-GCCATTCTGGTAGAGGAA
GTTTCTC-3′, antisense: 5′-CGCCAGTCCAAAATCAAG
AATC-3′; p38 sense: 5′-AGGGCGATGTGACGTTT-3′,
antisense: 5′-CTGGCAGGGTGAAGTTGG-3′; PI3K1/2 sense:
5′-GGACAATCGCCAATTCAG-3′, antisense: 5’-TGGTGGTG
CTTTGATCTG-3’; and Akt sense: 5′-ATGAGCGACGTGG
CTATTGTGAAT-3′, antisense: 5′-GAGGCCGTCAGCCACA
GTCTGGATG-3 ′ . The Glycera ldehyde-3-phosphate
dehydrogenase (GADPH) was utilized as an internal control.
Frontiers in Oncology | www.frontiersin.org 3
Statistical Analysis
Data are analyzed using SPSS software. Values are deliberated as
mean ± SD of triplicate results. Outcomes were scrutinized by
one-way ANOVA and Tukey post hoc assay and p < 0.05 were
fixed as significant.
RESULTS

Ononin Treatment Decreased the Hep-2
Cell Viability and Did Not Reduce the
Normal HuLa-PC Cell Viability
The effects of ononin treatment on the viabilities ofHep-2 andHuLa-
PC cells were studied using an MTT assay, and the outcomes were
given inFigures1A,B.Theononin treatmentatdifferentdosages (10,
25, 50, 75, and 100 µM) appreciably diminished the Hep-2 cell
viability (Figure 1A). However, the same concentrations of the
ononin did not affect the viability of normal HuLa-PC cells
(Figure 1B). A remarkable decrement was found in the viability of
Hep-2 cellswhen treatedwith increaseddosages of ononin.TheHalf-
maximal inhibitory concentration (IC50) dose of ononin against the
Hep-2 cellswas foundat 25µM(Figure1A).Consequently, 25µMas
an IC50 and 50 µM as a high concentration of ononin were selected
for the further fluorescent staining assays.
A

B

FIGURE 1 | Effect of ononin on the cell viability of laryngeal cancer Hep-2 and
normal HuLa-PC cells. The ononin treatment substantially decreased the viability
of the laryngeal cancer Hep-2 cells (A) and did not affect that normal HuLa-PC
cells (B). The IC50 dose of ononin against Hep-2 cells was recorded at 25 µM.
Outcomes were signified as mean ± SD of triplicate values. Outcomes were
examined using one-way ANOVA and Tukey post hoc tests. “*” denotes p <
0.05 compared with control.
July 2022 | Volume 12 | Article 939646
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Ononin Treatment Increased the
Apoptosis in the Hep-2 Cells
The influence of ononin on the apoptosis in the Hep-2 cells was
inspected by dual staining and findings were presented in
Figure 2A. The ononin treatment (25 and 50 mM) remarkably
augmented the apoptosis in the Hep-2 cells (higher yellow/
orange fluorescence). The Hep-2 cells administered with
ononin (25 and 50 mM) displayed an improved yellow/orange
fluorescence than the control, which indicates the higher
numbers of early and late apoptotic cells (Figure 2A).
Ononin Treatment Elevated the ROS
Generation in the Hep-2 Cells
Figure 2B reveals the outcomes of ononin on the ROS
accumulation in the Hep-2 cells. The ononin treatment (25
and 50 mM) demonstrated the increased ROS generation in the
Hep-2 cells. The Hep-2 cells treated with ononin (25 and 50 mM)
revealed the intense green fluorescence that represents the
occurrence of higher ROS accumulation (Figure 2B). When
Frontiers in Oncology | www.frontiersin.org 4
compared with the 25 µM treatment, the 50 µM ononin
treatment drastically improved the ROS accretion in the Hep-
2 cells.

Ononin Treatment Reduced the MMP
Level in the Hep-2 Cells
The effects of ononin administration on the MMP status of Hep-
2 cells were scrutinized by Rh-123 staining, and findings were
presented in Figure 2C. The ononin treatment (25 and 50 mM)
appreciably decreased the MMP level in the Hep-2 cells when
related to control cells. The Hep-2 cells administered with
ononin (25 and 50 mM) displayed the reduced green
fluorescence, which proves the depleted MMP (Figure 2C).

Ononin Treatment Increased the
Apoptosis in the Hep-2 Cells
The apoptotic inducing ability of ononin on the Hep-2 cells was
studied using PI staining, and findings were portrayed in
Figure 2D. As Figure 2D reveals, the ononin treatment (25
A

B

D

C

FIGURE 2 | Effect of ononin on the apoptosis, ROS accumulation, and MMP level in the Hep-2 cells. The ononin (25 and 50 mM)–treated Hep-2 cells demonstrated
the higher yellow and orange fluorescence than the control cells, which evidenced the occurrence of increased early and late apoptotic events (A). The ononin (25
and 50 mM)–treated Hep-2 cells exhibit a bright green fluorescence, which confirms the improved ROS accumulation (B). The Hep-2 cells treated with ononin (25
and 50 mM) revealed a depleted green fluorescence than the control cells, which evidenced the suppressed MMP level (C). The increased red fluorescence was
noted on the ononin (25 and 50 mM)–treated Hep-2 cells than the control cells, which proved the increased apoptotic cell death in the Hep-2 cells (D).
July 2022 | Volume 12 | Article 939646
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and 50 mM) remarkably improved the apoptosis in Hep-2 cells,
which is confirmed by the improved red fluorescence. The Hep-2
cells administered with ononin (25 and 50 mM) displayed the
intense red fluorescence that indicates the increased
apoptosis (Figure 2D).

Ononin Reduced the Cell Adhesion in the
Hep-2 Cells
The impact of ononin on the cell adhesion of Hep-2 cells was
inspected, and outcomes were represented in Figure 3. The
ononin treatment effectively increased the cell death in the
Hep-2 cells, which was witnessed by the Trypan blue staining.
The cells administered with the ononin (25 and 50 mM)
demonstrated the higher cell death when compared with control.

Ononin Treatment Increased the TBARS
and Depleted the Antioxidants in the
Hep-2 Cells
The effects of ononin on the TBARS level, GSH level, and SOD
activity were scrutinized using kits, and the results were
displayed in Figure 4. The TBARS level was drastically
elevated on the ononin (25 and 50 mM)–supplemented Hep-2
cells when related to the control. The ononin supplementation
(25 and 50 mM) also depleted the GSH level and SOD activity in
the Hep-2 cells (Figure 4). These findings evidenced that the
ononin improved oxidative stress in the Hep-2 cells via,
depleting the antioxidant mechanisms.

Ononin Treatment Decreased the
JNK/ERK/p38 Signaling Pathway in
the Hep-2 Cells
The expressions of JNK1/2, ERK1/2, p38, PI3K1/2, and Akt in
the Hep-2 cells were inspected using RT-PCR, and outcomes
were revealed in Figure 5. The ononin remarkably blocked the
JNK/ERK/p38 signaling in the Hep-2 cells. The ononin
treatment (25 and 50 mM) demonstrated the decreased
expressions of JNK1/2, ERK1/2, p38, and PI3K1/2 in the Hep-
2 cells. The ononin also improved the Akt expression in the Hep-
2 cells (Figure 5). These findings demonstrated that the ononin
inhibited the JNK/ERK/p38 signaling pathway in the Hep-2 cells.
Frontiers in Oncology | www.frontiersin.org 5
DISCUSSION

Laryngeal cancer is a general head and neck malignant tumor
with a poor prognosis and survival rate (24). Lifestyle habits
comprising drinking and smoking, biliary tract ailments, and
gastroesophageal reflux can elevate the laryngeal cancer risks (25,
26). Presently, surgical resection along with radio/chemotherapy
is the first-line treatment approach for laryngeal cancer. The
patients with developed stage are susceptible to recurrence and
metastasis subsequently surgery, which results in a poor
prognosis. In addition, the adverse effects of chemotherapeutic
agents also restrict their anticancer efficiency (27). Hence, the
current study focuses to explore the in vitro antitumor action of
ononin against the laryngeal cancer Hep-2 cells. Our findings
confirmed that the ononin substantially inhibited the Hep-2 cell
growth. In addition, the ononin did not affect the viability of
normal HuLa-PC cells, which proves the selective toxicity of
ononin against laryngeal cancer cells.

Apoptosis is a highly regulated cell necrotic event that
performs critical functions in manifold biological mechanisms
in normal tissues. The faults in apoptosis could enhance the
tumor progression and make tumor cells highly resistant to
therapy. In this aspect, the elusion of apoptosis is a remarkable
phenomenon in cancers (28). Essentially, cancer cells display
lessened apoptotic events that lead to assisting the progression
and metastasis of cancer cells (29, 30). Tumor cells evade the
normal apoptosis and continue to multiply, obstructing the
normal cells or tissue functions, which can lead to death. Thus,
stimulating apoptosis has been regarded as a hopeful option to
hinder tumors (31). Furthermore, the important aim of clinical
oncology is the improvement of treatment strategies enhancing
the potential removal of tumor cells via triggering apoptosis
(32). In this research, we witnessed that the ononin triggered the
apoptotic cell death in the Hep-2 cells, which is witnessed by the
outcomes of dual staining and PI (Figures 2A, D).

Several investigations were proved that the array of anticancer
agents triggers apoptosis via its oxidative effects, like depleting
cellular antioxidant mechanisms and/or elevating ROS
accumulation (33). Although overaccumulation of ROS is
tightly connected to mitochondrial dysfunction, it participates
in the extrinsic and intrinsic cascades. In addition, the
FIGURE 3 | Effect of ononin on the cell adhesion of Hep-2 cells. The increased Trypan blue–stained cells in the ononin (25 and 50 mM)–supplemented Hep-2 cells
displayed higher cell death when compared with control.
July 2022 | Volume 12 | Article 939646
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accumulation of aberrant ROS has straight connections in
causing the oxidative injury of DNA (34). Hence, these
annotations propose that an elevation in ROS accumulation in
tissues/cells is an imperative phenomenon for enhancing tumor
cell necrosis. Regulating intracellular ROS status could
proficiently kill tumor cells and suppress the adverse effects of
radio/chemotherapy, and it is presently regarded as the primary
means of tumor management (35). Several previous studies
already demonstrated that many natural compounds are well
known to increase the intracellular ROS production and lead to
Frontiers in Oncology | www.frontiersin.org 6
cell death in cancer cells (36–38). Likewise, we found that the
ononin treatment substantially augmented the intracellular ROS
status in the Hep-2 cells, thereby leading to oxidative stress
mediated cell death (Figure 2B).

PI3K/AKT axis is participated in mediating the cell
multiplication, cell cycle, and apoptosis (39). In cancer cells, the
PI3K axis is highly stimulated (40). The stimulated AKT
phosphorylate Bad enhances the antiapoptotic protein
expressions, in that way hindering apoptosis via the
mitochondrial pathway (41). In addition, AKT can hinder
apoptosis via triggering various signaling proteins like Nuclear
factor kappa B (NF-kB) (42). Consecutively, inhibiting this
signaling cascade may efficiently enhance the tumor cell
apoptosis to exhibit anticancer activity. It was already stated that
stimulation of the PI3K/Akt cascade not only improves the
multiplication and metastasis of tumor cells but also provokes
the chemoresistance toward chemotherapy (43–45). Interestingly,
our outcomes revealed that the PI3K/AKT axis in the Hep-2 cells
was substantially blocked by the ononin (Figure 5).

The GSH and SOD are the prime antioxidants that guard the
cells/tissues against oxidative stress (46). The basal status of ROS
could sustain the normal cell homeostasis; low and chronic status
of ROS enhances mitosis and improves genomic uncertainty to
stimulate the incidence and development of cancers (47); high
and acute ROS levels damage macromolecules and consequently
provoke apoptosis, ferroptosis, and necrosis. Hence, the elevated
ROS levels in cancer cells and defects in antioxidant systems
FIGURE 5 | Effect of ononin on the JNK/ERK/p38 signaling pathway in the
Hep-2 cells. The mRNA expressions of JNK1/2, ERK1/2, p38, and PI3K1/2 in
the ononin (25 and 50 mM)–treated Hep-2 cells were remarkably decreased
when compared with control. Outcomes were signified as mean ± SD of
triplicate values. Data were examined using one-way ANOVA and Tukey post
hoc tests. “*” and “#” denote p < 0.05 compared with control.
FIGURE 4 | Effect of ononin on the TBARS and antioxidants in the Hep-2 cells. The ononin (25 and 50 mM)–administered Hep-2 cells demonstrated the improved
TBARS and depleted GSH level and SOD activity than the control. Outcomes were signified as mean ± SD of triplicate values. Data were examined using one-way
ANOVA and Tukey post hoc tests. “*” and “#” denote p < 0.05 compared with control.
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make tumor cells highly vulnerable to ROS inflection (48). Our
findings from the current study proved that the ononin
treatment remarkably enhanced the TBARS level and depleted
the GSH level and SOD in the Hep-2 cells, thereby facilitating
oxidative stress-mediated cell death (Figure 4).

As described earlier, MAPK signaling cascades mediate several
cellular events like apoptosis. Manifold reports have recognized
that JNK/p38 MAPK signaling axis is actively participated in cell
necrosis, whereas the Extracellular Signal-regulated Kinase (ERK)
cascade is connected with cell survival (49). As described, oxidative
stress triggers c-Jun N-terminal kinase (JNK) expression and
deactivates the anti-apoptotic protein expressions, although it
stimulates the pro-apoptotic protein expressions (50). The
stimulation of c-Jun N-terminal kinase (JNK) and p38 is
essential for apoptosis, and ERKs are connected to the tumor
cell multiplication and resistance toward apoptosis. The p38
MAPK cascade is stimulated by inflammatory mediators,
environmental stress, and several other mitogens (51). The c-Jun
N-terminal kinase (JNK) signaling axis actively participates in
manifold cellular events where it mediates a variety of cellular
mechanisms like multiplication, apoptosis, differentiation, and
others (52, 53). The Extracellular Signal-regulated Kinase (ERK)
signaling cascade was tightly connected to the multiplication,
variation, and apoptosis in tumor cells (54). The abnormal
stimulation of the Extracellular Signal-regulated Kinase (ERK)
cascade is essential for the incidence and development of several
tumors. Hence, novel agents that target the Extracellular Signal-
regulated Kinase (ERK) signaling axis can signify the efficient and
notable active drugs for tumor treatment (55).

The improvement of tumor cell resistance demonstrates the
main difficulty during the monotherapy with ERK/MAPK
inhibitors. The improvement of resistance frequently arises due
to the ERK/MAPK crosstalk with other signaling cascades like
PI3K/Akt signaling. Furthermore, many reports highlight the
Frontiers in Oncology | www.frontiersin.org 7
critical functions of activating the ERK/MAPK cascade during
cell necrosis initiation in a wide variety of tumor cells (56).
Interestingly, we found that the mRNA expressions of JNK1/2,
ERK1/2, and p38 in the Hep-2 cells decreased by the ononin
administration (Figure 5). These findings suggest that the
ononin can block the JNK/ERK/p38 signaling in the Hep-2 cells.
CONCLUSION

Together, our results confirmed that ononin could prevent cell
growth, stimulate cytotoxicity, and trigger apoptosis in the Hep-
2 cells. Most prominently, our outcomes revealed that ononin
can block the JNK/ERK/p38 signaling axis in the Hep-2 cells and
induce apoptosis. However, the exact therapeutic roles of ononin
against laryngeal cancer need to be confirmed in the future with
further research. In the future, additional works in this context
are needed for the development of a new chemotherapeutic agent
for the management of laryngeal cancer.
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