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Glioma, one of the most common malignant tumors in the nervous system,

is characterized by limited treatment, high mortal i ty and poor

prognosis. Numerous studies have shown that lncRNAs play an important

role in the onset and progression of glioma by acting on various classical

signaling pathways of tumors through signaling, trapping, guiding, scaffolding

and other functions. LncRNAs contribute to the malignant progression of

glioma via proliferation, apoptosis, epithelial-mesenchymal transformation,

chemotherapy resistance, ferroptosis and other biological traits. In this paper,

relevant lncRNA signaling pathways involved in glioma progression were

systematically evaluated, with emphasis placed on the specific molecular

mechanism of lncRNAs in the process of ferroptosis, in order to provide a

theoretical basis for the application of lncRNAs in the anticancer treatment

of glioma.

KEYWORDS

lncRNAs, glioma, phenotypes, ferroptosis, mechanism
Introduction

Human glioma, histologically originates from the neuroectoderm and is recognized

as the most prevalent and lethal intracranial tumor, accounting for more than 50% of

cerebral tumors (1, 2). Based on the malignancy characteristics, glioma can be classified

as WHO grade I-IV. In addition, the latest version of the WHO classification divides
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glioma into more biologically and molecularly defined

pathological subtypes (3). Currently, glioma is still difficult to

treat. Although the current therapeutic schemes have advanced

in operation, radiotherapy and chemotherapy, the prognosis of

glioma patients still remains pessimistic due to the high rates of

relapse and inevitable metastasis (4). Thus, it is critical to

determine the exact molecular mechanisms leading to glioma

onset and progression.

Long non-coding RNAs (lncRNAs) are the molecules that

are more than 200 nucleotides in length and have no/little

protein-coding functions/potentials and/or lack open reading

frames. LncRNAs can modulate gene expression at the

transcriptional or post-transcriptional levels (5), and several

lines of evidence have shown that lncRNAs have been

associated with the occurence and development of many

human tumors, including glioma. More specifically, lncRNAs

are involved in modulating the development of malignant

glioma cells by altering cellular proliferation, apoptosis, drug

resistance and ferroptosis (6). LncRNAs have been associated

with the onset and development of many human malignant

tumors, including glioma.

Ferroptosis is a cell death pathway characterized by iron

dependency and excessive lipid peroxidation, making it unique

in comparison to other cell death process such as apoptosis,

necrosis and pyroptosis. According to the recent 2018 consensus

derived from the nomenclature committee on cell death,

ferroptotic cell death is a type of regulated cell death (RCD),

in contrast to accidental cell death (ACD) which is caused by

physical, chemical or other factors (7). Ferroptosis is a double-

edged sword that plays a dual role in tumors via damage-

associated molecular patterns (DAMPs) (8, 9). In this review,
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we summarized the functions and mechanisms of lncRNAs in

the genesis and malignant development of glioma. We conclude

that lncRNAs play a crucial role in glioma ferroptosis,

contributing to deeply understand glioma pathogenesis and

provide future directions for others.
Classification and molecular
mechanism of lncRNAs

According to their position in the reference genome,

lncRNAs can be classified into the following five categories:

sense, antisense, bidirectional, intronic and intergenic (10).

According to their mechanism of action, lncRNAs can be

divided into five functional types, and each lncRNA can

coexist with multiple functions (Figure 1). 1) Molecular

guide. LncRNAs act as molecular guides of ribonucleoprotein

complexes to specific sites on chromatin (11) . 2)

Scaffolds. LncRNAs bind different effector molecules as

binding scaffolders of protein complexes, and combine with

these effector proteins to jointly regulate gene transcription in

time and space (12). 3) Signals. LncRNAs stimulate a variety of

signaling molecules to regulate their downstream signaling

pathways during cell transcription (13). 4) Competitive

endogenous RNAs (ceRNAs).

LncRNAs can be used as miRNA sponges that contain

miRNA binding sites where miRNAs are sequestered,

inhibiting miRNA target genes (14). 5) Molecular decoys.

LncRNAs can act as molecular decoys via allosteric binding to

specific proteins to inhibiting the function of downstream

proteins (15).
FIGURE 1

The mechanisms of lncRNAs. ① Molecular guide; ② Scaffolds; ③ Signals; ④ CeRNAs; ⑤ Molecular decoys.
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LncRNAs regulate the malignant
progression of glioma

Abnormal expression of lncRNAs in glioma has been

revealed to be interrelated tightly with the prognosis of glioma

patients including overall survival (OS) and survival quality. For

instance, lncRNA ROR1-AS1 was up-regulated in glioma and

indicated a poor clinical outcome. Kaplan–Meier curves

indicated that the 5-year survival rate of glioma patients was

obviously higher in patients with lower ROR1-AS1 expression

(16). Moreover, LINC01494 was over-expressed in glioma and

was associated with a poor prognosis in glioma patients

(17).Chen et al. analyzed the relationship between the

expression of lncRNA CPS1-IT1 and the pathological

characteristics of glioma, and found that low expression of

lncRNA CPS1-IT1 led to elevated WHO grade and poor

prognosis (18). In addition, the expression of lncRNA CASC7

was related to glioma progression and WHO stage, and was

positively correlated with patient prognosis (19).
LncRNAs and the proliferation of glioma

As one of the most important biological characteristics of

tumor cells, cellular proliferation determines the occurrence and

development of tumors. Previous studies have shown that

lncRNAs ultimately affect the proliferation of glioma cells

through a series of downstream pathways (Table 1).

P21, as a cyclin-dependent kinase inhibitor encoded by the

CDKN1A gene, inhibits the formation of the CDK2-CDK1

complex and mediates the G1 phase arrest of p53- dependent

cell cycle. Numerous studies have shown that lncRNAs regulated

the cell cycle by affecting the expression of p21 protein, leading

to the proliferation of glioma cells. For example, a study (20)

comparing 108 glioma to control tissue samples found that

lncRNA SNHG20 was highly expressed in glioma tissue and
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negatively correlated with patient prognosis. Further study of the

specific mechanism showed that lncRNA SNHG20 accelerated

the G0/G1 cycle by reducing p21 transcription, ultimately

leading to the glioma cell proliferation. LncRNA SNHG3 was

also highly expressed in glioma tissues and promoted the

proliferation of glioma cells. It recruited EZH2 to the

promoters of KLF2 and p21, and epigenetically inhibited KLF2

and p21 (21).

Moreover, lncRNA SNHG6 and SNHG16 promoted the

proliferation of glioma cells via reducing p21 mRNA levels

(22, 23). In addition to small nucleolar RNA host gene

(SNHG), lncRNA RP11-732M18.3 induced the degradation of

p21 and increased the proliferation of glioma cells. It recruited

14-3-3b/a to UBE2E1, and the binding of 14-3-3b/a to UBE2E1

enhanced the degradation activity of UBE2E1 on p21 via

ubiquitination (24).

Another important molecular pathway activated during the

development of human cancers, including glioma, is the Wnt/b-
catenin signaling pathway (31, 32). LncRNA ADAMTS9-AS1

was confirmed to be involved in the positive regulation of Wnt/

b-catenin signaling pathway in glioma, leading to glioma cell

proliferation (25). Zhou et al. showed that lncRNA H19, as a

ceRNA, directly bound to miR-342 and inhibited its expression.

Knockdown of miR-342 in turn promoted Wnt5a and b-catenin
expression to positively regulated the Wnt5a/b-catenin signaling

axis and glioma cell proliferation (26). Similarly, lncRNA

CTBP1-AS2 also functioned as a ceRNA and specifically

bound miR-370-3p to inhibit its expression. Sequestration of

miR-370-3p by CTBP1-AS2 prevented miR-370-3p 3’UTR

binding and disinhibition of Wnt7a, and miR-370-3p

knockdown activated Wnt7a/b-catenin signaling. Both actions

accelerated the proliferation of glioma cells (27).

Several investigations have demonstrated that inhibition of

the PI3K/AKT signaling pathway blocked cellular proliferation

and played an anti-tumor role by inhibiting the cell cycle and

inducing apoptosis (33, 34). For instance, lncRNA SNHG20
TABLE 1 Representative lncRNAs and related signaling pathways in glioma proliferation.

LncRNA Expression Downstream Targets Proliferation References

SNHG20 upregulated P21, CCNA1 promote (20)

SNHG3 upregulated EZH2, KLF2, P21 promote (21)

SNHG6 upregulated P21 promote (22)

SNHG16 upregulated P21, caspase 3/9, cyclinD1/B1 promote (23)

RP11-732M18.3 upregulated 14-3-3b/a, UBE2E, P21 promote (24)

ADAMTS9-AS1 upregulated Wnt/b-catenin pathway promote (25)

H19 upregulated miR-342, Wnt5a/b-catenin pathway promote (26)

CTBP1-AS2 upregulated miR-370-3p, Wnt7a/b-catenin pathway promote (27)

SNHG20 upregulated PTEN/PI3K/AKT pathway promote (28)

XIST upregulated miR-126, IRS1/PI3K/Akt pathway promote (29)

LBX2-AS1 upregulated PI3K-Akt-GSK3b pathway promote (30)
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promoted the activation of the PI3K/AKT signaling pathway and

accelerated the proliferation of glioma cells by inhibiting PTEN

(28). LncRNA XIST, a molecular sponge of miR-126, promoted

glucose metabolism and led to the glioma cell proliferation

through regulation of the IRS1/PI3K/Akt pathway (29).

LncRNA LBX2-AS1 knockdown caused a significant decrease

in both GSK3b and Akt phosphorylation, suggesting that it

promoted cell proliferation by activating the PI3K-Akt-GSK3b
pathway (30).
LncRNAs and apoptosis in glioma

Apoptosis, or programmed cell death, is strictly regulated at

the genetic level, resulting in the orderly and efficient elimination

of damaged cells (35). As an important biological process of cell

metabolism, apoptosis is affected by many factors and is involved

in the activation, expression and regulation of a series of genes.

Dysfunctional apoptosis is closely related to tumorigenesis.

At present, lncRNAs have been confirmed to activate or

inhibit the apoptosis of glioma cells through downstream

molecules (Table 2).

Traditionally, p53-induced apoptosis was considered a main

mechanism that inhibited tumor development by regulating

downstream target genes. At present, numerous P53 target

genes are involved in apoptosis regulation, which can be

mainly divided into two categories: death receptor family and

the bcl-2 family. Numerous studies have shown that lncRNAs

regulated the expression and degradation of p53 through a

variety of downstream molecules, thus affecting the glioma cell

apoptosis. LncRNA FOXD2-AS1 was significantly upregulated

in glioma tissues and mainly distributed in the nucleus. By

binding to EZH2, FOXD2-AS1 weakened the recruitment ability

of p53, thus inhibiting glioma cell apoptosis and promoting

malignant progression of glioma (36). LncRNA SNHG20

increased MDM2 level by binding miR-4486, which enhanced

the degradation of P53 protein and ultimately inhibited the

apoptosis of glioma cells (37). In addition, studies have
Frontiers in Oncology 04
confirmed that p53 binds to the lncRNA ST7-AS1 promoter to

increase its transcription. Subsequently, lncRNA ST7-AS1

regulated p53 expression by binding to PTBP1, and forming a

positive feedback loop to inhibit the progression of invasive

glioma (38).

Apoptosis is regulated by many genes, among which the bcl-

2 and caspase families are the most important. Bcl-2 and bax

genes are important regulatory apoptotic genes that act

antagonistically to each other in apoptosis regulation, and

caspase-3 is a critical apoptotic execution protease. Numerous

studies have proved that lncRNAs regulate the apoptosis of

glioma cells by acting on them. Specifically, LncRNA ANCR

regulated PTEN expression via binding and interacting with

EZH2, thus inhibiting the apoptosis of glioma cells. Moreover,

high expression of lncRNA ANCR reduced bax expression and

promoted bcl-2 expression to produce an anti-apoptotic effect

(39). Similarly, lncRNA LOC101928963 inhibited PMAIP1

expression, which also induced bcl-2 and reduced bax

expression, and ultimately inhibited the apoptosis of glioma

(40). Furthermore, lncRNA GAS5 increased Caspase-3/7 activity

and promoted apoptosis via regulating GSTM3 (41). LncRNA

PCED1B-AS1, on the other hand, inhibited caspase-3 activity

via miR-19-5p/PCED1B axis, thereby activating glioma

proliferation and limiting apoptosis (42).

A large amount of evidence has confirmed the strong

correlation between P53 and lncRNAs, and these lncRNAs

regulate tumor apoptosis as regulatory factors or effectors of P53.

In addition, Liu et al. reported multiple lncRNAs expression levels

under various antitumor drugs. By detecting the expression changes

of lncRNAs in doxorubicin and resveratrol treated glioma cells,

MIR155HG was up-regulated in response to resveratrol-induced

apoptosis, GAS5 was up-regulated during doxorubicin-induced

apoptosis, and MEG3 and ST7OT1 were up-regulated under

apoptosis induced by both agents (43). These results indicate that

lncRNAs can be used as targets of multiple chemotherapy drugs to

promote glioma cell apoptosis, and a more complete lncRNAs

action network is conducive to the development of more

therapeutic targets and new chemotherapy drugs.
TABLE 2 Representative lncRNAs and related signaling pathways in glioma apoptosis.

LncRNA Expression Downstream Targets Apoptosis References

FOXD2-AS1 upregulated EZH2, P53 pathway inhibit (36)

SNHG20 upregulated miR-4486, MDM2-P53 pathway inhibit (37)

ST7-AS1 downregulated PTBP1, Wnt/b-catenin pathway promote (38)

ANCR upregulated PTEN, EZH2, Bax, Bcl-2 inhibit (39)

LOC101928963 upregulated PMAIP1 inhibit (40)

GAS5 downregulated GSTM3, Caspase 3/7 promote (41)

PCED1B-AS1 upregulated miR-19-5p, PCED1B inhibit (42)
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LncRNAs and the EMT process in glioma

Epithelial-mesenchymal transformation (EMT) refers to the

transformation of epithelial-to-mesenchymal cells and is

recognized as an integral part of glioma invasion and

migration. EMT is characterized by the loss of cell adhesion,

changes in cytoskeletal components and the acquisition of

migration and invasion characteristics (44). In addition to the

invasion process, apoptosis, chemotherapy and immunotherapy

resistance during glioma progression are also involved in EMT

(45). EMT regulation is a complex network that includes

multiple signaling pathways involving the TGFb family, Wnts,

Notch, EGF, HGF, FGF and HIF. Numerous studies have

confirmed that lncRNAs regulated the EMT process of glioma

cells through downstream pathways (Table 3).

Zinc-finger E-box-binding homeobox 1 (ZEB1) is an

important regulator of EMT. LncRNA was known to function

as a ceRNA to regulate ZEB1 viamultiple pathways in regulation

of EMT process of glioma cells (46). LncRNA linc00645, for

instance, played a key role in TGF-b-triggered glioma cell EMT

through competing with miR-205-3p and promoting the

expression of downstream molecule ZEB1 (47). LncRNA

UCA1 partially rescued the inhibitory effect of miR-204-5p on

ZEB1 via binding and inhibiting miR-204-5p, which promoted

the EMT process of glioma cells (48). Hypoxia-induced glioma

cells upregulated lncRNA HOTTIP and sponge inhaled

endogenous miR-101, resulting in increased ZEB1 expression

and promoting EMT process (49). LncRNA HOXC-AS2 formed

a positive feedback loop with ZEB1 through miR-876-5p to

regulate the EMT in glioma, providing a potential therapeutic

target for glioma prevention (50).

The Wnt signaling pathway also plays an important

biological role in EMT in glioma. In this sense, lncRNA

CTBP1-AS2 regulated the Wnt7a-mediated EMT by binding

miR-370-3p (27), whereas lncRNA H19 inhibited EMT Wnt/b
-catenin pathway (51).

In conclusion, a variety of lncRNAs can regulate the EMT

process of glioma through ZEB1, which is closely related to

tumor metastasis and drug resistance. ZEB1, a zinc-finger

transcription factor induces EMT by regulating E-cadherin

and vimentin. In-depth understanding of the molecular
Frontiers in Oncology 05
mechanism of lncRNAs control of EMT can not only reveal

the process of metastatic drug resistance of tumor cells, but also

provide new therapeutic targets and treatment options for

effective cancer treatment.
LncRNAs and TMZ resistance in glioma

Chemotherapy is a common postoperative treatment

strategy for glioma treatment (52). Temozolomide (TMZ) is a

second-generation oral alkylating agent that can easily cross the

blood-brain barrier, therefore it is the standard first-line

chemotherapy agent in the clinical treatment of glioma (53,

54). TMZ exerts its antitumor effects mainly through inducing

base mismatch, DNA repair aberration, DNA chain break and

cell death (55). However, TMZ can only slightly improve the

survival of patients with glioma, because many patients develop

resistance to TMZ, resulting in poor or no response to it (56).

At present, a string of studies have described the mechanism

of glioma drug resistance to chemotherapy, and these

mechanisms may involve lncRNAs (Table 4) and the b-
catenin signaling pathway. LncRNA RMRP modulated TMZ

resistance in glioma by regulating ZNRF3 levels and the Wnt/b-
catenin signaling pathway to form a positive feedback loop (57).

LncRNA MIR155HG was highly expressed in glioma tissues and

promoted glioma resistance to TMZ by binding PTBP1 to

regulate the Wnt/b-catenin pathway (58). It was found that

lncRNA SOX2OT reduced the methylation level of SOX2 by

interacting with ALKBH5, thus improving the SOX2 expression

and activating the Wnt5a/b-catenin signaling pathway to

promote TMZ resistance in glioma cells (59). In addition,

lncRNA SNHG15 also activated the b-catenin signaling

pathway by promoting SOX2 expression (60).

TMZ resistance in glioma cells may be epigenetically

regulated by lncRNAs. For example, one report showed that

lncRNA SNHG12 was activated by DNA methylation in the

promoter region CpG island, and lncRNA SNHG12 regulated

the MAPK/ERK signaling pathway and G1/S cell cycle transition

through competitive binding of miR-129-5p. Thus, DNA

methylation of lncRNA SNHG12 ultimately regulated TMZ

resistance in glioma cells (61).
TABLE 3 Representative lncRNAs and related signaling pathways of EMT process in glioma.

LncRNA Expression Downstream Targets EMT References

linc00645 upregulated miR-205-3p, ZEB1 promote (46)

UCA1 upregulated miR-204-5p, ZEB1 promote (47)

HOTTIP upregulated miR-101, ZEB1 promote (48)

HOXC-AS2 upregulated miR-876-5p, ZEB1 promote (49)

CTBP1-AS2 upregulated miR-370-3p, Wnt7a/b-catenin pathway promote (27)

H19 upregulated Vimentin, ZEB1, Wnt/b-Catenin pathway promote (50)
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Postoperative temozolomide chemotherapy has become the

standard treatment for glioma. However, acquired TMZ

resistance limits the treatment of patients with glioma,

especially relapsing glioma. As mentioned above, some

lncRNAs are associated with glioma drug resistance, which

involves not only intracellular processes but also factors in the

gliomamicroenvironment. Elucidate the molecular mechanism of

TMZ resistance, which is helpful to rationally design the

combined treatment plan to block TMZ chemotherapy resistance.
LncRNAs and ferroptosis in glioma

As a matter of fact, iron is an essential nutrient and

microelement for cell growth, no exception for cancer cells.

Moreover, iron-dependent ferroptosis induces inflammation

reaction to promote the initiation and advancement of cancers

in early stages. On the other hand, cancer can be restrained by

anti-cancer immune response triggered by ferroptosis and the

release of damage-associated molecular pattern (DAMPs). Up to

now, lncRNAs owing to diversities and complex functions is

thought to be closely related to ferroptosis of various diseases

based on explosive growing studies. Zhang et al. found that (62)

curcumenol could hinder the progression of lung cancer by

slowing down the multiplication and accelerating cell death as

an effectual component of Wenyujin. Finally, they verified that

lncRNA H19 could enhance the transcription activity of ferritin

heavy chain1 (FTH1), a biomarker of ferroptosis, by interacting

with miR-19b-3p as a competent endogenous RNA. Shi et al.

found that (63) lncRNA AAB expressed highly and increased Fe2+

level to exert antitumor effect in cardiac microvascular endothelial

cells (CMECs). Furthermore, they demonstrated that lncRNA

AAB caused the disturbance between MMP9 and TIMP1 balance

by sponging miR-30b-5p in CMECs. They even constructed a

nanocomplex delivering si-lncRNA AAB into CMECs to provide

a potential treatment method for cardiac hypertrophy patients.

Besides, Luo et al. found that (64) lncRNA RP11-89 heightened

the migration and expansion of bladder cancer via the miR-129-

5p/PROM2 axis. It is acknowledged that prominin2 (PROM2) is

the key molecule to inhibit ferroptosis. Evidence showed PROM2

executed a crucial role in the traffic of iron mediated by transferrin

and altered the sensitive of cancer cells to ferroptosis.
Frontiers in Oncology 06
The metabolism of iron

Iron is one of the most indispensable metals for humans.

Biological iron participates in various metabolic processes,

including cellular proliferation and death, especially ferroptotic

cell death. Intracellular iron exists in two oxidative states, Fe2+

and Fe3+, which can be randomly converted into different forms.

Iron can be transported by binding to serum transferrin (TF) or

lactotransferrin as Fe3+. Endocytosis occurs when serum TF

binds to transferrin receptor (TFRC), allowing Fe3+ to be

released into the cell. In contrast, lactotransferrin can directly

shift iron into the cytoplasm (65). TFRC is an important

component for iron uptake in the membrane, which can

govern the labile iron pool (LIP) by conveying Fe3+ into the

cytoplasm to promote various biological activities. Fe3+ is

reduced into Fe2+ by STEAP3 once it enters the cytoplasm,

and Fe2+ is stored in the LIP. Fe2+ is important for metabolic and

biochemical processes, such as energy metabolism in the

mitochondria. TFRC actions alter intracellular iron content,

Fe2+ levels and reactive oxygen species (ROS) levels. Ye et al.

found that (66) TFRC rescued the reduction in iron, Fe2+ and

ROS concentrations caused by YTHDF1 knockdown in

hypopharyngeal squamous cell carcinoma (HPSCC) cells. The

study also showed that (67) TFRC might also intervene in

glutathione peroxidase 4 (GPX4)-dependent ferroptosis. GPX4

is a key molecule that modulates ferroptosis. In 2021, Ma et al.

found that (68) lncRNA RP1-86C11.7 could interact with hsa-

miR-144-3p to increase the expression level of TFRC. RP1-

86C11.7 enhanced proliferation, migration and progression in

glioma. Consequently, accumulation of unstable LIP leads to the

overproduction of lipid peroxidation, which is another vital

process of ferroptosis in addition to iron metabolism.
Lipid peroxidation

Lipid peroxidation is a characteristic of ferroptosis that is

driven by free radicals, including ROS and reactive nitron species

(RNS) (69). During lipid peroxidation, oxidants attack lipids,

such as polyunsaturated fatty acids (PUFAs), to produce lipid

hydroperoxides (LOOHs) and reactive aldehydes that rely on the

catalysis of the ALOX family (70). ROS consist of superoxide
TABLE 4 Representative lncRNAs and related signaling pathways of TMZ resistance.

LncRNA Expression Downstream Targets TMZ resistance References

RMRP upregulated ZNRF3, Wnt/b-catenin pathway promote (56)

MIR155HG upregulated PTBP1, Wnt/b-catenin pathway promote (57)

SOX2OT upregulated SOX2, Wnt5a/b-catenin pathway promote (58)

SNHG15 upregulated miR-627-5p, CDK6, SOX-2 promote (59)

SNHG12 upregulated miR-129-5p, MAPK1, E2F7 promote (60)
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anion (O2·-), hydroxyl radicals (HO·), hydrogen peroxide

(H2O2) and singlet oxygen (O2), which are generated by

insufficient reduction of oxygen during hypoxia or in response

to other physical and chemical reactions. There are two

pathways that produce ROS. One is the NADPH oxidase

(NOX) pathway. Another is the Fenton reaction, in which Fe2

+ interacts with H2O2 to produce Fe3+, HO·and OH-. In return,

O2·- interacts with Fe3+ to produce Fe2+. The entire process is

called the Haber-Weiss cycle (70). These free radicals contribute

to oxidative stress and damage proteins and nucleic acids, a

process closely related to the carcinogenic potential in malignant

diseases. Bountali et al. demonstrated that (70) lncRNA MIAT

knockdown promoted the accumulation of ROS and enhanced

cell apoptosis to further influence other cancer-related genes in

glioma. It was highly possible that MIAT exerted its effectiveness

on ferroptosis by changing ROS levels in glioma. Ahmadov et al.

found that (71) N-acetyl cysteine (NAC), a ROS scavenger, could

reverse the phenotype caused by the decline of ROS level due to

lncRNA HOTAIRM1 knockdown in glioma cells. What’s more,

they elucidated that intracellular ROS decrease mediated by

HOTAIRM1 contributed to the radiation resistance in glioma.

Lulli et al. found that (72) miR-370-3P weakened the

proliferation and invasion by directly inhibiting lncRNA

NEAT1 in glioma. NEAT1 encouraged the activation of HIF1-

a and HMGA1, which were both connected to oxidative stress in

glioma. Currently, lncRNA NEAT1 is commonly an oncogene in

cancers. Zhen et al. found that (73) lncRNA NEAT1 could be a

tumor-enhancer by regulating miR-449b-5p/c-Met axis in

glioma. Collectively, these data suggest that the lncRNA

NEAT1 may affect ferroptosis by controlling molecules related

to oxidative stress in glioma. However, the specific mechanisms

by which these lncRNAs affect ferroptosis remain unexplored. In

fact, there are many regulators or pathways that modulate

intracellular ROS content, such as lipophagy, ferritinophagy,

GPX4 and NOXs, and that may be altered by lncRNAs.
Other potential molecular mechanisms
in ferroptosis

The mechanisms of ferroptosis are complicated and obscure.

Many molecules, in addition to those mentioned above, are

involved in this important biological process (8, 70, 74).. As we

all known, glutathione peroxidase 4 (GPX4) is considered as the

gatekeeper and hub molecule in ferroptosis. GPX4 belongs to

Glutathione peroxidases (GPXs) family, which currently

contains GPX1-GPX8. In general, GPXs are involved in the

reduction reactions of H2O2 and small hydroperoxides via

glutathione (GSH) as reductant. Besides, only GPX4 can

catalyze the reduction of hydroperoxides in the complicate

lipids, even located in the biomembranes or lipoproteins. Rich
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evidences (75), have demonstrated GPX4 plays a crucial role in

the process of ferroptosis. GSH, comprised of cystenie, glutamate

and glycine, is required for GPx4 to execute its functions.

Cystine is transported into cells through the protein complex

systmeXc- in plasma membrane which consists of SLC7A11/

xCT (solute carrier family 7 member 11) and SLC3A2 (solute

carrier family 3 member 2). Cystine will be transformed into

cysteine to form GSH once it enters into cells. On the other

hand, GPX4 can catalyze phospholipid hydroperoxides

(PLOOH) to produce phospholipid alcohols (PLOH) and

decrease the stock of lipid peroxidants (69, 70). However, to

inhibit any one step above will suppress the function of GPX4

directly or indirectly to cause the accumulation of PLOOH to

promote ferroptosis. In addition, the stability of SLC7A11 can

also influence the occurrence of ferroptosis. Zhao et al. found

that (76) OTUB1, an ovarian tumor (OTU) family member

deubiquitinase positively regulated the stability of SLC7A11 to

support ferroptosis in glioma. Moreover, Liu et al. found that

(77) CD44, the biomarker of cancer stem cells directed the

process of ferroptosis by promoting the interaction between

OUTB1 and SLC7A11, which suggested that CD44 might be

involved in the progression of ferroptosis. Chen et al. (78) found

that differential expression of lncRNA TMEM161B-AS1

regulated the two ferroptosis-related genes (FANCD2 and

CD44) separately by sponging hsa-miR-27a-3p. They also

confirmed that depletion of FANCD2 and CD44 caused the

accumulation of iron and lipid ROS, suggesting that low

expression of lncRNA TMEM161B-AS1 could promote cell

apoptosis and ferroptosis in glioma. What’s more, Zhang et al.

found that (79) lncRNA OIP5-AS1 inhibited ferroptosis in

prostate cancer with long-term cadmium exposure through

miR-128-3p/SLC7A11 signaling. Obviously, SLC7A11 played a

crucial role in ferroptosis by regulating the transportation of

cystine. As mentioned before, oxidative stress involved

molecules could cause irreversible or lethal damage to cells.

Particularly, NOXs, controlled positively by DPP4/CD26 and

other kinases, constitute part of the membrane-bound enzyme

complexes that transport electrons necessary for the production

of free radicals, including ROS, that promote lipid peroxidation

in ferroptosis (69). Another study also reported that (70) DPP4

was involved in the reduction reaction of O2 to O2·- in a NOXs-

dependent manner.

It is clear that numerous molecules are involved in the

complex process of ferroptosis, yet only a few molecules have

been declared to influence ferroptosis by interacting with

lncRNAs in glioma (Figure 2). Ferroptosis is a newly defined

process of cell death that plays an important role in the

progression of many diseases, especially tumors. Therefore, it

is worth exploring the specific and profound mechanisms

whereby lncRNAs contribute to glioma to provide new

potential targets for therapy.
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Conclusion and prospectives

Glioma is the most prevalent and dangerous CNS tumor

with a very poor prognosis. It is noteworthy that GBM patients

still remain hopeless prognosis even though they were

performed complex treatment scheme combining operation

with radio- and chemo- therapy. More depressingly,

chemotherapy drugs can’t be easily targeted to GBM due to

special location comparing to other non-intra tumors.

Therefore, to find some specific targeted molecules for GBM is

of vital and urgent. To clarify the pathological molecular

mechanisms of GBM is of vital and helps other scientists

further explore corresponding target therapy to some extent.

And we noticed noncoding RNAs, including miRNAs, circRNAs

and lncRNAs play critical and significant roles in suppressing or

provoking the initiation and progression of glioma. In particular,

lncRNAs which is under the spotlight, impact various aspects of

glioma, such as proliferation, invasion, migration, EMT, cell

death, stemness of glioma stem cells and resistance to

radiotherapy and chemotherapy, by interacting with proteins,

mRNAs, enzymes and other noncoding RNAs and interfering

countless signal pathways. Thus, it can be seen lncRNAs indeed

involves in the development and progression of glioma.

However, the specific and precise mechanisms of lncRNAs still

need to be further probed in future. For example, whether

lncRNAs involves in the ferroptosis of glioma or not? And can

lncRNAs put an effect on the ferroptosis progress by some

molecules or similar pathways involved in the proliferation,

EMT, apoptosis and TMZ of glioma?
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Recently, ferroptosis, a novel class of cell death, has attracted

much attention in various diseases. However, few articles have

discussed the mutual interaction between lncRNAs and ferroptosis

in glioma compared with other diseases. Similar relationships

between lncRNAs and ferroptosis found in other diseases may also

be present in glioma. For instance, Mao et al. (80) reported that

lncRNA P53RAA promotes ferroptosis by accumulating iron and

lipid ROS and displacing p53 from the G3BP1-p53 complex.

Simultaneously, P53RAA can decrease the expression of the

metabolic molecule SLC7A11, a regulator of iron concentration.

It is well-known that p53 is a classical tumor suppressor.

Therefore, the following question arises: can p53-related lncRNA

induce ferroptosis in glioma (81)? Besides, He et al. (82) and Shi

et al. (83) built a novel ferroptosis-related lncRNAs panel which

provides some assertive evidence for delving into the relationship

between lncRNAs and ferroptosis in glioma. Meantime, they

released some implications and values for the potential therapy

plan related to immunotherapy for glioma patients.

Glioma is different from other tumors due to its heterogenity

and has a special tumor microenvironment (TME) consisted of

cancer cells and immune cells, including macrophages, nature

killing cells, dendritic cells and et al. The growth of glioma cells is

dependent on the iron element comparing with other non-

malignant cells (84). Moreover, glioma mostly occurred in the

brain and iron is usually transported mediated by TFR into the

brain, which indicated that we can induce the ferroptosis to

consume the iron to prevent the growth of malignant cells.

However, how to achieve it? As mentioned above, lncRNAs can

act various role in the progress of ferroptosis in glioma. If lncRNA
FIGURE 2

The molecular mechanism and some lncRNAs regulation of ferroptosis.
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X (which means any suitable lncRNA), high tissue-specificity,

were found to induce ferroptosis by increasing the iron

concentration or TFR in brain, we can focus on to synthesize a

kind of drug to change the expression of lncRNA X to induce

ferroptosis to obstruct the proliferation of glioma cells. Besides, we

can monitor the change of lncRNA X level in tissue to hint us to

take precautions against the glioma. Furthermore, human brain,

enriched in lipid, is the most susceptible to the progress of

oxidative stress reaction which also are very meaningful to

ferroptosis (85). It is possible for others to develop some related

and helpful therapy plans targeting lncRNAs involved in

ferroptosis followed the same mind above accordingly. Several

works have showed that the links between immune cells within

TME and ferroptosis implicated that some immune therapy

targeting ferroptosis might can be explored (86, 87). More

promisingly, it has been verified that CD4, CD8 and CD36 T

cell within TME can induce the ferroptosis by accumulating the

lipid ROS (88), which suggest we can mainly concentrate on some

immune-related lncRNAs involved in the ferroptosis to scout the

links and the potential therapy. In addition, the induction of

ferroptosis can prevent the formation of acquired drug-resistance

which is significant and meaningful clinically.

Ferroptosis is a complex process and a newly discovered

modality of cell death. The interactions between ferroptosis and

other processes of cell death have been explored, as the

mechanisms of ferroptosis have become increasingly clearer.

Wang et al. (89) found that LINC00618 knockdown reduced

early apoptosis. In addition, LINC00618 can inhibit GPX4, a key

regulator of ferroptosis, and increase the concentration of

intracellular iron and lipid ROS. Ultimately, they suggested

that LINC00618 can increase ferroptosis in a manner

dependent on cell apoptosis. Therefore, we suggest that

lncRNAs might act as bridge molecules between ferroptosis and

apoptosis, including cellular and necrotic apoptosis.

Moreover, this evidence highlights the potential crosstalk or

interrelationship amongst cell apoptosis, necrosis, autophagy

and ferroptosis that may occur in or to contribute to many

diseases and should be the focus of future studies.

In conclusion, lncRNAs play a crucial role in the occurrence

and development of glioma. Targeting these lncRNAs may help

glioma patients to obtain potential treatment benefits. In

addition, the identifications of lncRNAs may contribute to the

early detection and diagnosis of glioma. However, in order to

fully understand the function of lncRNAs in the neoplastic

process of glioma, several key issues must be solved. For
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example, since lncRNAs have various functions and can

regulate a variety of cellular processes, it is necessary to analyze

the specific molecular mechanisms of it. In addition, whether the

participation of lncRNAs in clinical application has sufficient

reliability and sensitivity or not remains to be verified.We believe

that the use of robust sequencing techniques can shed light on

the roles of lncRNAs in glioma development and could accelerate

the clinical application of lncRNAs in diagnosis, treatment, and

prognostic evaluation of glioma.
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