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Background: Osteosarcoma is a common metastatic tumor in children and

adolescents. Because of its easy metastasis, patients often show a poor

prognosis. Recently, researchers have found that platelets are closely related

to metastasis of a variety of malignant tumors, but the role of platelets related

characteristics in osteosarcoma is still unknown. The purpose of this study is to

explore the characteristics of platelet-related subtypes and cell infiltration in

tumor microenvironment.

Methods:We collected osteosarcoma cohorts from TCGA and GEO databases,

and explored the molecular subtypes mediated by platelet-related genes and

the related TME cell infiltration according to the expression of platelet-related

genes in osteosarcoma. In addition, we also explored the differentially

expressed genes (DEGs) among different molecular subtypes and established

a protein-protein interaction network (PPI). Then we constructed a platelet

scoring model by Univariate cox regression and least absolute shrinkage and

selection operator (Lasso) cox regression model to quantify the characteristics

of platelet in a single tumor. RT-PCR was used to investigate the expression of

six candidate genes in osteosarcoma cell lines and normal osteoblast lines.

Finally, we also predicted potential drugs with therapeutic effects on platelet-

related subtypes.

Results: We found that platelet-related genes (PRGs) can distinguish

osteosarcoma into two different platelet-related subtypes, C1 and C2. And the

prognosis of the C2 subtype was significantly worse than that of C1 subtype. The

results of ESTIMATE analysis and GO/KEGG enrichment showed that the

differences between different subtypes were mainly concentrated in immune

response pathways, and the immune response of C2 was inhibited relative to

C1. We further studied the relationship between platelet-related subtypes and

immune cell infiltration. We found that the distribution of most immune cells in C1

subtype was higher than that in C2 subtype, and there was a correlation between

C1 subtype and more immune cells. Finally, we screened the PRGs related to the
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prognosis of osteosarcoma through Univariate Cox regression, established

independent prognostic platelet characteristics consisting of six genes to predict

the prognosis of patients with OS, and predicted the drugs that may be used in the

treatment of osteosarcoma. RT-PCR was used to verify the expression of

candidate genes in osteosarcoma cells.

Conclusion: Platelet scoring model is a significant biomarker, which is of great

significance to determine the prognosis, molecular subtypes, characteristics of

TME cell infiltration and therapy in patients with OS.
KEYWORDS
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Introduction

Osteosarcoma (OS) is the most common bone cancer among

children and adolescents (1), accounting for nearly two-thirds of

all primary bone malignancies (2, 3). OS, characterized by poor

prognosis and a high disability rate (4), is mainly caused by

metastasis, particularly lung metastasis. According to follow-up

data, the five-year survival rate of patients with primary OS

reduces from 75% to 35% once lung metastasis occurs (5–7).

Although advances in the treatment of OS have significantly

improved the survival rate of these patients (8), the complexity

and instability of the genome exert a significant impact on

treatment outcomes (9, 10). Therefore, early diagnosis,

treatment, and prognosis of OS need to be optimized from the

perspective of molecular genetics.

As an important part of osteosarcoma microenvironment,

platelets participate in the growth and metastasis of osteosarcoma

and have great potential in osteosarcoma targeted therapy (11). More

than 30% of the patients with malignant solid tumors also show

simultaneous thrombocytosis, which decreases their survival rates

(11, 12). This phenomenon occurs as tumor-derived IL-6 stimulates

an increase in thrombopoietin levels, resulting in thrombocytosis

(13). Increased platelet activity can promote tumor growth and

metastasis and reduce the effectiveness of immunotherapy on

tumor cells (14). Tumor cells induce platelet aggregation, and

platelets wrap tumor cells in the thrombus to prevent them from

being attacked by natural killer (NK) cells, thereby reducing the

tumor cell surveillance by immunogenic cells (15, 16). Platelets can

also help tumor cells enter the circulatory system, and adhere to the

endothelium, resulting in their metastases (17). Moreover, platelets

can produce TGF-b, which not only inhibits IFN-g and decreases the
cytotoxicity of NK cells but also increases the tumor cell

metastases (18).

However, as an important part of tumor microenvironment,

the role of platelets in osteosarcoma (OS) has not been fully studied.
02
Therefore, we identified two different platelet subtypes in OS

through TCGA and GEO databases, and systematically analyzed

the expression of PRGs and their impact on patients’ prognoses and

TME. Next, we evaluated the molecular characteristics, prognostic

significance, and abundances of infiltrating immune cells in

different subtypes. Additionally, we predicted the potential drugs

for the treatment of OS based on the DEGs between different

groups divided by platelet scores, and finally verified the expression

of six candidate genes between OS and normal cell lines through in

vitro experiments. Our findings will help expand the knowledge of

the role of platelets in OS and facilitate the development of new

therapeutic interventions.
Methodology

Data acquisition

The sample data were screened from TCGA and GEO

databases. The inclusion criteria were as follows: (a) determined

as an OS sample; (b) availability of survival status and

corresponding survival time, and (c) expression of more than half

of the genes. We screened 85 samples from the Target database,

which comprised the training set, and 53 from the GSE21257

dataset in the GEO database, comprising the verification set. The list

of platelet-related genes (PRGs) was obtained from the MSigDB

gene set (https://www.gsea-msigdb.org) using the keyword

“platelet”. We finally obtained 480 PRGs for further analyses.
Unsupervised clustering of PRGs

First, the expression profiles of 480 PRGs in patients with OS

were extracted and 112 prognostic PRGs were obtained using

Univariate Cox regression. According to the levels of expression
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https://www.gsea-msigdb.org
https://doi.org/10.3389/fonc.2022.941724
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shu et al. 10.3389/fonc.2022.941724
of these 112 genes, 85 samples in TCGA were classified by

unsupervised clustering for further analyses. The consensus

clustering (CC) algorithm was used to determine the number of

clusters to identify unrecognized subtypes in OS (19), and the

“ConsensusClusterPlus” package was also used. “MaxK” was

selected as 10, and “Pearson” was used for the “clustering

method” and “KM” for the “cluster distance”. The Stromal,

Immune, and Estimate scores, along with tumor purity in

malignant tissues were obtained using the ESTIMATE algorithm.
Functional and pathway
enrichment analyses

Using the R software, the enrichment score for each sample in

the gene set from GSVA was computed (20), and

“c2.cp.kegg.v7.4.symbols.gmt” was extracted from MSigDB to

evaluate relevant pathways and molecular mechanisms. The

minimum and the maximum gene sets were set from 5 to 5000,

respectively. We calculated the enrichment score for each sample in

the gene set and obtained the enrichment matrix. Different pathways

were identified between the two clusters using the “limma” package.
Assessment of the tumor
microenvironment (TME) in OS

From previous studies, 28 types of immune cell-related genes

were identified (21), and the corresponding immune cell

infiltration based on the expression of these genes was

predicted for the samples by ssGSEA. Thus, the infiltration

profile of these immune cells was obtained.
Differentially expressed genes (DEGs)
between platelet subtypes

DEGs between different platelet subtypes were analyzed

using the “limma” package. In order to increase the accuracy,

the following screening conditions were set: |logFC| > 2, p < 0.05.

Then, a protein-protein interaction network (PPI) of DEGs was

constructed using STRING and visualized on Cytoscape. Kyoto

Encyclopedia of Genes and Genomes (KEGG) and Gene

Ontology (GO) enrichment analyses were conducted for the

enrichment analysis of DEGs. ClueGO, a plug-in of Cytoscape,

was also used to conduct the enrichment of these DEGs.
Construction and validation of the
prognostic model based on PRGs

Univariate Cox regression was used to screen prognostic PRGs

in the GSE21257. To narrow the screening range, commonly
Frontiers in Oncology 03
shared genes between training and validation sets were obtained

using a Venn diagram. And eight common PRGs were obtained.

LASSO-Cox regression analysis further reduced the preliminary

screening range of prognostic PRGs. The prognostic model was

constructed as follows: risk score = ∑ in (CoefixXi), where X

represents the level of expression of each PRG and CoefixXi

represents the coefficient of relative levels of prognostic PRGs

based on the LASSO regression model. The risk score for each

sample was evaluated using a prognostic model. The R package,

“maxstat” (maximally selected rank statistics with severe p-value

approximations version: 0.7-25), was used to calculate the optimal

cut-off for the risk score; set the minimum andmaximum numbers

of grouped samples to >25% and <75%, respectively. We then

obtained the optimal cut-off and used it as the critical value for the

high- and low-risk groups. Those patients having a score above the

critical were included in the high-risk group, while the remaining

were included in the low-risk group. Furthermore, R package,

“survival”, was used to analyze the prognostic differences between

the groups, and the significance of these differences was evaluated

using a log-rank test. Additionally, the GSE21257 dataset from

GEO was the validation set used to verify the predictive effect of

our prognostic model.
Real-time RT-PCR

Total RNA was extracted from various OS cells and the

normal cell line, hfoB1.19, using TRIzol (Invitrogen) reagent,

and reverse-transcribed to synthesize the cDNA using the Prime

Script TMRT kit (Takara, RR047A). The SYBR Premix Ex in the

Taq II Kit was used and PCR amplification was performed

following the manufacturer’s instructions. The primer sequences

used were listed in Table 1.
DEGs in the risk groups and
drug prediction

The DEGs between the high- and low-score groups were

screened using the “limma” package, and we selected the top 50

upregulated and downregulated genes showing the highest

significant difference. Drugs interacting with DEGs were

predicted using DGIdb (https://dgidb.org), a database of

information on the association of genes with their known or

potential drugs. The screening conditions were set as follows: (a)

clear interaction between genes and drugs and (b) drugs

published previously in the literature.
Statistical analysis

All statistical analyzes were performed using R 4.0.5 (https://

www.r-project.org/). The Wilcoxon rank-sum test was used to
frontiersin.org
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verify the results of the ESTIMATE analysis. Kaplan–Meier curves

were used to compare the differences in survival rates between the

risk groups, and Univariate Cox regression analysis was performed

to screen the relevant genes. Statistical significance was set at p <

0.05. *p < 0.05, **p < 0.01, ***p < 0.001.
Results

Identification of platelet subtypes in OS

Platelet-related subtypes and platelet characteristics were

analyzed. TCGA cohort consisted of 85 patients, and their

survival and clinical conditions were recorded. Univariate Cox

regression analysis was used to screen for 112 prognostic PRGs
Frontiers in Oncology 04
in TCGA (Supplementary Figure 1), whereby their expressions

in 85 OS samples were analyzed by unsupervised clustering

(Figure 1A). The results suggested that at k = 2, the differences

between subgroups were significant, indicating that the 85

patients with OS could be divided into two groups, namely C1

and C2 (Figure 1B). C1 and C2 comprised 53 and 32 cases,

respectively. Survival analysis showed that the prognoses were

significantly different between the two platelet subtypes. C1

showed a clear survival advantage, whereas patients in C2 had

relatively poor survival (Figure 1C). Additionally, the

ESTIMATE algorithm was used to estimate the TME of the

samples and comparisons were made between the subtypes. OS

samples in C1 had higher stromal, immune, and estimated

scores, and lower tumor purity relative to those in C2

(Figures 1D–G). This further explained the phenomenon that

the survival condition of C2 is worse than that of C1.
TABLE 1 The Primer pairs utilized in Real-Time PCR.

Genes Primer- Forward (5’-3’) Primer-Reverse (5’-3’)

TGFB2 GAGTGCCTGAACAACGGATT CCATTCGCCTTCTGCTCTTG

GNG12 ACAATATAGCCCAGGCAAGGAG CACTCCTGGCATGTTCCTCAC

KIF21B GGTGTCATCAAGGTCTGGAAC CTGGAGGCTGTGAAGATATGC

ANXA5 CAAGCCTGGAAGATGACGTG TCAATTCCAGCTCAGGGTCT

GAS6 TGGCATGTGGCAGACAATCT ATACCTCCCACGGTCAGGTT

MAPK1 GGCTGTTCCCAAATGCTGAC AACTTGAATGGTGCTTCGGC

GAPDH ACAACTTTGGTATCGTGGAAGG GCCATCACGCCACAGTTTC
B C

D E F G

A

FIGURE 1

Unsupervised clustering of PRGs. (A) Clustering heatmap of prognosis-related platelet genes, 85 samples of TCGA were divided into 2
groups (K = 2); (B) Consensus Cumulative Distribution Function (CDF) plot under k = 2–10, where the number of k represents the number of
groups after unsupervised clustering; and (C) Survival of patients in C1 and C2; (D–G) ESTIMATE Score, Immune Score, Stromal Score,
Tumor Purity of C1 and C2 (**p < 0.01, ***p < 0.001).
frontiersin.org

https://doi.org/10.3389/fonc.2022.941724
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Shu et al. 10.3389/fonc.2022.941724
Comprehensive analysis of platelet
DEGs in OS

To further investigate the effects of subtypes on patients,

DEGs between C2 and C1 were screened. With “|logFC| > 2 and

p < 0.05” as the screening condition, 169 DEGs were obtained,

all of which were downregulated in C2 compared with in C1

(Figure 2A). Using STRING and Cytoscape, a PPI network was

constructed for these DEGs and using ClueGO, enrichment

analysis was performed (Figure 2B). Finally, we extracted three

key modules and visualized all enrichment results (Figures 2C,
Frontiers in Oncology 05
D). Additionally, GO and KEGG analyzes were performed to

assess the enrichment features for the 169 DEGs. Blood

microparticles, defense responses, immune responses, immune

system processes, positive regulation of immune system

processes, and other biological functions related to immunity

were significantly enriched in GO analysis (Figure 3A). KEGG

analysis revealed that the DEGs were significantly enriched in

complement and coagulation cascades, hematopoietic cell

lineage, and chemokine signaling pathway (Figure 3B). Since

the expression of DEGs in C2 was lower than that in C1, these

pathways were more likely inhibited in C2. The inhibition of
B

C

D

A

FIGURE 2

Enrichment results of DEGs. (A) DEGs between C1 and C2 subtypes (p<0.05, |logFC>2|); (B) Protein-Protein interaction (PPI) network of 169
DEGs between C1 and C2 subtypes; (C) Key modules in PPI selected according to MCODE; (D) ClueGo enrichment results of DEGs (**p < 0.01).
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blood microparticles and complement and coagulation cascades

probably implied that the synthesis and release of platelets and

the activation processes in the C2 subtype were inhibited (22,

23). Thus, we thought that patients with the C2 subtype have

lower platelet content or lowered function than those with

subtype C1.

These results also showed that the immune function in C2

was inhibited as compared to that in C1. Platelets are involved in

immune processed and are significantly related to immune

responses (24, 25). Therefore, we reasonably speculated that

the patient’s immune status represented the level of platelets to a

certain extent. Therefore, the subtypes according to PRGs could

significantly distinguish the status of platelets in patients, and

this feature could be expressed through their immune statuses.
Immune cell infiltration between
platelet subtypes

To further examine the relationship between platelets and

immunity, GSVA was performed and different pathways were

enriched between subtypes. For example, as compared to C1

with a clear prognostic advantage, B-cell receptor, T-cell

receptor, and nod-like receptor signaling pathways were

significantly downregulated in C2 (Figure 3C). These pathways

are highly correlated with immune functions, indicating that the

immune function in C2 was inhibited relative to C1. The

infiltration in TME between the platelet subtypes was analyzed
Frontiers in Oncology 06
using ssGSEA (Figure 3D). Among the 28 immune cells, 20 were

significantly enriched in C1, including activated B cells, activated

CD8 T cells, central memory CD4 T cells, effector memory CD8

T cells, and gamma delta T cells. This phenomenon verified our

conjecture. Further studies on the correlation between tumor

subtypes and immune cells showed greater abundance correlated

significantly with C1. Activated CD8 T cell, Gamma delta T cell,

Regulatory T cell, CD56 bright natural killer cell, CD56 dim

natural killer cell, Eosinophil, Macrophage and Natural killer T

cell were only significantly related to C1 (Figure 4). These

immune cells play a crucial role in anti-tumor effect and

leading to a good prognosis for patients (26–29).

Combined with the above findings, we believe that the

immune function in C2 was indeed inhibited relative to C1.

This is consistent with our previous conclusion, whereby, the

platelet content or function of patients with the C2 subtype was

lower than those with the C1 subtype, which was marked by an

inhibited immune status relative to the patients with the

C1 subtype.
Construction of model based on
platelet characteristics

The prognostic value of PRGs was examined. To improve

the accuracy of our results, Univariate Cox regression was

performed to screen prognostic PRGs in the validation set

GSE21257 (Supplementary Table 1). The prognostic PRGs
B

C D

A

FIGURE 3

Assessment of the tumor microenvironment in patients with OS. (A) Differences in immune cell infiltration between C1 and C2 subtypes;
(B) Enrichment heatmap of GSVA analysis, navy blue indicates C1 and dark color means C2; (C) Gene Ontology (GO) enrichment results of
DEGs; and (D) Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of DEGs. *p < 0.05,**p < 0.01, ***p < 0.001 ns
means no significant difference.
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from the two cohorts were intersected, eight common prognostic

PRGs were screened (Figure 5A). LASSO Cox regression was

performed to further identify prognostic genes and six genes

were selected, MAPK1, GNG12, KIF21B, ANXA5, GAS6, and

TGFB2. We found that MAPK1, GNG12, ANXA5, GAS6, and

TGFB2 have been reported to be involved in platelet activation

and function regulation (30, 31). For example, MAPK1 is related

to the activation pathway of platelets (32) and ANXA5 can

inhibit the production of thrombin and participate in the

regulation of platelet aggregation (33). However, the

relationship between KIF21B and platelets has not been

studied. Then we establish a platelet prognostic model based

on the expression of these six common prognostic genes in

TCGA (Figures 5E, F), they were used to define the platelet

score. We also analyzed the correlations among the six genes and

found a significant co-expression relationship (Figures 5B, C).

According to the best intercept value, 85 patients with OS were

divided into the high- (n = 30) and low- (n = 55) platelet score

groups. The relationship between platelet score and survival
Frontiers in Oncology 07
status with platelet groups was assessed, and the results were

consistent with our expectations. The survival of patients in C1

was significantly better than those in C2, and most of them had a

low platelet score (Figure 5D). This validated the effectiveness of

our six gene model. The ESTIMATE results showed that in the

low platelet score group, the ESTIMATE, immune, and stromal

scores were significantly higher; tumor purity was higher in the

cohort with high platelet scores (Figures 5G–J). This indicated

that in the cohort with a low platelet characteristic score, the

infiltration of immune and stromal cells was higher, consistent

with our previous conjecture that platelet characteristics were

related to the TME.

Moreover, the relationship between these six genes and

immune cells was assessed. We found that most of the six

candidate genes showed correlation with immune cells, and

GAS6 showed the strongest correlation with immune cells in

C1 subtype (Figure 6). This indicates that GAS6 may play a

great role in the immune difference between C1 and

C2 subtypes.
FIGURE 4

Correlation between C1 and C2 groups and 28 immune cells. The line width represents the r value of mentel; the line color represents the p
value of mentel analysis results; the numbers in the ellipse represent Pearson’s coefficients.
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Verification of the model based on
platelet characteristics

In all patients, a high platelet score was associated with a

lower survival rate, and the Kaplan-Meier curve indicated

significant differences between the groups (Figure 7A). Our

prognostic model was further evaluated using time-dependent

ROC analysis. The area under the ROC curve (AUC) was 0.63,

0.74, and 0.72 for 1-, 3-, and 5 years, respectively (Figure 7C).

Moreover, the heatmap showed that the expression of the six

candidate genes correlated negatively with patient survival

(Figure 7E).

Similarly, the results in the validation set, GSE21257,

suggested significant differences in survival between the groups

with high- and low platelet scores (Figure 7B). The AUC was

0.78 for 1-year, 0.79 for 3-year, and 0.80 for 5-years (Figure 7D).

Heatmap also showed that the expression of the six candidate

genes correlated negatively with patient survival (Figure.7F).

Multivariate Cox regression analysis was used to determine the

relationship between the platelet score and clinical features. We
Frontiers in Oncology 08
found that the platelet score model was an independent prognostic

factor (Figure 7G). Similar results were obtained in GSE21257

(Figure 7H). These results suggested that platelet characteristics

were independent prognostic factors for OS and had a good power

to effectively predict the prognosis of OS patients.
Expression of six genes in different
OS cell lines

To study the gene expression patterns in tumor versus

normal cell lines, total RNA from different tumor cell lines

(143B, U2OS, and MG63) and a normal osteoblast cell line

(hFOB 1.19) was extracted. The levels of mRNA expression of

TGFB2, GNG12, KIF21B, ANXA5, GAS6, and MAPK1 were

assessed (Figure 8). The expression of ANXA5, GAS6, and

MAPK1 in the tumor cells was significantly higher than that

in the normal cell line. However, the expression of GNG12 in the

tumor cells was significantly lower than that in the normal

cell line.
B C D

E
F

G H I J

A

FIGURE 5

Construction of platelet characteristic score model. (A) Venn map screening of platelet related genes associated with prognosis in both TCGA
and GSE21257 cohorts; (B, C) Platelet characteristic score model composed of six candidate genes screened using the LASSO analysis with
minimal lambda; (D) Heatmap of correlation among six candidate genes; (E) The co-expression relationship of six candidate genes explored by
Genemania; (F) Sanggi diagram showing the relationship between subtype, survival status, and platelet score; and (G–J) ESTIMATE Score,
Immune Score, Stromal Score, and Tumor Purity of a high-platelet group and low-platelet score groups. **p < 0.01, ***p < 0.001.
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Drug prediction based on platelet
characteristic DEGs

To examine the clinical effects of platelet characteristics on

OS treatment, DEGs between the high and low platelet score

groups in the TCGA cohort were screened. To prevent the

omission of important genes, our screening condition was set

at “|logFC| > 1 and p <0.05”. The top 50 most significantly

upregulated and downregulated genes were selected,

respectively. And these 100 genes were uploaded to the DGIdb

database (https://dgidb.org) for drug prediction. The drug

screening conditions were as follows: (a) clear relationship

with the target gene and (b) the effects of the drug on target

genes reported previously in the literature. Finally, 15 drugs with

the top scores were obtained (Table 2).
Discussion

Chemotherapy has shown progress in the treatment of OS in

recent years. However, drug resistance in tumor cells is inevitable

during chemotherapy (34). Previous studies have also identified

distinct molecular subtypes of OS. However, significant

heterogeneity and limitations remain (35, 36). Therefore, more

accurate typing of OS is required for targeted treatment and to

improve the survival rate of these patients. The effects of platelets

on osteosarcoma are diverse and complex. For example,

osteosarcoma cells usually show high platelet activation inducing
Frontiers in Oncology 09
characteristics, which can induce platelet activation. Activated

platelets secrete LPA and CLEC, which enhance the invasive

ability of osteosarcoma through the LPA-LPAR1 axis and the

interaction between platelet CLEC-2 and osteosarcoma

podoplanin (37, 38). And tumor cells can release soluble

mediators such as ADP (16) to activate platelets and form

polymers through TCIPA on the surface of tumor cells, so that

platelets can wrap tumor cells, thus avoiding the attack of immune

cells in the circulatory system (39). Therefore, platelet-cancer cell

interaction and activated platelets releasing bioactive molecules are

very important for hematogenous metastasis of osteosarcoma.

Moreover, there are a large number of growth factors stored in

the Alpha (a) granules of platelets. When platelets contact with

osteosarcoma cells, they secrete a variety of growth factors, such as

TGF- b, and VEGF, which can induce osteosarcoma cells to

express tissue factor and promote tumor growth (40–42). But

another thing worth noting is that platelets also have an anti-tumor

effect. Platelets can inhibit tumor growth by transporting mir-24

into cancer cells targeting mt-Nd2 and Snora75 (43). This indicates

that the regulatory effect of platelets on tumor growth is multiple.

Additionally, platelets also have a great impact on the treatment of

patients with osteosarcoma. For example, platelet-derived growth

factor recepter can be used as a target for imatinib, mesylate, and

other inhibitors in the treatment of osteosarcoma (44, 45).

Therefore, the study of platelet characteristics may provide new

targets for cancer therapy (46–48). However, the relationship

between OS and platelets remains unclear. In our study, we

examined the expression of PRGs in OS and the comprehensive
FIGURE 6

Correlation between six candidate genes and 28 immune cells. The line width represents the r value of mentel; The line color represents the p
value of mentel analysis results; the numbers in the ellipse represent Pearson’s coefficients.
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FIGURE 7

Verification of platelet score characteristics. (A) Survival difference between high-rating and low-rating groups in the TCGA cohort; (B) Survival
difference between high-rating and low-rating groups in the GSE21257 cohort; (C) Time-dependent ROC analysis of TCGA cohort; (D) Time-
dependent ROC analysis of the GSE21257 cohort; (E) Candidate gene expression and survival heatmap in TCGA cohort; (F) Candidate genes
expression and survival heatmap in the GSE21257 cohort; (G) Forest diagram of multivariate results of platelet characteristic score model and
clinical factors in TCGA cohort; and (H) Forest diagram of multivariate results of platelet characteristic score model and clinical factors in the
GSE21257 cohort.
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role of the TME. We found that OS could be divided into two

subtypes based on the expression of 112 PRGs. The prognostic

differences, stromal, estimate and immune scores and tumor purity

between the subtypes were studied, as were the differences between

pathway enrichment and DEGs. The results showed differences in

the abundance and activity of platelets among different subtypes,

evidenced by differences in immune statuses and prognoses of

patients. GSVA showed immune-related pathways were

significantly downregulated in C2. According to previous studies,
Frontiers in Oncology 11
platelets are closely associated with cancer immunity (49). These

can act against apoptosis through proliferation signals, and

angiogenic factors can enhance tumor growth (50). Therefore,

two platelet subtypes and the TME cell infiltration were assessed.

The degree of infiltration of most immune cells in C2 was

significantly lower than that in C1, consistent with our previous

conclusion that C2 showed higher immunosuppression as

compared to C1. Further analysis of the relationship between

immune cells and subtypes showed that activated CD8 T cell,
B C

D E F

A

FIGURE 8

Validation of gene expression in normal and tumor samples. (A–F) represent ANXA5, GAS6, GNG12, KIF21B, MAPK1, and TGFB2 respectively. (*p < 0.05,
**p < 0.01, ***p < 0.001 ns means no significant difference).
TABLE 2 Information of the top 15 drugs filtered by Interaction score.

Gene Drug Interaction_types Interaction score PubMed ID

SOST ROMOSOZUMAB inhibitor 63.65 28755782

PTGFR TRAVOPROST agonist 48.67 19929706|18983226

PTGFR LATANOPROST agonist 19.97 15037111|9733584

PTGFR TAFLUPROST agonist 14.98 21858491

PTGFR BIMATOPROST agonist 14.98 14733708|17724194

SLC6A2 REBOXETINE inhibitor 9.09 12388649

SLC6A2 DEXMETHYLPHENIDATE inhibitor 7.14 11160413|18480678

SLC6A2 GUANETHIDINE inducer 6.5 16126010|8710929

CA3 ACETAZOLAMIDE inhibitor 4.9 20605094|1909176

SLC6A2 ATOMOXETINE inhibitor 4.42 14709944|16142049

SLC6A2 PHENMETRAZINE inhibitor 3.9 12106802|17139284

PTGFR DINOPROST TROMETHAMINE agonist 3.74 8777582

CA3 ETHOXZOLAMIDE inhibitor 3.26 17826101

SLC6A2 DIETHYLPROPION inhibitor 3.25 19897080|17139284

SLC6A2 SIBUTRAMINE inhibitor 3.03 16678551|19475780
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gamma delta T cell, regulatory T cell, CD56 bright natural killer cell,

CD56 dim natural killer cell, eosinophil, and macrophage only

correlated significantly with C1. These immune cells are particularly

important for immune function, especially CD56 bright natural

killer cell and CD56 dim natural killer cell (26). By exploring the

relationship between candidate genes and immune cells, we found

that GAS6 showed a strong correlation with immunity and cells in

C1, which was not reflected in C2 subtype. By working with Alx,

GAS6 can promote immunosuppressive TME and participate in the

recruitment of specific immune cells (50). This may be one of the

reasons for the immune difference between C1 subtype and C2

subtype. However, a more accurate explanation requires

further investigation.

Considering the impact of the platelet score on the prognosis of

OS, a blood platelet model based on the six key platelet genes was

constructed, MAPK1, GNG12, KIF21B, ANXA5, GAS6, and

TGFB2. The growth arrest specific gene 6 product (GAS6) is an

anticoagulant protein related protein that can enhance platelet

aggregation and secretion, thereby enhancing platelet response

(30). Carthamus tinctorius L is a drug widely used in

cardiovascular therapy. As a core gene of platelet activation

pathway, mapk1 can be regulated by Carthamus tinctorius L to

inhibit platelet aggregation (32). Phosphotidylserine (PS) participates

in the activation process of platelets and can regulate the production

rate of thrombin in plasma, while Annexin A5 (ANXA5) can

interact with PS to reduce the concentration of PS and then

inhibit the production rate of thrombin (33). Central regulating

signaling cascade of platelets (CC) mainly regulates the interaction

between exogenous factors and platelets. GNG12 can act on CC and

regulate platelet production (51). Platelet characteristics were used to

quantify the platelet scores. As expected, the platelet score in C2 was

higher than that in C1. The prognosis of patients with low platelet

scores was also better than those with high platelet scores. These

results were verified in GSE21257. Platelet scores can thus be used as

an independent prognostic factor for patients with OS.

As far as we know, this is the first bioinformatic study that reveals

the platelet-related characteristics in OS. We identified platelet-

associated subtypes through platelet characteristic gene pairs and

explored the differences in gene expression, TME, and prognosis

among these subtypes. We believe that the characteristic genes not

only can be used as a prognostic biomarker in clinical settings but

also provide a new direction for the treatment of OS. Moreover, we

also predicted potential therapeutic drugs for the treatment of OS.

Conclusion

Overall, we defined two molecular subtypes with different

prognoses based on PRGs in OS. The platelet scoring model is a

significant biomarker for identifying the prognosis, molecular

subtypes, characteristics of TME cell infiltration, and treatment

of patients with OS. But the relationship between platelets and

immunity at the cellular and molecular levels needs to be

further studied.
Frontiers in Oncology 12
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