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Pancreatic cystic neoplasms (PCNs) are a group of heterogeneous diseases

with distinct prognosis. Existing differential diagnosis methods require invasive

biopsy or prolonged monitoring. We sought to develop an inexpensive, non-

invasive differential diagnosis system for PCNs based on radiomics features and

clinical characteristics for a higher total PCN screening rate. We retrospectively

analyzed computed tomography images and clinical data from 129 patients

with PCN, including 47 patients with intraductal papillary mucinous neoplasms

(IPMNs), 49 patients with serous cystadenomas (SCNs), and 33 patients with

mucinous cystic neoplasms (MCNs). Six clinical characteristics and 944

radiomics features were tested, and nine features were finally selected for

model construction using DXScore algorithm. A five-fold cross-validation

algorithm and a test group were applied to verify the results. In the five-fold

cross-validation section, the AUC value of our model was 0.8687, and the total

accuracy rate was 74.23%, wherein the accuracy rates of IPMNs, SCNs, and

MCNs were 74.26%, 78.37%, and 68.00%, respectively. In the test group, the

AUC value was 0.8462 and the total accuracy rate was 73.61%. In conclusion,

our research constructed an end-to-end powerful PCN differential diagnosis

system based on radiomics method, which could assist decision-making in

clinical practice.

KEYWORDS

radiomics, computed tomography, pancreatic cystic neoplasm, differential diagnosis,
ternary classification model
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Introduction

Pancreatic cystic lesion (PCL) is one of the most common

pancreatic diseases with a prevalence rate as high as 42% (1), and

common pancreatic cystic neoplasms (PCN) accounts for 90.5%

PCL (2). PCN is identified as a group of heterogeneous diseases

with diverse characteristics and different prognosis (3). Serous

cystadenoma (SCN), mucinous cystic neoplasm (MCN), and

intraductal papillary mucinous neoplasm (IPMN) are the three

main types of PCN, accounting for more than 85% of PCN (4).

Because of the different rates of malignant transformation, the

treatment principles of these three PCN subtypes recommended

by the guidelines are variable (3).

Although modern modalities have been ubiquitously

applied, the current diagnostic methods that can identify and

evaluate PCN are still limited. In recent years, endoscopic

ultrasonography–guided fine-needle aspiration (EUS-FNA) has

been performed for cyst fluid analysis (5, 6). It is considered as a

fairly sensitive tool for distinguishing PCN. However, EUS-FNA

is an invasive method. Patients would suffer more pain than the

non-invasive methods, such as computed tomography (CT) and

MRI (7, 8). More importantly, CT and MRI have been widely

applied as parts of health checkup. Compared with MRI, CT is

even more widely used, is typically less expensive, and has less

time for appointment. Unfortunately, SCNs, MCNs, and

branch-duct IPMNs (BD-IPMNs) all demonstrate isolated

cystic masses with low density cyst fluid and mild

enhancement of the cyst wall on CT imaging, leading to a

poor differential diagnosis and assessment even for an

experienced radiologist (9). Moreover, the diagnostic accuracy

rate of CT for PCN is between 40% and 81% (10–13). Thus, a

higher diagnostic rate of contrast CT for PCN would extensively

improve the total PCN screening rate.

Therefore, there is an urgent demand to develop a new non-

invasive biomarker with a high accuracy in PCN diagnosis.

Radiomics, sometimes referred to as “quantitative imaging”, is

an emerging field focusing on disease auxiliary diagnosis or

prognosis prediction and always integrates information such as

genomic, transcriptome, and clinical data (14). After automatic

feature extraction from images based on different algorithms,

radiomics model is validated by support vector machine (SVM)

or other classifiers. Through high-dimensional quantifiable

features from images, radiomics can effectively and

quantitatively evaluate the heterogeneity of images. Radiomics-

assisted CT scan–based systems have ameliorated the accuracy

of differential diagnosis in several organs, such as lung, central

nervous system, rectum, liver, and pancreas (15–19). However,

until now, relatively few studies have focused on PCN by

analyzing SCNs, MCNs, and IPMNs simultaneously.

Thus, the aim of our study is to develop a non-invasive

differential diagnosis system for PCNs based on imaging features

in conjunction with patient’s clinical information.
Frontiers in Oncology 02
Materials and methods

Workflow

The brief workflow of image processing and model

development was illustrated in Figure 1.
Patient selection

This retrospectivestudywasapprovedbyHumanResearchEthics

Committee of our hospital. From December 2013 to August 2022, a

total of 253 patients, including 65 IPMNcases, 124 SCN cases, and 64

MCN cases, were pathologically confirmed as patients with PCN. All

the patients were screened by the following exclusion criteria (shown

in Figure 2.): (i) patients without an available contrast-enhanced CT

(CECT) that could be downloaded from the hospital system; (ii)

patientswithoutapreoperativeCECT1monthbefore the surgery; (iii)

patients without a complete CECT image that contains the whole

pancreas and tumors; and (iv)patients lackoneof the following tumor

markers [CA50, CA125, CA199, and carcinoembryonic antigen

(CEA)]. Finally, 129 patients, including 47 IPMN cases, 49 SCN

cases, and 33 MCN cases, were included in this research.
CT protocols

Patients were told to take quiet respiration to minimize the

artifact disturbance. Then, CT examination was performed on a 64-

detector spiral CT-system (Somantom Definition AS, Siemens,

Erlangen, Germany), providing acquisition capability of 128 slices

with the following scanning parameters: 120 kV, 280 mA, 0.33-mm

slice thickness with an interval of 0.33mm, 1.5 spiral pitch, and tube

rotation cycle of 0.33 s. The four-phase CT images included (1) plain

scan (2), arterial phase (20 to25 s of delay) (3), venousphase (50 to55

s of delay), and (4) delay phase.
Segmentation

All the image segmentations were independently performed by

two 5-year experienced pancreatic surgeons. The readers were both

blinded to the pathologic result. Cases were divided equally to two

readers.After all theworkwasdone, imageswere exchangedbetween

readers and checked again. Any disagreement would be sent to a

director who would make the final decision. The three-dimensional

(3D) Region of Interest (ROI) were completed by ITK-SNAP

(version 3.8.0). According to the National Comprehensive Cancer

Network (NCCN) guidelines (version 2.2019, 9 April 2019), venous

phase imageswere recommendedas thebestphase fordiagnosis (20).

Examples of different patients in the venous phase are shown

in Figure 3.
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Data preprocessing

First, truncate the gray value of the original data to [−100,

240] empirically, which still can fully cover the pancreas in the

scans. Then, normalize it into the range [−1, 1]. Second,

resample all samples to 1 × 1 × 1 mm according to the

physical resolution of the original image. Third, perform the

resample of CT image by bilinear interpolation from XY plane

and XZ plane with python and OpenCV package.
Radiomics feature
extraction methodology

Five steps were applied to extract the radiomics feature.
Frontiers in Oncology 03
1. Randomize the included cases into the training group and the

test group. In each disease, 25% of the cases were randomly selected

into the test group (Table 1). 2. Calculate the 3D images features by

the Pyradiomics package (python 3.6) (21) and statistics clinical

featuresof thedataset. 3.UseDXScorealgorithmas follows toarrange

the feature: ① Calculate each feature’s DXScore. Its mathematical

express ion is D(X) = (mpositive −mnegative)
2=(d2positive + d2negative)

where m and d are the mean value and standard deviation of the

feature X to positive (or negative) samples (22, 23); ② Arrange

features in a descending order of the score. 4. Select features and

constructmodel.The featureswereassessedwithSVMin the training

groupwithfive-fold cross-validation,which is aneffectivemethod for

validating overfitting (24, 25). Briefly, select the first N features, in

turn, to assess the classification performance by five-fold cross-

validation using SVM to obtain the relation of the number of

features and the accuracy of classification (as shown in Figure 4).
FIGURE 1

A general workflow of image processing and model development.
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First, N features were selected under themaximum accuracy. Repeat

the fourth step above 10 times to verify the stability of ourmethod. 5.

The test group was applied to verify the accuracy and robustness of

the model again.

Statistical analysis

Statistical analysis and graph drawing were performed using

SPSS version 26.0 (IBM SPSS Inc., Chicago, IL, USA) andGraphPad

prism version 9.4.1 (GraphPad Software., San Diego, CA, USA). P-

value below 0.05 is considered statistically significant.

Result

Patient information

A total of 129 patients, including 47 IPMNs, 49 SCNs, and

33 MCNs, were analyzed in this study. The difference between

age (P = 9.3 × 10−5), gender (P = 4.0 × 10−6), tumor location

(P = 1.3 × 10−5), CA125 (PSCNs/MCNs= 5.1 × 10−4), CA19-9

(P = 0.044), and CEA (P = 0.001) was statistically significant

among the three categories. More detailed information about the

characteristics of the patients is shown in Table 1.

Selection of radiomics and
clinical features

A total of 950 features, including six significant features (age,

gender, tumor location, CA125, CA19-9, and CEA) in patients’
Frontiers in Oncology 04
clinical information, and 944 features from Pyradiomics

documentation that could be categorized as seven classes (Figure

S1) were extracted in the training group in Section 2.6. The features

were ordered by a DXScore value in a descending order. More

detailed information about ordered features is shown in Table S1.
Construction and validation of
radiomics model

We performed five-fold cross-validation 10 times to construct

models. The standard deviation of area under the receiver operating

characteristic curve (AUC) value (0.0152) and accuracy (ACC) value

(0.0146) proved themodels’ robustness and reliability. Balancedwith

the number of the used features, diagnostic accuracy, andAUCvalue

in each model, we finally chose Model 6 for the following analysis

(Figure 5). The relationship between the number of the used features

and the diagnostic accuracy inModel 6 is shown in Figure 4. All the

selected features’ information is shown in Figure 6.

And the respective AUC values of IPMN, SCN, andMCN have

also reached 0.9083, 0.8622 and 0.8356 (Figure 7). We are were

delighted to find that the overall predictive rate was 74.23% and

predictive rate in IPMNs, SCNsandMCNswere 74.26%, 78.37%and

68.00%, respectively. Confusion matrix was also drawn in Figure 7.

The sensitivity of IPMN, SCN, and MCN were 74.29%, 78.38% and

68.00%. The specificity of IPMN, SCN, and MCN were

91.94%,81.67% and 87.50%.

The classificationmodel was conducted on the test group to test

its robustness and generalization. The ROC curves and detailed

information regarding diagnostic discrepancies between model’s
FIGURE 2

Patients’ enrolment process for this research.
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predictive result anddefinitive histological diagnosis in the test group

are shown in Figure 8. In brief, the overall AUC value and predictive

rate were 0.8462 and 73.61%, respectively, which illustrated the

reliability of our model. The SEN rates of IPMN, SCN, and MCN

in the test groupwere83.33%,75.00%, and62.50%.TheSPECratesof

IPMN, SCN, and MCN in the test group were 95.00%, 80.00%,

and 87.50%.

Least absolute shrinkage selection operator (LASSO)

regression is widely used because of its well performance (26–

29). We compared DXScore algorithm with LASSO regression in

the test group. ACC, AUC, SEN, and SPEC rates were all higher

in DXScore algorithm than that in LASSO regression, especially

13.93% higher in ACC (Table 2).

To conduct a deeper and more detailed research, we also

analyzed the relationship between selected features and each
Frontiers in Oncology 05
patient quantitatively. The distribution of the nine selected

radiomics features in 129 cases, categorized as IPMNs, SCNs, and

MCNs, is shown inFigure6. For abetter visualization,wenormalized

each value of radiomics features bymean and standard deviation. As

is shown in theheatmap, thehigher theDXScorevalueof the features

was, the deeper the colorwas used, anddistinct patterns among three

categories can be observed.
Discussion

Patients with PCN have distinct treatment principles.

Patients with SCNs demonstrate benign preponderance and a

good prognosis (30, 31). Patients are recommended with regular

monitoring and follow-up (32). MCNs, main pancreatic duct
A

B

C

FIGURE 3

Examples of different patients in the venous phase. Tumor regions were drawn with red. (A) CECT image of a 74-year-old man pathologically
diagnosed with IPMN; (B) CECT image of a 61-year-old woman pathologically diagnosed with SCN; (C) CECT image of a 70-year-old man
pathologically diagnosed with MCN.
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IPMNs, and mixed IPMNs show a higher risk of malignant

transformation (33, 34). Surgery is recommended to those

patients before the neoplasms progress to cancer (35).

Although it is the most common type of IPMNs, BD-IPMN

has a relatively low malignant tendency and it does not often

invade the main pancreatic duct. Because of subtle difference in

imaging characteristics, it is currently extremely difficult to

perform differential diagnosis through traditional CT and MRI
Frontiers in Oncology 06
scans. According to the previous studies, the overall preoperative

diagnostic accuracy rates of PCNs by clinicians were 37.3% and

61.0%, with SCN diagnostic accuracy rates of 30.4% and 24.2%,

which is far from satisfactory (26, 36). Thus, we retrospectively

analyzed 129 patients and constructed a DXScore algorithm–

based model with an overall accuracy rate of 74.23%.

In our results, we have screened out a few important features.

Among those radiomics features, “Original shape Sphericity” was
TABLE 1 Characteristics of patients with IPMNs, SCNs, and MCNs.

IPMNs SCNs MCNs P-value

Number of patients
(training group, test group)

47
(35, 12)

49
(37, 12)

33
(25, 8)

Age (mean, range) 64.15 (36–83)#* 57.90 (27–77)& 52.54 (25–79) 9.3 × 10−5

Gender #* 4.0 × 10−6

Male 30 (63.83%) 14 (28.57%) 4 (12.12%)

Female 17 (36.17%) 35 (71.43%) 29 (87.88%)

Tumor location #* 1.3 × 10−5

Head 28 (59.57%) 11 (22.45%) 4 (12.12%)

Neck 11 (23.40%) 11 (22.45%) 5 (15.15%)

Body 5 (10.64%) 9 (18.37%) 9 (27.27%)

Tail 3 (6.38%) 18 (36.73%) 15 (45.45%)

Tumor marker
(mean, range)

CA50 25.05 (0.50, 267.10) 15.75 (0.83, 74.67) 14.34 (2.38, 87.79) 0.192

CA125 27.62 (5.02, 555.30) 5.75& (0.35, 25.60) 19.29 (1.30, 95.01) 0.087

CA19-9 46.20 (2.00, 799.20) 8.88& (0.35, 80.90) 23.99 (2.93, 117.00) 0.044

CEA 3.16# (0.91, 25.21) 13.79& (0.31, 180.0) 1.69 (0.41, 4.30) 0.001
front
# indicates significant difference between IPMNs and SCNs; * indicates significant difference between IPMNs and MCNs; & indicates significant difference between SCNs and MCNs.
Age#, P = 0.012; Age*, P = 2.0 × 10−5; Age&, P = 0.033; Gender#, P = 5.3 × 10−4; Gender*, P = 4.0 × 10−6; Tumor location#, P = 2.5 × 10−4; Tumor location*, P = 4.0 × 10−6; CA125&, P = 5.1 ×
10−4; CA19-9&, P = 0.016; CEA#, P = 0.022; CEA&, P = 0.007.
FIGURE 4

AUC value and diagnosis accuracy constructed with the number of used features. The optimal feature number was 9 with the highest ACC
value of 74.22% and AUC value of 86.87% in Model 6. Moreover, the respective AUC values of IPMN, SCN, and MCN have also reached 0.9083,
0.8622, and 0.8356 (Figure 7). We find that the overall predictive rate was 74.23% and the predictive rates in IPMNs, SCNs, and MCNs were
74.26%, 78.37%, and 68.00%, respectively. Confusion matrix was also drawn in Figure 7. The sensitivity (SEN) rates of IPMN, SCN, and MCN were
74.29%, 78.38%, and 68.00%. The specificity (SPEC) rates of IPMN, SCN, and MCN were 91.94%, 81.67%, and 87.50%.
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the most important one. Sphericity is a measure of the roundness

of the shape of the tumor region relative to a sphere (37). In

general, non-SCNs demonstrate a regular oval shape and usually

hold a smooth contour, whereas SCNs tended to have a

multicystic or lobulated shape. Sahani et al. and Kim et al. also

discovered the importance of surface contours in diagnosing PCN

(38, 39). Because the following seven radiomics features, included

in model (Figure 6), were obtained through wavelet and principal

component analysis that cannot be directly reflected in the

original images, there was no intuitive clinical implication. As

for the clinical features, tumor location was selected by DXScore

algorithm, ranking first among the nine features. Indeed, the

majority of IPMN is located in the head of the pancreas in

traditional analysis, whereas SCN and MCN are often localized

in the body or tail of the pancreas (40–43). Tumor location may

have a more intuitive clinical implication than other clinical

features in PCNs diagnosis. Whereas, five significant ones (age,

gender, CA125, CA19-9, and CEA) were not included in the
Frontiers in Oncology 07
machine learning algorithm. Wei et al. found that gender was an

important SCN diagnostic factor (26). Moreover, there was a

controversial in the relationship between age and PCNs. Kim

et al., Goh et al., and Wei et al. found that age was an insignificant

differential diagnostic factor. Whereas, several other studies have

considered age as an important factor (38, 44, 45). However, those

were finally not selected by DXScore in our study. Therefore, this

is a typical example that artificial intelligence is able to surpass

people’s inherent logic and achieve a better classification result.

For a more precise model and automatic process, there

would be two steps: first is the automatic identification of the

pancreas and second is the construction of models with higher

accuracy. Manual segmentation takes time and effort. Although

the accuracy of automatic pancreas segmentation has been up to

85%, there is a long way before automatic pancreas segmentation

can be applied in clinical practices (46–48). For our sake, we will

further explore in the field of automatic pancreas segmentation

to accelerate the process of clinical application of automatic
FIGURE 5

AUC value, ACC value, and the used feature number of 10 times five-fold cross-validation models. Model 6 was selected because of its suitable
feature number and slightly higher AUC and ACC values. M indicates Model.
FIGURE 6

Heat map of radiomics features and cases in the three categories. The features on y-axis from top to bottom are arranged in a descending
order according to the DXScore value. Right color bar represents color coding of normalized value of each radiomics feature.
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pancreatic disease identification. As for classification algorithm,

several methods have been widely applied in various research

studies: Wilcoxon rank-sum test (WRST), relief, logistic

regression, X2-test, and LASSO. In our study, we applied a

novel DXScore algorithm. Compared with an AUC value of

0.7590 for LASSO in our research, DXScore algorithm achieved

an AUC value of 0.8462.
Frontiers in Oncology 08
In the field of PCN differential diagnosis, most literatures

constructed a binary classification model (26, 28, 49). Only

Dmitriev et al. constructed a four-class classification model for

the diagnosis of IPMNs, MCNs, SCNs, and solid pseudopapillary

neoplasms with convolutional neural network and random

forest classifier. This model reached a diagnostic rate of 95.9%,

64.3%, 51.7%, and 100%, respectively (50). In our ternary
FIGURE 7

ROC curves of IPMN, SCN, and MCN and the total cases for the Model 6. The final AUC values of IPMN, SCN, and MCN were 0.9083, 0.8622, and
0.8356, respectively. In addition, the mean AUC value of five-fold cross-validation was 0.8687. ROC, receiver operating characteristic; AUC, area
under the ROC curve. Relative confusion matrix of the three categories. Right color bar represents color coding of predicative rates from 0 to 1.
TABLE 2 SVM classification performance of selected feature subsets with different methods in the test group. .

Method of Feature
Selection

Number of Selected
Features

ACC AUC SEN SPEC

DXScore 9 0.7361 0.8462 0.6944 0.8522

LASSO 16 0.5938 0.7590 0.5694 0.7944
frontier
ACC, accuracy; AUC, area under the ROC curve; SEN, sensitivity; SPEC, specificity; LASSO, least absolute shrinkage selection operator.
FIGURE 8

ROC curves of IPMN, SCN, and MCN and the total cases in the test group. The final AUC values of IPMN, SCN, and MCN were 0.9250, 0.8167,
and 0.7969, respectively. In addition, the mean AUC value of test group was 0.8462. ROC, receiver operating characteristic; AUC, area under
the ROC curve. Relative confusion matrix of the three categories. Right color bar represents color coding of predicative rates from 0 to 1.
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classification model, the diagnostic rates in the five-fold cross-

validation algorithm of IPMNs, MCNs, and SCNs have reached

74.26%, 78.37%, and 68.00%, respectively, and the diagnostic

rates of IPMNs, MCNs, and SCNs in the test group have reached

83.33%, 75.00%, and 62.50%, respectively. Our model has shown

a feasible performance in the differential diagnosis between

SCNs and MCNs, which is the most difficult one according to

the clinical experience.

Our article also has some limitations. Because of the

ternary classification model, a relatively small number of

patients were included in each category. Because most

patients with pancreatic cysts have no clinical symptoms

and not all the patients require surgical intervention, it is

difficult for a single center to obtain a large number of

pathologically identified cases (51, 52). In the next step, we

will continue to recruit patients, improve the PCNs database

capacity, and further test the extensibility of our model with

multicenter data.

In conclusion, this research preliminarily verified the

application value of radiomics in the differential diagnosis of

pancreatic cystic tumors. With more intensive future research

and the construction of more reliable prediction models,

artificial intelligence technology will greatly help clinicians in

the diagnosis and treatment of diseases. In the future, a large

number of studies are still needed to conduct prospective studies

to further confirm the diagnostic accuracy and application value

of imaging omics in clinical practices.
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