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Characterization of genomic
alterations and neoantigens and
analysis of immune infiltration
identified therapeutic and
prognostic biomarkers in
adenocarcinoma at the
gastroesophageal junction

Yueqiong Lao*, Yuqian Wang, Jie Yang, Tianyuan Liu,
Yuling Ma, Yingying Luo, Yanxia Sun, Kai Li , Xuan Zhao,
Xiangjie Niu, Yiyi Xi and Ce Zhong

Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research
Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College,
Beijing, China
Objectives: Adenocarcinoma at the gastroesophageal junction (ACGEJ) refers

to a malignant tumor that occurs at the esophagogastric junction. Despite

some progress in targeted therapies for HER2, FGFR2, EGFR, MET, Claudin 18.2

and immune checkpoints in ACGEJ tumors, the 5-year survival rate of patients

remains poor. Thus, it is urgent to explore genomic alterations and neoantigen

characteristics of tumors and identify CD8+ T-cell infiltration-associated genes

to find potential therapeutic targets and develop a risk model to predict ACGEJ

patients’ overall survival (OS).

Methods: Whole-exome sequencing (WES) was performed on 55 paired

samples from Chinese ACGEJ patients. Somatic mutations and copy number

variations were detected by Strelka2 and FACETS, respectively. SigProfiler and

SciClone were employed to decipher the mutation signature and clonal

structure of each sample, respectively. Neoantigens were predicted using the

MuPeXI pipeline. RNA sequencing (RNA-seq) data of ACGEJ samples from our

previous studies and The Cancer Genome Atlas (TCGA) were used to identify

genes significantly associated with CD8+ T-cell infiltration by weighted gene

coexpression network analysis (WGCNA). To construct a risk model, we

conducted LASSO and univariate and multivariate Cox regression analyses.

Results: RecurrentMAP2K7, RNF43 and RHOAmutations were found in ACGEJ

tumors. The COSMIC signature SBS17 was associated with ACGEJ progression.

CCNE1 and VEGFA were identified as putative CNV driver genes. PI3KCA and

TP53 mutations conferred selective advantages to cancer cells. The Chinese

ACGEJ patient neoantigen landscape was revealed for the first time, and 58
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potential neoantigens common to TSNAdb and IEDB were identified.

Compared with Siewert type II samples, Siewert type III samples had

significant enrichment of the SBS17 signature, a lower TNFRSF14 copy

number, a higher proportion of samples with complex clonal architecture

and a higher neoantigen load. We identified 10 important CD8+ T-cell

infiltration-related Hub genes (CCL5, CD2, CST7, GVINP1, GZMK, IL2RB,

IKZF3, PLA2G2D, P2RY10 and ZAP70) as potential therapeutic targets from

the RNA-seq data. Seven CD8+ T-cell infiltration-related genes (ADAM28,

ASPH, CAMK2N1, F2R, STAP1, TP53INP2, ZC3H3) were selected to construct

a prognostic model. Patients classified as high risk based on this model had

significantly worse OS than low-risk patients, which was replicated in the

TCGA-ACGEJ cohort.

Conclusions: This study provides new neoantigen-based immunotherapeutic

targets for ACGEJ treatment and effective disease prognosis biomarkers.
KEYWORDS

adenocarcinoma at the gastroesophageal junction, genome and transcriptome,
tumor neoantigens, CD8+ T cells, therapeutic biomarkers, prognostic prediction
Introduction

There were over 1.6 million new cases of esophagogastric

(esophageal, gastroesophageal junction or gastric) cancer and 1.3

million related deaths worldwide in 2020, with esophagogastric

cancer ranking third in terms of incidence and second in terms of

mortality (1). The incidence of adenocarcinoma of the

gastroesophageal junction (ACGEJ) has increased rapidly

worldwide in the past four decades (2). According to the widely

used Siewert classification, ACGEJ is divided into three subtypes

based on the location of the tumor epicenter (3). Siewert type I is

treated as esophageal cancer, while Siewert types II and III are

considered true gastric cardia tumors and gastric tumors. The

National Comprehensive Cancer Network (NCCN) guidelines

recommend surgery for patients with early-stage ACGEJ,

preoperative chemoradiation for patients with locally advanced

ACGEJ, and trastuzumab plus chemotherapy for patients with

HER2-positive metastatic ACGEJ (4, 5). Immune checkpoint

inhibitor (ICI) treatments, such as nivolumab and pembrolizumab

(anti-PD-1 antibodies), have shown encouraging efficacy in patients

with unresectable advanced or metastatic ACGEJ (6). However, the

prognosis of patients with advanced-stage gastric cancer and ACGEJ

remains poor, with a median overall survival (OS) of approximately

1 year (6). Multiple factors, including tumor-specific mutant

antigens (neoantigens) and the tumor immune microenvironment

(TME), may affect the effectiveness of ICIs. Recently, a study from

China demonstrated that Siewert type I tumors and Siewert type II/

III tumors had different driver genes, mutational signatures and

disrupted pathways (7). In our previous study, we performed whole
02
genome and transcriptome sequencing in 124 Chinese ACGEJ

tumors and categorized them as tumor with chromosomal

instability dominated by CNVs and identified alterations

vulnerable to drugs and that could be used as prognostic

biomarkers for ACGEJ patients (8). However, comprehensive

molecular characteristics, especially those of tumor neoantigens,

and of different Siewert types in ACGEJ remain unclear.

Therefore, it is urgent to investigate the molecular characteristics

of ACGEJ patients and identify tumor-specific targets for treatments

and potential prognostic markers.

Neoantigens are generated by various mutation types, including

nonsynonymous single nucleotide variants (SNVs), insertions or

deletions (indels) and gene fusions (9, 10). Neoantigens can be

loaded into MHC class I molecules and recognized by cytotoxic

CD8+ T cells, which increase immune cell infiltration and enhance

the efficacy of cancer immunotherapy (11, 12). Importantly,

neoantigen load has been related to prolonged survival in patients

with melanoma, non-small-cell lung cancer and mismatch repair-

deficient colorectal cancer treated with ICIs (13–16). Neoantigens in

ACGEJ can serve as excellent targets for immunotherapy. Many

previous studies have revealed that neoantigen vaccine treatment is

inhibited by the TME, which impedes the function of immune cells

and even hinders the immune response (17–26). For instance,

regulatory T (Treg) cells can suppress the induction of effective

neoantigen-specific T-cell responses in tumors (17). Neoantigen-

specific resident memory T (TRM) cells induced by therapeutic

vaccination may provide long-term immune surveillance and

prevent disease recurrence (18). In addition, neoantigen vaccines

spontaneously upregulate the expression of inhibitory receptors
frontiersin.org
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(such as PD-1 and TIM3) in CD4+ T cells and CD8+ T cells,

indicating that functional blockade of these receptors contributes to

the generation of efficient neoantigen-specific T-cell responses (19–

23). Although few studies have reported the association of cancer-

associated fibroblasts (CAFs) with neoantigen-targeted therapy,

CAFs were identified as potential mediators of the response to

immune checkpoint inhibitor (ICI) treatments (24–26). The

combination of neoantigen vaccines with other therapies, such as

ICIs, chemotherapy, radiotherapy and immunosuppressive factor-

targeted therapies, generates a stronger antitumor response.

Moreover, preclinical data demonstrated that the combination of

the neoantigen vaccine VB10.NEO and NKTR-214, a T-cell-

proliferation inducer, can induce clonal expansion of natural killer

(NK), CD4+ T and CD8+ T cells and induce strong and durable

neoantigen-specific T-cell responses (27). CD8+ T cells are central

effector cells in the tumor immune microenvironment and are

primarily responsible for recognizing and killing tumor cells.

Several studies have investigated the relationship between

intratumoral CD8+ T cells and the prognosis of gastric cancer,

two of which reported that a high abundance of CD8+ T cells was

associated with better OS in patients with gastric cancer (28–30).

Unfortunately, we know little about the role of CD8+ T cells in

ACGEJ. Exploring CD8+ T-cell infiltration-related genes can

provide targets for immunotherapy that can enhance the

antitumor effect of tumor neoantigen vaccines and biomarkers to

predict the OS of patients in ACGEJ.

In this study, we explored the molecular characteristics of

ACGEJ and compared SNVs, copy number variations (CNVs),

clonal patterns, and neoantigen load between Siewert types II

and III and among differentiation grades. We also searched for

CD8+ T-cell infiltration-related Hub genes and conducted

weighted gene coexpression network analysis (WGCNA) to

identify prognostic markers for the construction of a risk

prediction model.
Materials and methods

Biospecimen collection

This study included 55 Chinese ACGEJ patients seen at the

Linzhou Cancer Hospital and Linzhou Esophageal Cancer Hospital

(Henan Province, China) from 2014 to 2016. All patients received

no treatments before surgery and signed written informed consent

forms. ACGEJ tumor, tumor-adjacent (> 5 cm from the tumor

margins) and normal tissues and peripheral blood samples were

collected during surgery. Pathological diagnoses were

independently confirmed by at least two pathologists. Clinical

information of patients was collected from medical records.

Clinical follow-up data were obtained by phone interview, the

most recent interview was conducted in September 2021 and the

median follow-up period of patients was 50.3 months. This research
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was approved by the Institutional Review Board of Cancer Hospital,

Chinese Academy of Medical Sciences, and Peking Union

Medical College.
Whole-exome sequencing

Genomic DNA was extracted from 55 matched tumor and

blood samples using the Allprep DNA Kit (Qiagen) and

QiaAmp Blood Midi Kit (Qiagen). Exon target capture was

performed using an Agilent SureSelect Human All ExonV5 kit

(Agilent) following the manufacturer’s protocol. After quality

checking, the libraries were sequenced on an Illumina HiSeq

xTen with 2X 150 bp paired-end reads. Average sequencing

depths of 380x and 130x were achieved for paired tumor and

blood samples, respectively (Supplementary Tables 1, 2).

Importantly, WES data in 55 Chinese ACEGJ patients have

not been published.
Data collection from database

We obtained somatic mutation data of 105 The Cancer

Genome Atlas (TCGA) ACGEJ samples from the Broad

Institute GDAC Firehose website (https://gdac.broadinstitute.

org/) (31) and an additional 40 ACGEJ samples from the Tumor

Portal (http://www.tumorportal.org) (32) (Supplementary

Table 3). Transcriptomic data (FASTQ format) of the 55

Chinese ACGEJ patients described above were derived from

our earlier publication (33). Combining two published studies of

our group on ACGEJ tumors (8, 33), we obtained bulk RNA

sequencing data of 178 ACGEJ samples, which consisted of 123

patients from one cohort (8) and 55 patients from the other (33).

We conducted follow-up telephone interviews until September

2021, with 47.7% (85/178) of patients being lost. Eventually, the

gene expression (transcripts per million, TPM) data of 93

Chinese ACGEJ samples in a period of 50.3 months (median)

were included and also publicly available from NCBI Gene

Expression Omnibus (https://www.ncbi.nlm.nih.gov/geo,

GSE159721). The gene expression (TPM) data of 86 TCGA

ACGEJ samples (tumors located in the cardia/GEJ rather than

other sites of the stomach (body of stomach, fundus of stomach,

gastric antrum, pylorus, etc) and the corresponding

clinicopathological information were obtained from the TCGA

Pan-cancer Atlas (https://gdc.cancer.gov/about-data/

publications/pancanatlas) (34).Moreover,we obtained the

tumor-specific neoantigen data of 441 TCGA stomach

adenocarcinoma (STAD) samples from TSNAdb (http://

biopharm.zju.edu.cn/tsnadb) (35). We then downloaded a list

of gastric adenocarcinoma neoepitope that bound to MHC class

I molecules from the Immune Epitope Database (IEDB) (36).
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Somatic mutation identification

DNA sequence reads were mapped to the human reference

genome GRCh37 (Ensembl) using BWA-MEM (v0.1.22) (37)

with default parameters. Somatic SNVs and indels in each tumor

sample were called by Strelka2 (v2.8.3) (38) and annotated by

Ensembl Variant Effect Predictor (VEP, release 90) (39). Low-

quality and potential germline variants were filtered by gatk-

tools (v0.2.2).
Identification of mutational signatures

Based on nonnegative matrix factorization (NMF),

SigProfiler was applied to identify single-base-substitution

(SBS) mutational signatures (40). Six base substitutions

(including C>A, C>T, C>G, T>A, T>C, T>G) and their

trinucleotide sequence context were considered in this analysis.

We used SigProfilerMatrixGenerator and SigProfilerExtractor to

categorize the SNV mutations and then extract de novo

mutational signatures. After matching to COSMIC signatures,

we obtained 5 mutational signatures and determined the

contribution of each signature in each individual sample.
Copy number alteration analysis

FACETS (v0.5.14) (41), an allele-specific copy number

analysis tool, was used to estimate integer copy number calls

corrected for tumor purity, ploidy and clonal heterogeneity. VCF

files from FACETS were used as input for GISTIC2.0 (v.2.0.23)

(42) to identify significantly amplified or deleted regions of the

genome for each patient. The Seg.CN value required by

GISTIC2.0 was calculated with TCN_EM values from FACETS

as Seg.CN= log2(TCN_EM) -1. Arm- and focal-level CNV

regions with FDR q< 0.25 were considered significantly

aberrant regions.
Clonality analysis of somatic mutations

We used the R package SciClone (43) to infer clonal and

subclonal architectures by clustering similar variant allele

frequencies of somatic mutations in a single sample using a

variational Bayesian binomial mixture model. The regions of

CNVs and loss of heterozygosity (LOH) inferred by FACETS

and somatic mutations of sufficient depth (20x or greater

coverage) called by Strelka2 from WES were used as inputs.

Due to lack of enough points to cluster or lack of copy number

neutral regions, two ACGEJ specimens (GEJ183 and GEJ191)

were excluded; subsequently, a total of 53 samples were analysed.
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Neoantigen prediction

We used WES data of blood samples or tumor-adjacent

normal tissues in FASTQ format to perform human leukocyte

antigen (HLA) typing. OptiType (v1.3.5) (44) was applied to

predict class-I HLA typing with default settings. The raw RNA

sequencing (RNA-seq) data of tumor tissues in FASTQ format

were processed by Kallisto (v0.46.0) (45) to obtain the expression

values (TPM) with the GRCh38 v78 coordinates. Tumor-specific

somatic variant calls, RNA-seq expression values and class-I

HLA genotyping were given as inputs to the MuPeXI pipeline

(v1.2) (46) to predict 9 amino acid peptides. Notably, somatic

mutation calls from the GRCh37 alignment were converted to

GRCh38 by running liftover in MuPeXI. The binding affinities of

a mutant peptide with the major histocompatibility complex

class I (MHC-I) molecules of patients were predicted by the

NetMHCpan (v4.0) (47) algorithm in MuPeXI. Mutant peptides

with an eluted ligand percentile rank (EL% rank) score ≤ 2% and

RNA expression level (TPM) > 0.1 were predicted to be

neoantigens. Neoantigens with a percentile rank score< 0.5%

were considered high-affinity neoantigens.
Immune cell infiltration estimation

MCP-counter (48), which uses a deconvolution approach,

was applied to produce the absolute abundance scores for

endothelial cells and fibroblasts as well as 8 immune cell types,

including CD8+ T cells. xCell, another cell type enrichment

analysis method, was used to quantify the relative abundance

scores for immune and stromal cells (49).The Tumor Immune

Estimation Resource 2.0 (50) (TIMER2.0, http://timer.cistrome.

org/) web server is a comprehensive resource integrating

multiple immune infiltration estimation algorithms, including

MCP-counter and xCell. In this study, we imported the TPM-

normalized gene expression matrix of ACGEJ samples into

TIMER2.0 and obtained the MCP-counter-based and xCell-

based deconvolution profiles of CD8+ T cells.
Construction of the coexpression
network and identification of
significant modules

The WGCNA (51) package was used to construct a weighted

gene coexpression network of the 6,000 most variable genes

based on RNA-seq data (based on median absolute deviation)

among ACGEJ samples. A total of 93 tumor samples from our

previously published data were included after removing one

outlier specimen with sample hierarchical clustering. The gene

expression matrix was converted into a similarity matrix, and the

appropriate weighting coefficient b was chosen. Subsequently, an
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adjacency matrix was generated and transformed into a

topological overlap matrix (TOM). Next, we performed

hierarchical clustering with the dynamic tree cut method and

identified modules with the fol lowing parameters :

minModuleSize = 30 and mergeCutHeight = 0.25. Afterwards,

we calculated the correlation between module eigengenes (MEs)

and clinical traits to identify clinically significant related

modules (P< 0.05). In general, the turquoise module was

considered the key module.
Functional enrichment analysis

To investigate the biological functions of turquoise module

genes, we conducted gene ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway

enrichment analyses by using the clusterProfiler R package

(v3.14.3) (52). The thresholds were set as P< 0.01 and FDR

q< 0.05.
Hub gene identification

Hub genes, highly interconnected with the nodes in a given

module, are generally determined based on gene significance

(GS) and module membership (MM). GS is defined as the

correlation between the gene and a clinical trait, while MM is

described as the correlation between the gene and a module. In

this study, genes with GS > 0.6 and MM > 0.8 were selected as

Hub genes. We further used the CytoHubba and MCODE

functions of Cytoscape software (v 3.8.2, https://cytoscape.

org/) to select and visualize the 10 most important Hub genes

in the turquoise module.
Construction and validation of a risk
prediction model

A total of 179 patients with ACGEJ from two independent

cohorts were included in our study. Bulk RNA-seq data and clinical

information were collected. Based on the turquoise module genes,

we developed a risk prediction model in the training cohort

(containing 93 ACGEJ samples from our previous studies) and

validated it in an external cohort (containing 86 ACGEJ samples

from the TCGA database). In the training set, we conducted

univariate Cox regression analysis to identify the genes that were

closely associated with the OS of patients (P<0.05). Subsequently,

least absolute shrinkage and selection operator (LASSO) Cox

regression analysis was performed to narrow down the list of

candidate genes. Finally, multivariate Cox proportional hazards

regression analysis was used to select independent prognostic genes
Frontiers in Oncology 05
and construct the risk score model. The risk score was calculated

using the following formula:

risk score =o(expression mRNAi � coefficienti)

According to the median value of the risk score, we stratified

patients into high-risk and low-risk groups and performed

Kaplan–Meier analysis (with log-rank test) to compare the

survival differences. Additionally, the performance of the

model was evaluated by area under the curve (AUC) analysis

using the “ROCR” package in R.
Statistical analyses

All statistical analyses were performed using R3.6.3. The

Wilcoxon rank-sum test was utilized to compare nonnormally

distributed continuous variables between two groups.

Categorical data were compared using Fisher’s exact test.

Spearman’s rank correlation analysis was applied to measure

the correlation between two continuous variables. Based on the

correlation between gene expression and patient survival, the

“surv-cutpoint” function in the survminer R package was used to

find the optimal cut-off point. The survival curves for the

prognostic analysis were created by the Kaplan–Meier method,

and log-rank tests were conducted to evaluate the significance of

differences. Statistical significance was described as follows: ns,

not significant; *P< 0.05; **P< 0.01; **** P<0.0001.
Results

Driver genes of ACGEJ

We performed WES of tumor and matched blood samples

from 55 Chinese ACGEJ patients (Supplementary Table 4) with a

median age of 64 years (range 42−80 years old); the cohort

included 41 males (74.5%). The majority of the patients had

TNM stage III disease (67.3%). Moreover, 23.6% of patients had

poorly differentiated disease, and 45.5% had Siewert III subtype

disease. All tumors were microsatellite stable (96.4%) or had

microsatellite instability (3.6%). To better understand the

genomic alterations in ACGEJ, we downloaded and analysed

the coding-region mutation data for 145 patients with ACGEJ

from TCGA and the Tumor Portal database. The two cohorts

were similar to our cohort in age, sex and microsatellite status

though differed in tumor stage. There was a significantly higher

proportion of stage II and IV patients in the TCGA/Tumor Portal

cohort than in our ACGEJ cohort (45.5% vs. 21.8%, 10.3% vs. 0%,

respectively; P< 0.05) and a lower proportion of stage III patients

in the TCGA/Tumor Portal cohort (24.1% vs. 67.3%, P< 0.05).
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We then identified 4,018 somatic mutations (3,761 SNVs

and 257 indels) in our ACGEJ specimens. The median tumor

mutation burden (TMB) of our and TCGA/Tumor Portal

cohorts were 1.04 (range 0.02−3.32) and 2.61 (range 0−67.94)

per Mb, respectively, and the difference was significant

(Wilcoxon rank-sum test, P< 0.0001; Supplementary

Figure 1A). The TMB of Siewert type II cases was similar to

that of Siewert type III cases, but there was no significant

difference in TMB among the three differentiation grades

(Supplementary Figures 1B, C). By combining two methods

(dNdScv and MutSigCV), TP53 (mutated in 52.7% of samples)

was identified as the only significant driver gene in our ACGEJ

cohort (FDR q< 0.1). To increase the detection power and

accuracy, we combined our samples and the TCGA/Tumor

Portal cohort samples (a total of 200 ACGEJ samples) and

found 11 significant driver genes (FDR q< 0.1): TP53,

ARID1A, MUC6, SMAD4, PIK3CA, KRAS, PTEN, CDKN2A,

MAP2K7, RNF43 and RHOA. (Figure 1A). Recurrent hotspot

mutation analysis of our data and TCGA/Tumor Portal cohort

data indicated that TP53 had 3 common mutations:

p.Arg248Gln, p.Arg248Trp and p.Arg273His (Supplementary

Figure 1D). In TCGA/Tumor Portal tumors, the most frequent

mutation of TP53 was p.Arg175His, accounting for 13.2% (7/53)

of the missense mutations. These results suggested that low

driver mutation abundance is a dominant feature of Chinese

ACGEJ samples due to their lower TMB.
Mutational signature of ACGEJ

The predominant somatic mutation type was 5′-C [T > G]

T-3′ in 96 substitution mutations in tumor samples from our

cohort (Supplementary Figure 1E). To further explore the

underlying mutational processes in ACGEJ tumors, we

performed de novo single base substitution (SBS) mutational

signature extraction and identified five mutational signatures,

namely, SBS1, SBS5, SBS17a, SBS17b and SBS40 (Figure 1B).

SBS1 and SBS5, which are common in tumors, are two clock-like

and ageing-related endogenous mutational signatures, and they

accounted for 48.4% of somatic mutations in ACGEJ

(Figure 1C). SBS40, also correlated with ageing, accounted for

36.2% of somatic mutations in ACGEJ samples (Figure 1C).

SBS17 (accounting for 15.4% of somatic mutations) can be split

into SBS17a, defined by T > C substitution in the CTT

trinucleotide context, and SBS17b, characterized by T > G

conversion in any of the NTT trinucleotide contexts.

Interestingly, we found that SBS17a and SBS17b were stage-

related in ACGEJ patients, mainly appearing in TNM stage II

and III patients, but were rare in stage I patients (Figure 1B).

Compared with Siewert type II cases, Siewert type III cases

showed significantly increased SBS17a and SBS17b signatures
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(both P< 0.05; Figures 1D, E). These results indicate that SBS17

may be related with the progression of ACGEJ.
Somatic CNVs and functionally aberrant
pathways in ACGEJ

In our ACGEJ tumors, we identified several chromosome

arm level CNVs, including gains of 1q, 2q, 3q, 5p, 7p, 7q, 8q, 10p,

13q, 16p, 19q, 20p and 20q and losses of 4p, 4q, 9p, 14q, 15q,

17p, 18q, 19p, 21p and 21q (all q< 0.25 and frequency > 30%;

Figure 2A and Supplementary Table 5). We also identified 29

recurrent amplification peaks and 43 recurrent deletion peaks

(q< 0.25), for which 1,153 and 1,300 genes overlapped,

respectively (Figure 2B and Supplementary Tables 6, 7).

Among specimens with different Siewert types or

differentiation grades (Supplementary Figures 2A, B), we

found similar gene-level CNVs. Among the 2,453 genes

located in these CNV regions, 268 (10.9%) with copy number

gain and 233 (9.5%) with copy number loss had mRNA levels

significantly correlated with copy number (Spearman’s r > 0.3

and FDR q< 0.05). Intersection of the above-described genes and

the driver gene TP53 with the cancer-related genes in COSMIC

yielded a list of 29 genes, which were found to be functionally

involved in the p53/cell cycle and PI3K/AKT signalling

pathways by KEGG analysis. As shown in Supplementary

Table 8, p53/cell cycle pathway aberration was related to TP53

mutation (52.7%) and amplifications of CCNE1 (63.6%), CDK6

(49.1%), CASP8 (25.5%) and MDM2 (21.8%) as well as deletion

of SMAD4 (40%). PI3K/AKT pathway aberration was related to

amplifications of FGFR2 (36.4%), KRAS (27.3%) and CREB1

(23.6%). These results further confirmed the suggestion of our

previous studies that CCNE1 and VEGFA, which showed

recurrent gene-level CNV, are CNV driver genes (FDR q ≤

0.1, in ≥10% samples, Figures 2C, D). In addition to ERBB2

amplification, a well-recognized target, other CNVs, such as

CCNE1 amplification and VEGFA amplification, could be

targeted therapeutically. Moreover, we found that the copy

number of TNFRSF14 was significantly lower in Siewert type

III than in Siewert II cases (Figure 2E, P< 0.05).
Clonal and subclonal architectures
of ACGEJ

Clonal and subclonal architectures reflect intratumor

heterogeneity that may drive cancer progression and drug

resistance. We used SciClone to reconstruct the clonal and

subclonal architectures in each patient and obtained the

number and genetic composition of clones. We identified four
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clonal patterns in 55 ACGEJ patients (Figure 3A), including

monoclonal (a single dominant clone), minor subclone (a single

dominant clone with a minor subclone), biclonal (two major

clones) and complex (more than two clones) clonal patterns. The
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complex clonal pattern was the most common pattern in our

samples (Figure 3B). We then analysed the distribution of the

clonal patterns across samples with different histopathological

features and observed that the complex clonal status was
A
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FIGURE 1

The landscape of somatic mutations and mutational signatures in ACGEJ. (A) The mutational landscape of driver genes in the 200 combined ACGEJ
samples. Each column represents the tumor genome of one patient, and each row represents a gene. The top histogram shows the number of SNVs and
indels in each patient. The histogram on the right displays the number of SNVs and indels in each gene. Driver genes (dNdScv, FDR q< 0.1) are ordered by
the fraction of mutated tumor samples. (B) Bar plots showing the defined mutational signatures in our ACGEJ samples. Samples are ordered by TNM stage.
(C) Bar plots comparing the defined mutational signatures and their relative contributions to somatic mutations. (D, E) SBS17a activity (D) and SBS17b activity
(E) in different ACGEJ Siewert types. P values were derived from Wilcoxon rank-sum tests. Statistical significance was described as follows: *P < 0.05.
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significantly higher in Siewert type III than in Siewert type II

samples (64.0% vs. 33.3%, P< 0.05; Figure 3C). However, ACGEJ

samples with good, moderate or poor differentiation grades

exhibited similar clonal architectures. We then defined tumors

with monoclonal, minor subclone and biclonal patterns as

having low intratumor heterogeneity and those with complex

clonal patterns as having high intratumor heterogeneity. As

shown in Figure 3D, higher TMB was significantly associated

with higher intratumor heterogeneity (P< 0.05). We further

explored the clonality of recurrently mutated genes identified

in ACGEJ or gastric cancer samples (7, 53–56) and found that

mutations of PIK3CA (E545K), TP53 (R248Q), SOX9 (Q369P)

and NEFH (V267M) were located in the dominant founding

clone, indicating that mutations in these genes were acquired at
Frontiers in Oncology 08
an earlier time point (Figure 3E). These results emphasized the

importance of PI3KCA and TP53 mutations in the initiation

of ACGEJ.
Characteristics of neoantigens in
ACGEJ samples

Although genomic and transcriptomic alterations in ACGEJ

have been characterized in some studies, the characteristics of

neoantigens remain unclear. To the best of our knowledge, here,

we describe the landscape of neoantigens in Chinese ACGEJ

samples for the first time. We combinedWES and RNA-seq data

from our ACGEJ samples to predict neoantigens. First, we
A B

D EC

FIGURE 2

Somatic CNVs identified in our ACGEJ samples. (A) CNVs at the chromosome arm level. The bar graphs show the frequency of arm-level copy-number
alterations, and the horizontal axis represents chromosome arms. Significant chromosome arm gains and losses (q< 0.25 and frequency > 30%) are
indicated in red and blue, respectively. (B) Focal peaks of amplifications (left) and deletions (right) detected by GISTIC 2.0. The x axis represents the false
discovery rate, and the y axis represents the chromosome. The green line represents the significance threshold (q = 0.25). (C, D) Correlations between
the copy number and expression level of two putative CNV driver genes, CCNE1 (left) and VEGFA (right). The copy number data on the horizontal axis
were derived from the GISTIC output (all_data_by_genes.txt file). P values were derived from Spearman’s correlation tests. (E) Comparison of TNFRSF14
copy number between Siewert II and III samples. P values were derived from Wilcoxon rank-sum tests. Statistical significance was described as follows:
*P < 0.05.
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employed OptiType to identify the 4-digit HLA class I alleles in

55 ACGEJ samples and found that they were quite different from

those in stomach adenocarcinoma (STAD) samples. HLA-

C*01:02, HLA-C*06:02 and HLA-C*07:02 were the three most

common neoantigen-binding sites in ACGEJ samples, while

HLA-A*02:01, HLA-C*24:02 and HLA-C*03:01 were the top 3

in STAD samples (Figures 4A, B). Moreover, we identified

12,285 neoantigens originating from missense mutations and

1,723 neoantigens originating from frame-shift and in-frame

indels, and 27.2% (3,808/14,008) of neoantigens were high-

affinity neoantigens (binding affinity< 0.5% rank)

(Supplementary Table 9). The neoantigen load in cancers

usually shows a positive correlation with TMB (14, 16, 57). In

ACGEJ, we found that the number of neoantigens was also
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positively correlated with TMB (r = 0.65, P = 1x10-7; Figure 4C).

In STAD samples from TCGA, 2.09 neoantigens were generated

per missense mutation and 2.53 neoantigens were generated per

indel (10, 58). Similarly, we found that missense mutations

generated fewer neoantigens (mean, 2.11 per mutation) than

frame-shift indels (mean, 6.44 per mutation) in our specimens.

In the ACGEJ samples, tumor neoantigens were mainly derived

from missense mutations (Figure 4D), which accounted for

87.7% of neoantigens. Unsurprisingly, only 63.1% (45.6% -

76.4%) of nonsilent mutations generated neoantigens

(Figure 4E), which indicated that amino acid sequence changes

might not necessarily generate neoantigens. We further

investigated whether frequently altered genes have the

advantage of generating neoantigens and found that TP53,
A
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FIGURE 3

The clonal and subclonal architectures inferred in our ACGEJ samples. (A) Kernel density plots of variant allele frequency (VAF) across regions
with one, two, three or four copies, posterior predictive densities summed over all clusters for copy-number-neutral variants and posterior
predictive densities for each cluster/component. (B) Clonal patterns of 53 ACGEJ samples. (C) The distribution of clonal patterns across
histopathological subtypes. ACGEJ II: Siewert type II, ACGEJ III: Siewert type III, G1: well differentiated, G2: moderately differentiated, G3: poorly
differentiated or undifferentiated. (D) Comparison of TMB between patients with low and high intratumor heterogeneity defined by clonal
patterns. (E) VAFs versus tumor coverage for each of the four copy number regions for four representative samples: T173, T158, T122 and T224.
Mutations in previously reported driver genes are labelled. Statistical significance was described as follows: *P < 0.05.
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SYNE1, MAP2K7, RYR2, FAT4 and LRP1B generate more

neoantigens than other genes across all samples (Figure 4F).

We also found that Siewert type III tumors possessed more

neoantigens or high-affinity neoantigens than Siewert type II

tumors (Figures 4G, H; P<0.05). However, there were no

significant differences in neoantigen load or the number of
Frontiers in Oncology 10
high-affinity neoantigens among tumors of different TNM

stages (I, II and III) (Supplementary Figures 3A, B). Similar to

the results across TNM stage, neoantigen load and the number

of high-affinity neoantigens were not significantly different

among well, moderate and poorly differentiated tumors

(Supplementary Figures 3C, D).
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FIGURE 4

The neoantigen landscape in ACGEJ. (A, B) Ten predicted neoantigen sites of our ACGEJ samples (A) and TCGA-STAD samples
(B). (C) Correlations between neoantigen load and tumor mutation burden (Spearman’s correlation test). (D) Bar plots showing the number of
neoantigens for each individual and their variant types. The pie plot on the top shows the fraction of variant types that produced neoantigens in
55 ACGEJ samples. (E) Bar plot and pie plot displaying the composition of nonsilent mutations that produced neoantigens. (F) Frequently altered
genes with a high ability to generate neoantigens. The graph displays the number of samples containing specific genetic mutations and the
relevant number of neoantigens. (G, H) Number of neoantigens (G) and number of high-affinity neoantigens (H) in different ACGEJ Siewert
types. P values were derived from Wilcoxon rank-sum tests. NeoAgs: neoantigens. (I, J) Neoantigen recurrence in our patients (I) and TCGA-
STAD patients (J). (G) Venn diagram displaying the intersections of neoantigens from our ACGEJ patients, TCGA-STAD patients and IEDB.
Statistical significance was described as follows: *P < 0.05; **P < 0.01.
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As the vast majority of the potential neoantigens that have

been reported are patient-specific (58, 59), we next explored the

heterogeneity of predicted neoantigens in ACGEJ. The results

suggested that there were 13,962 unique neoantigens in 55

ACGEJ patients; 99.72% (13923/13962) of the neoantigens

were found in only one patient, while only 0.28% (39/13962)

of the neoantigens were found in at least two patients (Figure 4I).

The most common share neoantigen was “GRQKRSDSL”, which

was generated by VSX1 (V138L). We also calculated the

frequencies of neoantigens in TCGA-STAD samples from

TSNAdb. Similarly, we found that there were 85,283

neoantigens in a total of 411 samples; only 0.21% (182/85,283)

of the neoantigens were found in two samples, 8 neoantigens

were found in three samples, one neoantigen was found in four

samples, and one neoantigen was found in seven samples

(Figure 4J). Furthermore, we compared the predicted

neoantigens from our ACGEJ samples and TCGA-STAD

samples to those found using IEDB data to identify common

neoantigens (Figure 4K and Supplementary Table 10). We found

57 common neoantigens between the TCGA-STAD and ACGEJ

samples, and only one neoantigen was common between the

IEDB and ACGEJ samples. These results collectively point to the

difficulty in ubiquitous neoantigen identification for ACGEJ.
Construction of the weighted gene
coexpression network and identification
of Hub genes in ACGEJ

We examined all components in the TME, including

immune and non-immune cells. Specifically, we applied xCell

to estimate the abundance scores of immune and stromal cell

populations in ACGEJ samples, and the results showed that the

ratio of neoantigen to mutation was positively correlated with

immune score, stromal score and microenvironment score

(Supplementary Figures 4A–C). The ratio of neoantigen to

mutation was significantly associated with TME cells,

including B cell, myeloid dendritic cell, endothelial cell,

cancer-associated fibroblasts, and T cell (Supplementary

Figures 4D–O). Considering the importance of the CD8+ T-

cell infiltration level for neoantigen-targeted therapy and the

prognosis of patients with ACGEJ, we conducted WGCNA to

obtain CD8+ T-cell-related Hub genes. In addition, to gain a

more comprehensive understanding of CD8+ T-cell infiltration,

we assembled a relatively large-scale cohort of 93 Chinese

ACGEJ patients with RNA-seq data and complete follow-up

information by integrating our previously published data. In this

dataset, clinical information included age, gender, TNM stage

and the absolute abundance of CD8+ T cells (quantified by

MCP-counter method) as well as survival status and OS. A soft-

thresholding power of b = 4 was chosen to construct a scale-free

network (scale-free r2 = 0.88, slope = -1.62) (Supplementary

Figures 5A, D). A total of 12 gene coexpression modules were
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identified from the hierarchical clustering tree (Figures 5A, B).

As shown in the module–trait relationship heatmap (Figure 5B),

the correlation coefficients and p values between module

eigengenes and clinical traits were determined to identify

which modules were associated with clinical information. The

turquoise module was identified to be significantly positively

related to the infiltration of CD8+ T cells in the ACGEJ samples

(r = 0.61, P = 8x10-11). Furthermore, we applied GO and KEGG

analyses to explore the biological functions of genes in the

turquoise module. The GO analysis showed that the turquoise

module genes were mainly related to the terms cytokine receptor

activity, external side of the plasma membrane and T-cell

activation (Figure 5C). The KEGG pathway analysis revealed

that the genes were mainly enriched in the terms haematopoietic

cell l ineage, Th1/Th2 cell differentiation, Th17-cell

differentiation, chemokine signalling pathway and cytokine–

cytokine receptor interaction (Figure 5D). These results

suggest that the turquoise module genes may be involved in

the response to immunotherapy. To further investigate new

potential targets for immunotherapies (immunosuppressive

therapies or T-cell proliferation-inducing therapies), we used

cut-off thresholds (GS > 0.6 and MM > 0.8; Figure 5E) to identify

key genes in the turquoise module. We identified the ten most

important Hub genes in the module that were related to CD8+

T-cell infiltration: CCL5, CD2, CST7, GVINP1, GZMK, IL2RB,

IKZF3, PLA2G2D, P2RY10 and ZAP70 (Figure 5F).
Construction and validation of the risk
prediction model

Previous studies have reported that high neoantigen load

was associated with good survival in many cancers (13–16). To

determine whether the potential neoantigens could predict OS in

patients with ACGEJ, we divided patients into high and low

groups based on the median of neoantigen load and the ratio of

neoantigen to mutation. Regrettably, we found that neither

neoantigen load nor the ratio of neoantigen to mutation was

associated with patient OS (Supplementary Figures 3E, F).

However , both methods , MCP-counter and xCel l

(Supplementary Figure 3G and Figure 4N), showed that the

abundance of CD8+ T cells was positively correlated with the

ratio of neoantigen to mutation (MCP-counter: r =0.28, P =

0.044; xCell: r =0.36, P =0.007). To further explore the

prognostic value of the CD8+ T-cell infiltration-related

module genes and identify potential prognostic factors of

ACGEJ, we determined the prognostic value of the turquoise

module genes. We obtained 48 genes significantly related to

ACGEJ OS through univariate Cox regression analysis. After

LASSO Cox and multivariate Cox regression analyses

(Figures 6A, B and Supplementary Figure 6A), we identified

seven genes (ADAM28, ASPH, CAMK2N1, F2R, STAP1,

TP53INP2, ZC3H3) and used these genes to construct a
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prognosis prediction model with a training cohort containing

our ACGEJ samples (n=93) and an external validation cohort

containing TCGA ACGEJ samples (n=86). The risk score for all

ACGEJ samples was calculated by the following formula: risk

score = expression level of ZC3H3*1.83 + expression level of

STAP1*1.25 + expression level of ADAM28*0.77+ expression

leve l o f TP53INP2* ( -1 .03) + expres s ion leve l o f

CAMK2N1*1.05 + expression level of F2R *0.84 + expression

level of ASPH *1.10. Taking the median risk score as the cut-off
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value, ACGEJ samples were divided into high- and low-risk

score groups. The results showed that patients in the high-risk

group had a significantly worse prognosis than those in the low-

risk group in both the training cohort (P< 0.001, Figure 6C) and

validation cohort (P< 0.01, Figure 6D). As shown in

Supplementary Figures 6B, C, the area under the curve (AUC)

was 0.729 in the training cohort and 0.712 in the validation

cohort, which indicated that the risk model had good prediction

performance. Next, multivariate Cox regression analysis
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FIGURE 5

Identification of significant modules and Hub genes via WGCNA. (A) Gene dendrogram obtained by average linkage hierarchical clustering. The
color row underneath the dendrogram indicates 12 different coexpression gene modules (the grey module represents unassigned genes. (B)
The module–trait relationship heatmap between module eigengenes (row) and clinical traits (column). The correlation coefficients and p values
are annotated in each box. (C, D) GO analysis (C) and KEGG pathway enrichment analysis (D) of all genes in the turquoise module. (E) Scatter
plot of gene significance for the infiltration of CD8+ T cells (y axis) versus module membership (x axis) in the turquoise module. (F) Protein–
protein interaction network of the ten Hub genes.
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confirmed that the risk score was an independent prognostic

factor after adjusting for age, gender and TNM stage in both our

ACGEJ cohort (HR =1.20, 95% CI = 1.06–1.36, P< 0.01;

Figure 6E) and the TCGA-ACGEJ cohort (HR =1.13, 95%

CI = 1.03–1.24, P< 0.01; Figure 6F). In summary, our results

showed that the risk score can serve as an effective predictor for

the risk classification of ACGEJ patients.
Discussion

In this study, we determined the genomic alteration and

neoantigen landscapes in samples collected from Chinese

patients with ACGEJ. Comparing the genomic alterations in

our 55 WES samples with those in 124 whole-genome

sequencing samples revealed similar mutational signature
Frontiers in Oncology 13
patterns and chromosome arm level CNVs and showed that

TP53 was the only significant driver gene, CCNE1 and VEGFA

amplifications occurred frequently and were correlated with

gene expression upregulation. However, our WES data seem to

have fewer putative CNV driver genes, probably because of the

smaller sample size. We found some differences between Siewert

II and III samples, including differences in the mutational

signatures SBS17a and SBS17b, copy number of TNFRSF14,

the prevalence of the complex clonal pattern and neoantigen

load. We identified of 58 shared tumor neoantigens, which could

provide candidate targets for neoantigen-based targeted therapy.

In addition, we identified 10 CD8+ T-cell infiltration-related

Hub genes that may serve as immunotherapeutic biomarkers.

Moreover, we constructed a risk prediction model based on

CD8+ T-cell infiltration-related genes. Our findings in the

present study provide a deeper understanding of ACGEJ that
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FIGURE 6

Construction and validation of the CD8+ T-cell infiltration-related prognostic prediction model. (A, B) LASSO Cox regression with 10-fold
cross-validation to determine the prognostic value of 48 prognosis-related genes in the turquoise module. (C, D) Kaplan–Meier curve for the
training cohort (C) and external validation cohort (D). (E, F) Multivariate Cox regression analysis of clinicopathological factors and the risk score
for our ACGEJ patients (E) and TCGA-ACGEJ patients (F).
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may lead to improved candidate target selection, and we

proposed a novel prognostic prediction model.

We identified 11 recurrently mutated genes in two cohorts,

3 of which (RNF43, MAP2K7 and RHOA) were newly

discovered driver genes in ACGEJ. The E3 ubiquitin ligase

RING finger protein 43 (RNF43) inhibits WNT signalling by

ubiquitinating Frizzled receptors and targeting them for

degradation (60). Loss of RNF43 function weakens the DNA

damage response, leading to resistance to radiotherapy and

chemotherapy in gastric cancer (61). RNF43 was found to be

frequently mutated in tumors with microsatellite instability

and was identified as a significantly mutated driver gene in

gastric adenocarcinoma (62). In our cohort, the vast majority

of samples were microsatellite stable, and only 2% of samples

had RNF43 mutation. Mitogen-activated protein kinase 7

(MAP2K7) is an important tumor suppressor in gastric

cancer, and frequent loss-of-function mutations activate the

JNK pathway (63). Ras homologue family member A (RHOA)

belongs to the Rho family of GTPases and is a driver gene in

diffuse-type gastric carcinoma (64, 65). RHOA mutation was

not found in the Chinese patients in this study, and its

mutation might be related to differences in genetic or

environmental risk factors, but this conclusion needs to be

further verified in larger cohorts.

SBS17a and SBS17b have been reported to appear at an early

stage of esophageal and gastric adenocarcinoma and to be

related to gastric-oesophageal reflux (66, 67). SBS17a and

SBS17b may be markers of oxidative damage and risk factors

for chromosomal instability in ACGEJ (8, 68). SBS17b

accounted for more somatic mutations than SBS17a in our

cohort, which is in line with the phenomenon that 5′-C [T >

G] T-3′ was the most common somatic single base substitution

in ACGEJ samples. Due to differences in anatomical position, we

believe that Siewert type III tumors are more likely to feature

oxidative stress, which was supported by the result that the

SBS17a and SBS17b signatures were significantly more

prominent in Siewert type III samples than in Siewert type II

samples. With high-depth (mean coverage 380X) WES, we

confirmed that CCNE1 and VEGFA are robust CNV driver

genes in ACGEJ. We also identified TP53 mutations and

CNVs related to the p53/cell cycle and PI3K/AKT signalling

pathways. By analysing clonal and subclonal profiles, we

demonstrated that the complex clonal pattern was most

common in ACGEJ samples, reflecting the intratumor

heterogeneity in this cancer. A limitation of our study is that

we could not show clonal evolution by drawing fishplots and

Baysian trees in ACGEJ because of the difficulty in collecting

matched pre- and post-treatment samples, paired primary and

metastatic samples, or samples taken from multiple sites in

an individual.

We also performed a comprehensive analysis of genomic

alterations and transcriptomic changes to predict neoantigens.
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We found that the number of neoantigens produced by SYNE1

mutation was second to that produced by TP53 mutation.

Although SYNE1 was not identified as a driver gene in our

ACGEJ samples, it has been identified as a significantly mutated

gene in Western patients with ACGEJ and Chinese patients with

gastric cancer (53, 69). As such, we plan to study the role of

SYNE1 mutation-derived neoantigens in future research. Based

on analysis with two neoantigen-related databases, TSNAdb and

IEDB, we obtained 58 neoantigens involving 50 genes

(Supplementary Table 10) that may serve as candidate targets

for neoantigen vaccines.

Several clinical trials have demonstrated that neoantigen

vaccines based on dendritic cells, peptides and mRNAs can

induce CD8+ T-cell-specific responses, emphasizing the

considerable potential of neoantigens in immunotherapy (21,

22, 70). However, neoantigen vaccines spontaneously

upregulate the expression of surface molecules (such as PD-

1, TIM3 and CTLA-4) in neoantigen-specific T cells and/or

PD-L1 in tumor cells, which in turn impedes the function of

the neoantigen vaccines (71). Thus, a combination of

neoantigen vaccines and immunosuppressive therapies to

improve vaccine-induced T-cell responses is recommended.

In addition, the combination of neoantigen vaccines and T-cell

proliferation-inducing therapy, such as VB10.NEO plus

NKTR-214, was confirmed to induce strong immunogenic

CD8+ T-cel l responses in precl inical models (27).

Subsequently, based on WGCNA, we identified important

Hub genes in ACGEJ positively associated with the

infiltration of CD8+ T cells, providing new insights for

research on the mechanisms of action of immunotherapy and

offering potential targets for combination therapies in ACGEJ.

We also constructed a risk prediction model based on the

CD8+ T-cell infiltration -related genes, and the risk score

showed good performance in predicting the OS of ACGEJ

patients with in both the training cohort and the external

validation cohort.
Conclusion

Our study reveals the genomic characteristics and

neoantigen features of ACGEJ. Through WGCNA, we

established a CD8+ T-cell infiltration-related prediction model.

Furthermore, many newly identified potential therapeutic

targets can be pursued.
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SUPPLEMENTARY FIGURE 1

The landscape of somatic mutations and mutational signatures of ACGEJ.

(A) Violin plots comparing tumor mutation burden differences across the
two cohorts. (B, C) Box plots comparing tumor mutation burden in our

ACGEJ samples with different Siewert types (B) or differentiation grades
(C). (D) Comparison of distribution of non-synonymous TP53 somatic

mutations between our tumor samples and TCGA/Tumor Portal samples.

(E) Mutational spectra of our ACGEJ samples. P values were derived from
Wilcoxon rank-sum tests; ****P< 0.0001; ns, not significant; G1: well

differentiated; G2: moderately differentiated; G3: poorly differentiated
or undifferentiated.

SUPPLEMENTARY FIGURE 2

(A, B) Box plots comparing gene level CNVs in our ACGEJ samples with

different Siewert types (A) or differentiation grades (B). P values were
derived from Wilcoxon rank-sum tests. Somatic CNVs are limited to

homozygous deletion and high-level amplifications (GISTIC score of -2
and 2 respectively).

SUPPLEMENTARY FIGURE 3

(A, C) Box plots comparing number of neoantigens in our ACGEJ samples

with different TNM stages (A) and differentiation grades (C). (B, D) Box
plots comparing number of high-affinity neoantigens in ACGEJ samples

with different TNM stages (B) and differentiation grades (D). NeoAgs:
neoantigens. P values were derived from Wilcoxon rank-sum tests. (E,
F) Kaplan–Meier curve for neoantigen load (E) and the ratio of neoantigen
to mutation (F). (G) Correlations between CD8+ T cell infiltration level

(quantified by MCP-counter method) and the ratio of neoantigen to

mutation (Spearman’s correlation test).

SUPPLEMENTARY FIGURE 4

(A–O) Association of the ratio of neoantigen to mutation and immune

score, stromal score and microenvironment score and TME cells
(quantified by xCell method) (Spearman’s correlation test).

SUPPLEMENTARY FIGURE 5

(A) Network topology was plotted by different soft thresholding powers

(x-axis) and correlation coefficient between log (k) and log [P(k)] (y-axis).
The red line represents a correlation coefficient of 0.9. An approximate

soft-thresholding powers, b=4, was obtained. (B) Mean connectivity
under different soft-thresholding powers. (C, D) Assessing the scale-

free topology when b was set to 4.

SUPPLEMENTARY FIGURE 6

(A) Multivariate Cox regression analysis of 17 OS-related factors. (B, C)
ROC curve of the training cohort (B) and external validation cohort (C).
References
1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al.
Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality
worldwide for 36 cancers in 185 countries. CA Cancer J Clin (2021) 71(3):209–49.
doi: 10.3322/caac.21660
2. Bartel M, Brahmbhatt B, Bhurwal A. Incidence of gastroesophageal junction
cancer continues to rise: Analysis of surveillance, epidemiology, and end results
(SEER) database. J Clin Oncol (2019) 37(4_suppl):40. doi: 10.1200/
JCO.2019.37.4_suppl.40
frontiersin.org

https://www.frontiersin.org/articles/10.3389/fonc.2022.941868/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fonc.2022.941868/full#supplementary-material
https://doi.org/10.3322/caac.21660
https://doi.org/10.1200/JCO.2019.37.4_suppl.40
https://doi.org/10.1200/JCO.2019.37.4_suppl.40
https://doi.org/10.3389/fonc.2022.941868
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lao et al. 10.3389/fonc.2022.941868
3. Siewert JR, Stein HJ. Classification of adenocarcinoma of the
oesophagogastric junction. Br J Surg (1998) 85(11):1457–9. doi: 10.1046/j.1365-
2168.1998.00940.x

4. Ajani JA, D’Amico TA, Bentrem DJ, Chao J, Corvera C, Das P, et al.
Esophageal and esophagogastric junction cancers, version 2.2019, NCCN clinical
practice guidelines in oncology. J Natl Compr Canc Netw (2019) 17(7):855–83.
doi: 10.6004/jnccn.2019.0033

5. Boku N, Ryu MH, Kato K, Chung HC, Minashi K, Lee KW, et al. Safety and
efficacy of nivolumab in combination with s-1/Capecitabine plus oxaliplatin in
patients with previously untreated, unresectable, advanced, or recurrent Gastric/
Gastroesophageal junction cancer: Interim results of a randomized, phase II trial
(Attraction-4). Ann Oncol (2019) 30(2):250–8. doi: 10.1093/annonc/mdy540

6. Nakamura Y, Kawazoe A, Lordick F, Janjigian YY, Shitara K. Biomarker-
targeted therapies for advanced-stage gastric and gastro-oesophageal junction
cancers: An emerging paradigm. Nat Rev Clin Oncol (2021) 18(8):473–87.
doi: 10.1038/s41571-021-00492-2

7. Geng Q, Lao J, Zuo X, Chen S, Bei JX, Xu D. Identification of the distinct
genomic features in gastroesophageal junction adenocarcinoma and its siewert
subtypes. J Pathol (2020) 252(3):263–73. doi: 10.1002/path.5516

8. Lin Y, Luo Y, Sun Y, GuoW, Zhao X, Xi Y, et al. Genomic and transcriptomic
alterations associated with drug vulnerabilities and prognosis in adenocarcinoma at
the gastroesophageal junction. Nat Commun (2020) 11(1):6091. doi: 10.1038/
s41467-020-19949-6

9. Turajlic S, Litchfield K, Xu H, Rosenthal R, McGranahan N, Reading JL, et al.
Insertion-and-Deletion-Derived tumor-specific neoantigens and the immunogenic
phenotype: A pan-cancer analysis. Lancet Oncol (2017) 18(8):1009–21.
doi: 10.1016/s1470-2045(17)30516-8

10. Yang W, Lee KW, Srivastava RM, Kuo F, Krishna C, Chowell D, et al.
Immunogenic neoantigens derived from gene fusions stimulate T cell responses.
Nat Med (2019) 25(5):767–75. doi: 10.1038/s41591-019-0434-2

11. Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy.
Science (2015) 348(6230):69–74. doi: 10.1126/science.aaa4971

12. Blass E, Ott PA. Advances in the development of personalized neoantigen-
based therapeutic cancer vaccines. Nat Rev Clin Oncol (2021) 18(4):215–29.
doi: 10.1038/s41571-020-00460-2

13. Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al.
Genomic correlates of response to CTLA-4 blockade in metastatic melanoma.
Science (2015) 350(6257):207–11. doi: 10.1126/science.aad0095

14. McGranahan N, Furness AJ, Rosenthal R, Ramskov S, Lyngaa R, Saini SK,
et al. Clonal neoantigens elicit T cell immunoreactivity and sensitivity to immune
checkpoint blockade. Science (2016) 351(6280):1463–9. doi: 10.1126/
science.aaf1490

15. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al.
Cancer immunology. mutational landscape determines sensitivity to PD-1
blockade in non-small cell lung cancer. Science (2015) 348(6230):124–8.
doi: 10.1126/science.aaa1348

16. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-
1 blockade in tumors with mismatch-repair deficiency. N Engl J Med (2015) 372
(26):2509–20. doi: 10.1056/NEJMoa1500596

17. Plitas G, Rudensky AY. Regulatory T cells in cancer. Annu Rev Cancer Biol
(2020) 4(1):459–77. doi: 10.1146/annurev-cancerbio-030419-033428

18. Steinert EM, Schenkel JM, Fraser KA, Beura LK, Manlove LS, Igyarto BZ,
et al. Quantifying memory CD8 T cells reveals regionalization of
immunosurveillance. Cell (2015) 161(4):737–49. doi: 10.1016/j.cell.2015.03.031

19. Hilf N, Kuttruff-Coqui S, Frenzel K, Bukur V, Stevanović S, Gouttefangeas
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