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Objectives: The study developed and validated a radiomics nomogram based on a
combination of computed tomography (CT) radiomics signature and clinical factors and
explored the ability of radiomics for individualized prediction of Ki-67 expression in
hepatocellular carcinoma (HCC).

Methods: First-order, second-order, and high-order radiomics features were extracted
from preoperative enhanced CT images of 172 HCC patients, and the radiomics features
with predictive value for high Ki-67 expression were extracted to construct the radiomic
signature prediction model. Based on the training group, the radiomics nomogram was
constructed based on a combination of radiomic signature and clinical factors that
showed an independent association with Ki-67 expression. The area under the receiver
operating characteristic curve (AUC), calibration curve, and decision curve analysis (DCA)
were used to verify the performance of the nomogram.

Results: Sixteen higher-order radiomic features that were associated with Ki-67
expression were used to construct the radiomics signature (AUC: training group, 0.854;
validation group, 0.744). In multivariate logistic regression, alfa-fetoprotein (AFP) and
Edmondson grades were identified as independent predictors of Ki-67 expression. Thus,
the radiomics signature was combined with AFP and Edmondson grades to construct the
radiomics nomogram (AUC: training group, 0.884; validation group, 0.819). The
calibration curve and DCA showed good clinical application of the nomogram.

Conclusion: The radiomics nomogram developed in this study based on the high-order
features of CT images can accurately predict high Ki-67 expression and provide
individualized guidance for the treatment and clinical monitoring of HCC patients.
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INTRODUCTION

Hepatocellular carcinoma (HCC) is one of the most common
malignancies that harms human life. Globally, it is the third
leading cause of cancer-related deaths in men (1), causing a
considerable socioeconomic burden (2). Although hepatectomy
is the primary treatment for HCC, the 5-year survival rate is
only 14–18% (3) due to a high incidence of postoperative
recurrence (4).

Ki-67 is a protein present in the nucleus that is expressed
during cell proliferation (5). Ki-67 expression is believed to be
associated with the therapeutic effect and prognosis of malignant
tumors (6, 7). The Ki-67 proliferation index (PI) has been widely
used as a prognostic indicator of many malignancies, such as
glioma, breast cancer, lung cancer, and liver cancer (8–11). Ki-67
proliferation is closely related to tumor growth rate, and high Ki-
67 expression has been shown to be associated with poor overall
survival and relapse-free survival rate of HCC patients (7, 12).
Owing to its prognostic significance, the detection of the
expression status of Ki-67 is important for treating HCC
patients. Currently, immunohistochemical methods are used to
assess Ki-67 expression status in tumor specimens obtained from
surgery or biopsy. However, biopsy samples are unrepresentative
of the entire tumor. Additionally, Ki-67 expression is not
routinely assessed in many centers (13). Therefore, the
development of markers that can predict the status of Ki-67 is
a key imperative to guide individualized treatment decision-
making and for postoperative monitoring of patients with HCC.

Radiomics is a recently developed technology that can
quantify tumor characteristics based on a large amount of
high-throughput data. Radiomics can help predict the tumor
phenotype and heterogeneity (14, 15) and provide information
on the biological behavior and pathophysiology of tumors (14).
The radiomics approach has been used for the diagnosis,
treatment, and prognostic assessment in the context of various
tumors (16–19). At present, only a few studies have assessed the
application of radiomics for predicting Ki-67 expression in HCC
patients. Wu et al. (11) used computed tomography (CT) images
to delineate two-dimensional (2D) regions of interest with the
maximum diameter of lesions and extracted texture features to
predict high Ki-67 expression. Other studies have employed
magnetic resonance imaging (MRI) to analyze the correlation
of texture features and histograms with Ki-67 status (20, 21).
However, these studies only extracted first-order features
(histogram) or (and) second-order texture features to construct
models. Additionally, these studies had a relatively small sample
size. Fan et al. (22) used MRI analysis radiomic features to
predict the expression status of Ki-67, but they did not quantify
the risk probability of Ki-67 expression. Some studies have
proposed that use of the Laplacian of Gaussian (LOG) filter to
transform features for CT texture analysis can reduce photon
noise and enhance edge detection (23). Feature extraction using
the wavelet transform is an important part of the segmentation
method, which may help unravel the tumor features
unobservable in the original image (24, 25). Most of these
features qualify the definition of features described by the
Imaging Biomarker Standardization Initiative (IBSI) (25).
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According to existing studies, radiomic features [first-order
features or (and) second-order features] can be used as a
potential prognostic marker for Ki-67 expression in HCC
patients (11, 20, 21). However, it has not been found that the
expression of Ki-67 in HCC patients can be predicted based on
the radiomic features (including first-order, second-order, and
high-order features) described by IBSI and extracted from
contrast-enhanced CT images.

In this study, we used contrast-enhanced CT images to outline
the three-dimensional (3D) volume of tumors, extract high-order
features (such as LOG, wavelet filters processing) as well as first- and
second-order features. Then, we established and verified a
nomogram based on a combination of quantitative radiomics
features and clinical factors and explored the correlation between
radiomics and Ki-67 expression in HCC. The ability of the
nomogram to predict the probability of Ki-67 expression in
individual patients and its use for risk stratification was assessed.
METHODS AND MATERIALS

Patients
Our institutional ethics committee approved this retrospective
study, and the requirement for written informed consent was
waived off. The data of 329 patients with HCC confirmed by
histopathological examination of surgical specimens between
June 2015 and January 2022 were identified for this study. The
inclusion criteria were: (1) age ≥18 years; (2) pathologically
confirmed HCC with definite Ki-67 proliferation index and
Edmondson grade; (3) enhanced CT examination performed
within 1 month before surgery; (4) no previous history of tumor
treatment; (5) in patients with multiple lesions, the largest lesion
consistent with the pathological and immunohistochemical
diagnosis was selected. The exclusion criteria were: (1) poor
image quality (n = 19); (2) incomplete CT images, clinical, or
pathological data (n = 75); and (3) history of anti-tumor therapy
before operation (n = 63). After the exclusion of 157 ineligible
patients, 172 subjects were retrospectively enrolled in the study
(Supplementary Figure S1). Ordered by CT examination time
(26), patients were divided into two groups in a 7:3 ratio, i.e., a
training group for model construction (n = 120) and a validation
group for validation of model performance (n = 52).

Data Collection and Acquisition of CT
Images
Demographic characteristics and clinicopathological information
were collected for each patient, namely, age, sex, serum hepatitis B
surface antigen (HBsAg), alpha-fetoprotein (AFP) level, and
Edmondson grade. Serum AFP level was included as a categorical
variable based on the threshold value (20 mg/L).

Supplementary Table S1 illustrates the parameters of
enhanced CT image scanning, and Supplementary Material I
describes the specific image acquisition information. Two
radiologists (radiologist A with 10 years and radiologist B with
19 years of experience in diagnosing liver tumors) independently
evaluated the preoperative CT images of each patient, namely,
July 2022 | Volume 12 | Article 943942
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tumor size, cirrhosis, tumor capsule, and tumor margin. In the
event of any disagreement, the CT image features were
reevaluated and a consensus was reached. The radiologists
were blinded to the clinicopathological information.

Histological and Immunohistochemistry
All specimens were fixed in 3.7% neutral formaldehyde solution,
dehydrated conventionally, paraffin-embedded, and cut into 4-
mm thick sections. Immunohistochemistry (IHC) was used to
detect Ki-67 proliferation status using Ventana Benchmark Ultra
automated immunohistochemical staining (Roche Ventana,
Inc.). B Tumor cells with brown nuclei were thought to have
positive Ki-67 expression. The positive percentage of tumor
nuclei was counted as PI. According to Ki-67 PI, HCC lesions
were divided into two groups: the high expression group (PI
≥20%) and the low expression group (PI <20%).

Tumor Segmentation and
Feature Extraction
Each CT image (including arterial phase and portal vein phase)
was preprocessed before tumor segmentation, including: (1)
Voxel size resampling: a linear interpolation method was used
to resample CT images to 1 × 1 × 1 mm3 voxel size to achieve
image standardization. (2) Gray-level normalization and
discretization to order 32 to improve the robustness of
features. The 3D volume of interest (VOI) of the lesion was
manually delineated using ITK-SNAP software (http://www.
itksnap.org/). The CT images were independently evaluated by
radiologists A and B, with radiologist A drawing the tumor
boundaries and radiologist B validating them. The two
radiologists were unaware of the study.

Features were extracted from original and derived images
using the open-source package PyRadiomics (https://github.
com/Radiomics/pyradiomics), and derived images using
wavelet and LOG filters (Supplementary Material II).
Additionally, shape features were extracted from the original
images. The extracted radiomic features included morphological
features, first-order statistical features, and texture features. All
image types and radiomic feature types are shown in
Supplementary Table S2. As detailed in Supplementary
Material II, Z-score normalization was used to standardize the
data before feature extraction.

The repeatability of feature extraction was assessed using inter-
and intra-class correlation coefficients (ICCs). Radiologists A and B
randomly selected 30 lesions from the two phases to delineate VOI,
respectively. The features extracted by the two radiologists were
compared to calculate the inter-observer reproducibility. Then,
radiologist A segmented the 30 VOIs again 7 days later and
extracted features, and the features extracted were compared with
the first time to calculate the intra-observer reproducibility. An ICC
value greater than 0.8 was considered indicative of good consistency
of feature extraction (27).

Construction of the Radiomics Signature
To select the most optimal radiomic features, analysis of variance
(ANOVA), Mann–Whitney U-Test, correlation analysis, and
gradient boosting decision tree (GBDT) were used for dimension
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reduction in the training set. The detailed steps are shown in
Supplementary Material III. The final radiomic features selected
from the training group were multiplied by their respective
coefficients to calculate the radiomic score (rad-score) of each
patient. The rad-score of the arterial stage (AP), portal vein stage
(PVP), and arterial combined portal vein stage (AVP) were
calculated, respectively. Additionally, we used first-and second-
order (FSO) radiomic features, high-order (HO) radiomic
features, and all radiomic features to establish prediction models.
The receiver operating characteristic (ROC) curve analysis was
performed to evaluate the predictive performance. The Delong
test was used to compare the differences between them. The
radiomic signature was finally established by selecting radiomic
features with the highest area under the ROC curve (AUC).

Radiomics Nomogram Construction
and Evaluation
Variables in the training set were analyzed by univariate logistic
regression, and variables associated with a P-value of <0.05 were
included in multivariate logistic regression analysis to determine
independent predictors of high Ki-67 expression. Then,
independent predictors along with radiomic signatures were
used to establish a radiomics nomogram. AUC was used to
evaluate the performance of different models, and the DeLong
test was used to compare the differences between them. The
calibration curve was used to graphically show the performance
of the nomogram (evaluating the consistency between the
predicted and actual Ki-67 probabilities). The clinical utility of
the nomogram was evaluated using decision curve analysis
(DCA) (28). The goodness of fit of the nomogram was
analyzed using the Hosmer–Lemeshow (H-L) test (29). P >0.05
was considered a good outcome. The risk probability for each
patient was calculated according to the nomogram, and the Ki-67
probability was divided into the high-risk group (risk >cut-off
value) and the low-risk group (risk <cut-off value), and their
pathological Ki-67 results were compared. Figure 1 shows a
flowchart for the construction and evaluation of this nomogram.

Statistical Analysis
For statistical analysis, SPSS software (version 25.0), MedCalc
software (version 19.6), and R software (version 3.4) were used.
An independent-sample t-test or Mann–Whitney U test was used
for the analysis of continuous variables. The chi-square test or
Fisher’s exact test was used for categorical variables. The goodness of
fit was assessed using the H-L test. The Delong test was used to
compare the differences in AUCs. The “rms” software package was
used to draw the calibration curves and nomogram, and the DCA
was constructed using the “dca. R”. P-values of <0.05 were
considered indicative of statistical significance.
RESULTS

Characteristics of the Study Population
A total of 172 patients were enrolled in this study, and were
divided into training (n = 120) and validation (n = 52) groups.
July 2022 | Volume 12 | Article 943942
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There were no significant differences between the training and
validation groups with respect to clinical or radiological features
(P >0.05 for all) (Supplementary Table S3). There were
significant differences between the high Ki-67 expression and
the low Ki-67 expression groups with respect to Edmondson
grade, tumor capsule, and tumor margin (P <0.05 for all). AFP
expression in the high expression group was significantly higher
than that in the low expression group (P <0.05) (Table 1).

Construction of the Radiomics Signature
Extracted from AP, PVP, and AVP images, they included 1,037,
1,037, and 2,074 radiomic features, respectively. The Spearman
Frontiers in Oncology | www.frontiersin.org 4
rank correlation test was used to remove radiomic features with
correlation coefficients lower than 0.70. After dimension
reduction by GBDT, 9, 11, and 16 features were obtained,
respectively. Supplementary Material III and Supplementary
Table S4 show the processes and details of the selected features,
and Supplementary Material IV shows the calculation formula
for rad-score.

We compared the AUC values of rad-score from AP, PVP, and
AVP. The AUC values of the rad-score of AVP were the highest
(Supplementary Table S5 and Figures 2A, B) [0.854 (0.778–0.912)
(training group) and 0.744 (0.604–0.855) (validation group),
respectively. The Delong test showed that the AUC value of the
TABLE 1 | Characteristics of HCC patients in the high and low Ki-67 expression groups.

Variables Training group (n = 120) Validation group (n = 52)

High expression (n = 63) Low expression (n = 57) P-value High expression (n = 27) Low expression (n = 25) P-value

Age (years) 57.4 ± 11.61 58.84 ± 10.59 0.479 60.93 ± 11.69 61.32 ± 11.26 0.902
Sex 0.855 0.193
Female 6 (9.5%) 6 (10.5%) 5 (18.5%) 1 (4%)
Male 57 (90.5%) 51 (89.5%) 22 (81.5%) 24 (96%)
HBs-Ag 0.613 0.853
Negative 12 (19%) 13 (22.8%) 8 (29.6%) 8 (32%)
Positive 51 (81%) 44 (77.2%) 19 (70.4%) 17 (68%)
AFP (µg/L) 0.001* 0.053
≤20 19 (30.2%) 34 (59.6%) 7 (25.9%) 13 (52%)
>20 44 (69.8%) 23 (40.4%) 20 (74.1%) 12 (48%)
Edmondson grade 0.002* 0.002*
I–II 38 (60.3%) 49 (86%) 13 (48.1%) 22 (88%)
III–IV 25 (39.7%) 8 (14%) 14 (51.9%) 3 (12%)
Tumor size 0.665 0.054
≤5 cm 40 (63.5%) 34 (59.6%) 9 (33.3%) 15 (60%)
>5 cm 23 (36.5%) 23 (40.4%) 18 (66.7%) 10 (40%)
Cirrhosis 0.13 0.392
Absent 37 (58.7%) 41 (71.9%) 13 (48.1%) 15 (60%)
present 26 (41.3%) 16 (28.1%) 14 (51.9%) 10 (40%)
Tumor capsule 0.017* 0.02*
Complete 34 (54%) 42 (75%) 12 (44.4%) 19 (76%)
Incomplete 29 (46%) 14 (25%) 15 (55.6%) 6 (24%)
Tumor margin 0.017* 0.001*
Smooth 29 (46%) 38 (67.9%) 7 (25.9%) 18 (72%)
Non-smooth 34 (54%) 18 (32.1%) 20 (74.1%) 7 (28%)
J
uly 2022 | Volume 12 | Article
HBsAg, serum hepatitis B surface antigen; AFP, alpha-fetoprotein. *p < 0.05.
FIGURE 1 | Flowchart for the construction and evaluation of radiomics nomogram.
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AVP rad-score was significantly different from that of the AP rad-
score in the training group, but there was no significant difference in
other groups (P >0.05) (Figures 2C, D). Additionally, the AUCs of all
radiomic feature models were the highest, which were higher than
those of the FSO and HO models (Supplementary Table S6). We
selected the remaining radiomic features of AVP images, including all
radiomic features after dimension reduction to construct a radiomic
signature, including 6 first-order features, 4 Gray-Level Cooccurence
Matrix (GLCM) features, 2 Gray-Level Run LengthMatrix (GLRLM)
features, and 4 Gray-Level Size Zone Matrix (GLSZM) features; there
were 9 features in AP and 7 features in PVP. Figure 3 shows the
correlation coefficients of these features. The rad-score of the high-
expression Ki-67 group was significantly greater than that of the low-
expression Ki-67 group (P <0.001) (Figures 4A, B).

Development of a Radiomics Nomogram
Based on Combination of Radiomics
Signature and Clinical Independent
Predictors
In univariate regression analysis in the training group, AFP level,
tumor capsule, tumor margin, and Edmondson grade showed
significant differences between the high and low Ki-67 groups (P
<0.05) (Table 2). On multivariate regression analysis, AFP and
Edmondson grade were identified as independent predictors of
high-expression of Ki-67 (Table 2). Table 3 and Figure 2 show the
details of these important variables. Hence, the radiomics
nomogram was developed using a combination of the radiomic
signature, AFP, and Edmondson grade (Figure 5A).

Performance Evaluation of the Radiomics
Nomogram
The P-values of the H-L goodness offit test were all greater than 0.05
(training group: P = 0.643; validation group: P = 0.962), indicating a
Frontiers in Oncology | www.frontiersin.org 5
good agreement between the evaluated grade by the calibration
curve of the nomogram and the actual grade (Figures 5B, C). The
nomogram performed well in the Ki-67 grading evaluation.

The AUC of the radiomics nomogram for the training and
validation groups was 0.884 (0.813–0.936) and 0.819 (0.688–0.912)
(Figures 6A, B) (sensitivity: 0.778 and 0.741, respectively;
specificity: 0.877 and 0.84, respectively) (Table 3). The AUC value
of the radiomics nomogram was greater than that of the clinical
model and radiomic signature, and the Delong test showed that the
Ki-67 grading performance of the nomogramwas better than that of
the clinical model (P <0.05). There was no significant difference in
performance from radiomic signature (P >0.05) (Supplementary
Figure S2), demonstrating the excellent ability of radiomic features
in the evaluation of Ki-67 grading.

The DCA was used to assess the utility of the radiomics
nomogram based on the area under the decision curve
(Figures 6C, D). The area under the nomogram (orange) was
larger than that of the radiomics signature (blue), and was
superior to the “treat all” (solid gray line) or “treat none”
(dotted gray line) strategies (Supplementary Material III).
This demonstrated the good utility of the nomogram of the
training and the validation groups for clinical decision-making.

According to the nomogram (Figure 5A), the Ki-67 expression
was divided into a high-risk group (risk >0.59288) and a low-risk
group (risk <0.59288) based on the optimal cutoff value. As shown
in Figures 7A, B, there was a significant difference in the number of
patients in the risk groups of Ki-67 predicted by the nomogram (P
<0.001), indicating good discriminative capacity of the nomogram.
DISCUSSION

In this study, we developed and verified a radiomics nomogram
based on CT radiomic features combined with clinical
A B

DC

FIGURE 2 | Receiver operating characteristics (ROC) curves of AP, PVP, AVP and clinical independent predictors in the training (A) and validation (B) groups;
Heat maps of these major parameters in the training (C) and validation (D) groups. AP, arterial phase; PVP, portal venous phase; AVP, arterial phase combined with
portal venous phase. AFP, alpha-fetoprotein; Eg, Edmondson grade.
July 2022 | Volume 12 | Article 943942
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parameters to predict the probability of Ki-67 expression in
individual HCC patients. The results demonstrated an excellent
performance of the nomogram in predicting Ki-67 expression.

Studies have shown that standardized preprocessing of CT
images before feature extraction can significantly reduce the
differences between different scanners and different imaging
parameters (30). In this study, we conducted standardized
preprocessing (including voxel size resampling and gray-level
discretization) before the feature extraction. Features extracted
using PyRadiomics conform to the feature definition described
by the IBSI (25), and were shown to be associated with better
reproducibility of CT features and reduced image specification
differences (30). In our study, AVP had the highest AUC value.
Some studies have showed that the performance of the combined
model of multiple sequences is higher than that of a single
sequence, indicating that multiple sequences provide more
information (26, 31–33). Hence, radiomic features of images,
including arterial and portal phases, may provide more
important information.

First-order statistics, often called histogram features, are used
to describe the voxel intensity distribution of images. Second-
order statistics, widely referred to as “texture analysis,” describe
Frontiers in Oncology | www.frontiersin.org 6
the spatial relationships between voxels with similar gray-levels
within the lesion (34, 35) that can reflect tumor heterogeneity
and complexity (23, 36). These allow for better quantification
and assessment of the heterogeneity of tumor texture than first-
order features (23). Higher-order statistics entail the application
of filters to images, such as wavelets and LOG (34). Feature
transformation using a LOG filter can reduce noise and enhance
edge detection, and wavelet-transformed features play a crucial
role in predicting pathological responses (37). Higher-order
features may help reveal tumor features unobservable in the
original image (25). In this study, the radiomic model was
developed using 16 most discriminative features extracted from
higher-order features (including fourteen wavelet transformed
features and two LOG transformed features), including 6 first-
order features, 4 GLCM features, 2 GLRLM features, and 4
GLSZM features.

In our study, the rad-score of the Ki-67 high-expression
group consisting of these 16 features was significantly higher
than that of the Ki-67 low-expression group, indicating that the
higher the rad-score value, the greater the pixel difference
between the image and the greater the tumor heterogeneity
(38). High expression of Ki-67 reflects tumor heterogeneity.
A B

FIGURE 4 | Rad-score between high and low Ki-67 expression groups in the training (A) and validation (B) groups. Rad-score of the high Ki-67 expression group
(red) was significantly higher than that of the low Ki-67 expression group (blue).
FIGURE 3 | Correlation coefficients of selected radiomic features.
July 2022 | Volume 12 | Article 943942
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Wu et al. (11) analyzed CT texture features of tumors at the two-
dimensional level to predict the proliferation state of Ki-67. Ye
et al. (20) analyzed the texture features of enhanced MRI to
predict the expression state of Ki-67, and Hu et al. (21) predicted
Ki-67 state with MRI first-order histogram features.

They analyzed the features of images from the first- or
second-order features and lacked verification. We used tumor
3D volume to extract features, which provides better
morphological information than 2D and better reflects the
tumor heterogeneity (34, 39). We developed and verified a
Frontiers in Oncology | www.frontiersin.org 7
radiomics nomogram using higher-order features to explore
the correlation between Ki-67 expression and a combination of
radiomics and clinical parameters and quantified the risk of high
Ki-67 expression.

We extracted the most valuable 16 high-order radiomics
features to construct the radiomics model, which showed good
performance in predicting Ki-67 expression (AUC: training
group, 0.854; validation group, 0.744). Our findings indicate
that radiomics can reflect the Ki-67 expression in HCC in a non-
invasive manner. In our study, higher AFP levels, incomplete
TABLE 3 | Diagnostic performance of the various models.

Models Training group (n = 120) Validation group (n = 52)

AUC (95% CI) Sensitivity Specificity AUC (95% CI) Sensitivity Specificity

AFP 0.647 (0.555–0.732) 0.698 0.597 0.63 (0.485–0.760) 0.741 0.52
Eg 0.628 (0.535–0.715) 0.397 0.86 0.699 (0.556–0.819 0.519 0.88
Rad-score 0.854 (0.778–0.912) 0.873 0.684 0.744 (0.604–0.855) 0.667 0.8
Nomogram 0.884 (0.813–0.936) 0.778 0.877 0.819 (0.688–0.912) 0.741 0.84
July 2
022 | Volume 12 | Art
AFP, alpha-fetoprotein; Eg, Edmondson grade.
TABLE 2 | Univariate and multivariate logistic regression analysis of the preoperative clinical and radiological features of training group.

Variables Univariate logistic regression Multivariate logistic regression

OR (95% CI) p-value OR (95% CI) p-value

Age 0.988 (0.956–1.021) 0.476
Sex 1.118 (0.339–3.685) 0.855
HBs-Ag 1.256 (0.520–3.034) 0.613
AFP 3.423 (1.610–7.281) 0.001* 2.862 (1.299–6.306) 0.009*
Tumor size 0.850 (0.407–1.776) 0.666
cirrhosis 1.801 (0.838–3.870) 0.132
Tumor capsule 2.559 (1.171–5.592) 0.019* 0.840 (0.209–3.375) 0.806
Tumor margin 2.475 (1.171–5.231) 0.018* 1.708 (0.662–4.406) 0.268
Edmondson grade 4.030 (1.635–9.930) 0.002* 2.982 (1.164–7.638) 0.023*
ic
HBsAg, serum hepatitis B surface antigen; AFP, alpha-fetoprotein. *p < 0.05.
A

B C

FIGURE 5 | Radiomics nomogram (A) Calibration curve of the radiomics nomogram in training (B) and validation groups (C).
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tumor capsule, non-smooth tumor margins, and higher
Edmondson grade were more common in the high Ki-67
expression group, which is consistent with previous studies
(20, 21, 40, 41). AFP and Edmondson grade were independent
predictors of high Ki-67 expression in this study. Higher AFP
expression and lower tumor differentiation were shown to be
associated with higher HCC invasiveness (42, 43).

Based on a combination of the radiomic signature and
independent clinical factors, we constructed the radiomics
nomogram to predict the expression status of Ki-67 in individual
patients. The nomogram showed the highest predictive
performance (AUC: training, 0.884; validation, 0.819) and good
calibration capability (P >0.05 in the H-L test). Results of the Delong
test showed that the nomogram had better predictive performance
Frontiers in Oncology | www.frontiersin.org 8
than clinical factors (P <0.05); however, the performance was not
significantly different from that of the radiomic signature (P >0.05),
indicating a significant role of radiomics in predicting the
expression of Ki-67. The DCA demonstrated the better clinical
value of the radiomics nomogram compared with the radiomic
signature. This indicates that clinical factors play a certain
complementary role, and the combination of clinical factors has
better clinical practicality.

Some limitations of our study should be considered. First, this
retrospective study had a potential selection bias with respect to
the inclusion of patients with hepatitis B virus-associated HCC.
A prospective study including patients with different etiologies
must validate these findings. Second, this was a single-center
study, and the performance of the nomogram requires external
A B

FIGURE 7 | The probability of high Ki-67 expression in the high-risk group was significantly higher than that in the low-risk group in the training (A) and validation
(B) groups.
A B

DC

FIGURE 6 | AUCs of radiomics nomogram and radiomic signature in training (A) and validation (B) groups; Decision curve analysis curve of the nomogram in
training (C) and validation groups (D). AUC, area under the receiver operating characteristic curve.
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validation. Third, there is currently no unified standard for the
expression level of Ki-67 in HCC, and there is no clear consensus
on the use of 20% as the cut-off value.

In summary, we developed and validated a radiomics
nomogram based on radiomic features and clinical factors,
which can quantify the probability of Ki-67 expression, guide
individualized treatment and clinical monitoring and show good
diagnostic performance and clinical utility.
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