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Introduction: The poor prognosis of ovarian carcinoma (OvC) is due to the

advanced stage at diagnosis, a high risk of relapse after first-line therapies, and

the lack of efficient treatments in the recurrence setting. Circulating tumor

DNA (ctDNA) analysis is a promising tool to assess treatment-resistant OvC and

may avoid iterative tissue biopsies. We aimed to evaluate the genomic profile of

recurrent heavily pre-treated OvC.

Methods: We performed tumor panel-based sequencing as well as low-

coverage whole-genome sequencing (LC-WGS) of tumor and plasma

collected in patients with ovarian cancer included in the PERMED-01 trial.

Whole-exome sequencing (WES) data of plasma samples were also analyzed

and compared to mutation and copy number alteration (CNA) tumor profiles.

The prognostic value [progression-free survival (PFS)] of these alterations was

assessed in an exploratory analysis.

Results: Tumor and plasma genomic analyses were done for 24 patients with

heavily pretreated OvC [67% high-grade serous carcinoma (HGSC)]. Tumor

mutation burden was low (median 2.04 mutations/Mb) and the most frequent

mutated gene was TP53 (94% of HGSC). Tumor CNAs were frequent with a

median of 50% of genome altered fraction. Plasma LC-WGS and WES detected

ctDNA in 21/24 cases (88%) with a median tumor fraction of 12.7%. We

observed a low correlation between plasma and tumor CNA profiles.

However, this correlation was significant in cases with the highest circulating
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tumor fraction. Plasma genome altered fraction and plasma mutation burden

(p = 0.011 and p = 0.041, respectively, log-rank tests) were associated with PFS.

Conclusions: Combination of LC-WGS and WES can detect ctDNA in most

pre-treated OvCs. Some ctDNA characteristics, such as genome altered

fraction and plasma mutation burden, showed prognostic value. ctDNA

assessment with LC-WGS may be a promising and non-expansive tool to

evaluate disease evolution in this disease with high genomic instability.

Clinical Trial Registration: https://clinicaltrials.gov/ct2/show/NCT02342158,

identifier NCT02342158.
KEYWORDS

ovarian cancer, circulating tumor DNA, low-coverage whole-genome sequencing,
copy number alterations, whole-exome sequencing, mutations, tumor
mutation burden
Introduction

Ovarian carcinomas (OvCs) are the fifth leading cause of

death by cancer in women (1). This poor prognosis (5-year

survival close to 30%) is due to the advanced stage at diagnosis, a

high recurrence rate, and low treatment efficacy in the platinum-

resistant setting (median overall of 1 year) (2, 3). Great efforts are

thus warranted to improve our knowledge of platinum-resistant

tumors and identify new therapeutic targets for this population.

Platinum-resistant OvCs are heterogeneous, and their

evolution is poorly understood by usual clinicopathological

criteria (3). This heterogeneity of morphologically similar

tumors suggests that biology may be heterogeneous not only

between patients but also between disease sites (4). Previous

efforts performed to study these tumors have not led to outcome

improvement, maybe because they were focused on limited

tumor samples not reflecting the biological complexity of the

disease (5, 6). Analysis of circulating tumor materials may

improve assessment of disease biological heterogeneity (7, 8).

Moreover, tumor sampling using surgical procedures or guided
y number alterations;

WES, whole-exome

GISTIC, Genomic

FS, progression-free

TF, tumor fraction;

CI, 95% confidence

for tumor marker

ma; LGSC, low-grade

s; HRD, homologous
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biopsies can be too invasive for heavily pre-treated patients, and

blood sampling should be more acceptable from an ethical point

of view.

Mutation and copy number alteration (CNA) profiles of

newly diagnosed OvC have been widely described with high

genomic instability as a hallmark of OvC (9). Low-coverage

whole genome sequencing (LC-WGS) can efficiently identify

tumor alterations in OvC (10) but data are scarce concerning

platinum-resistant tumors. Whole-exome sequencing (WES) of

ovarian cancer tissues has already been reported (9, 11), but no

data with this technology are available for plasma analysis.

Plasma WES may be of interest to complete LC-WGS profiles.

By combining LC-WGS and WES of plasma samples from

heavily pre-treated patients with OvC enrolled in a prospective

cohort, we aimed to develop a non-invasive comprehensive

genomic profile of these platinum-resistant tumors.
Materials and methods

Patients’ selection and study design

All patients analyzed in this work were included in the

PERMED-01 study (NCT02342158). PERMED-01 was a

prospective non-controlled trial aiming to evaluate the number

of patients with advanced cancer for whom identification of

actionable genetic alterations in tumor samples could lead to the

delivery of matched therapies. Among others, secondary

objectives included description of molecular alterations and

their correlations to clinicopathological features and survival,

as well as analysis of liquid biopsies such as circulating tumor

DNA (ctDNA) analysis. Various tumor types were enrolled
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including breast cancer, lung, gastro-intestinal, prostate, and

gynecological cancers. Details of inclusion criteria, patients’

selection, and clinical results can be found elsewhere (12). This

subset study was focused on patients with OvC and with tumor,

plasma, and germline samples available.
Tumor and germline sample collection
and DNA extraction

We collected germline and genomic DNA for all patients

included in this study. All genomic analyses were performed on

de novo tumor biopsies or resections. Only frozen samples with

at least 20% of tumor cells as assessed by the pathologist were

retained for analysis. Tumor DNA and germline DNA were

extracted as previously described (12). DNA concentration was

quantified with the Qubit fluorometer (Qubit dsDNA-BR kit,

ThermoFisher Scientific™, Waltham, MA, USA) according to

the manufacturer’s instructions. DNA was then stored at −20°C

before further analyses.
Plasma sample collection and cell-free
DNA extraction

Peripheral blood was collected in four 5-ml EDTA tubes at

inclusion. Blood was centrifuged twice within 2 h after

venipuncture and plasma was stored at −80°C. Cell-free DNA

was isolated from plasma using the Maxwell® (Promega™,

Madison, WI, USA) and Maxwell® RSC circulating cell-free

DNA Plasma Kit (Promega™) and quantified by the Qubit

fluorometer (QuBit HS dsDNA kit, ThermoFisher Scientific™),

according to the manufacturer’s instructions. Cell-free DNA was

then stored at −20°C before further analyses.
Low-coverage whole-genome
sequencing

We explored copy number abnormalities, using low-coverage

whole-genome sequencing analysis (LC-WGS). Libraries were

constructed using the commercially available MicroPlex Library

Preparation Kit v2 (Diagenode™, Liège, Belgium) in accordance

with the manufacturer’s instructions. The cfDNA input was 5 ng

per library preparation. The quality and quantity of each library

were evaluated by the Agilent 2200 TapeStation System (Agilent HS

D1000 Assay Kit, Agilent™, Santa Clara, CA, USA) and the Qubit

Fluorometer (QubitTM dsDNA BR Assay Kit, ThermoFisher

Scientific ™), respectively. Each library was then reduced to 4

nM before being pooled in equimolar amounts (12 libraries per

mix). All library mixes were sequenced on a NextSeq500® Next-
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Generation Sequencer from Illumina (San Diego, CA, USA) with an

average depth of coverage of 0.4×, generating readings of 2 * 75 base

pairs (bp). We then determined the DNA fraction from tumor cells

[tumor fraction (TF)] for each sample. Reads were aligned with the

human reference genome (hg19) using the bwa software (version

0.7.15-r1140). Alignment was then processed to remove the

duplicate sequences with the Picard software (version 2.9.2). A

wig file containing the number of reads for regular intervals of

50,000 bp for tumor DNA and 500,00 bp for cfDNA was generated

with the readCounter software. Finally, TF evaluation was obtained

using the ichorCNA software (version 0.3.2). For plasma samples,

in silico size selection was performed to limit cell-free DNA analysis

to DNA fragments from 90 to 180 bp (13). We chose 500,000 bp to

define intervals used by the readCounter software to limit copy

number profile fragmentation.

For each sample, the genomic profile was established. To

identify recurrent copy number alterations, we used the Genomic

Identification of Significant Targets in Cancer (GISTIC) 2.0

algorithm (14), calculated by multiple random iterations, with an

amplification/deletion threshold >0.9, confidence level 0.90, and a

corrected threshold probability q < 0.25. We computed the

percentage of concordance between plasma and tumor for each

significant region. Gained regions were consistent if gained in both

samples (copy number ≥3), and lost regions were consistent if lost

in both samples (copy number ≤1). We identified driver genes in

these CNAs by using Cancer Genome interpreter (CGI, https://

www.cancergenomeinterpreter.org/home). Genome altered fraction

(GAF) was defined as the sum of altered regions divided by the total

number of regions after removing sexual chromosomes.
Single-nucleotide mutation analyses

Tumor and germline DNA were sequenced using four

chronologically extended home-made panels of genes as

previously described (12). Sequence data were aligned to the

human genome (UCSC hg19) and alignment processed as

previously described (15). Genomic signature exposure was

explored according to Macintyre’s algorithm (10).

Cell-free DNA WES was performed using the Agilent

SureSelectXT V6 target enrichment system. Paired-end

sequencing was performed using the NextSeq 500 (2 × 150

cycles; Illumina). All bioinformatics analyses related to WES

were performed as previously described (16). Reads were aligned

with the human reference genome (hg19) using the bwa software

(version 0.7.15-r1140). Alignment was then processed to remove

the duplicate sequences with the Picard software (version 2.9.2).

Somatic variant calling was done with Mutect2, and annotation

was performed with Annovar.

Plasma WES and LC-WGS data are available in

Supplementary Tables 5 and 6.
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Statistical analyses

Patient’s characteristics were summarized by frequency

counts and percentages for categorical variables and medians

and ranges for continuous variables. Progression-free survival

(PFS) was defined as the delay from tumor biopsy to disease

progression or death, whatever occurred first. Progression was

defined according to Gynecological Cancer Intergroup (GCIC)

criteria (17). Patients lost to follow-up or without any event were

censored at the date of last contact. Correlation of PFS to plasma

TF, plasma tumor mutation burden (TMB), and circulating GAF

was performed using Cox proportional hazards regression.

Hazard ratios (HRs) with their 95% confidence interval (95%

CI) were provided and the null assumption (HR = 1) was

assessed using the Wald’s test. For binary variables,

comparisons between groups were estimated using the

Kaplan–Meier method and subgroups were compared by log-

rank test. In order to search CNAs associated with survival, we

performed a supervised analysis in patients diagnosed with high-

grade serous carcinoma (HGSC). We used the median PFS as

threshold for dichotomization (above and below the median).

For each region, we compared the frequency of gain or loss

between the two groups (short vs. long PFS) with a Fisher’s exact

test. The statistical analyses were carried out using SAS version

9.4 (SAS Institute, Cary, NC, USA) with a nominal level of

statistical significance (two-tailed) set to 0.05 and using R

(version 3.5.1; http://www.cran.r-project.org/). This study was

conducted in compliance with the Reporting recommendations

for tumor marker prognostic studies (REMARK) criteria (18)

(see Supplementary checklist).
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Results

Ovarian cancer cohort characteristics

From November 2014 to September 2019, 550 patients were

enrolled in the PERMED-01 trial, including 32 patients with

OvC. Tumor and germline molecular profiles were available for

29 OvC cases. Of them 24 had plasma available (Figure 1).

Clinicopathological features of these 24 patients are detailed in

Table 1. Median age of patients at inclusion was 54 years old

(range, 21–71). Most of patients had HGSC (67%). Patients had

received a median of three prior lines of chemotherapy and 92%

were platinum-resistant at time of inclusion, i.e., experienced

disease progression less than 6 months after completion of the

last platinum-based chemotherapy line.

Similar to what has been shown in the entire PERMED-01

study (12), actionable genomic alterations were identified in 10

(42%) patients and three patients received genomic-guided

therapies. Median PFS was 4.83 months (range 0.66–25.26)

(Supplementary Figure 1).
Tumor genomic profiles

Panel-based sequencing of the 24 tumor tissues [median

depth 751× (range, 463–3,371)] identified a median of four

mutations per sample (1–8) and all cases displayed a low

tumor mutational burden [TMB; median 2.04 mut/Mb (range,

0.51–4.66)]. Most frequent somatic mutations involved TP53

(N = 15, all HGSC), followed by ARID1A (N = 2, all clear cell
FIGURE 1

Study flow diagram.
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cancer), and PIK3CA (N = 2, one clear cell and one endometrioid

carcinoma). Five patients harbored mutations in genes involved

in homologous recombination (Supplementary Table 1).

We then assessed tumor CNA profiles by using LC-WGS on

tumor DNA (median depth 0.6×, range, 0.49–0.84). Median

tumor fraction was 32.45% (range, 4.53–72.98). GAF was

variable across cases (median 50%, range 12%–88%). GISTIC

analysis identified several recurrent altered regions (Figure 2),

including eight regions with loss/deletions and six regions with

gains/amplifications (Supplementary Table 2). Among them,

seven were already described in chemotherapy-naive tumors

from TCGA (9).

Using a previously published algorithm (10), we then

explored the CNA signature profiles of each tumor (Figure 3).

As expected, most HGSCs displayed HRD (homologous

recombination deficiency) profiles. The three HGSC cases with

somatic or germline mutations in HRD-related genes had

signatures S3 (BRCA-related HRD) as dominant signature. Of

note, the only case with BRCA mutation with a non-HRD

dominant signature was a carcinosarcoma with KRAS

amplification and a RAS-MAPK dominant signature. Signature

S1 (RAS-MAPK pathway alteration) was dominant in five

HGSC cases including one with FGFR4 mutation and FGFR1
Frontiers in Oncology 05
gain, and a case with a flat profile probably related to its low

cellularity (20%). Signature S2 (Tandem duplication) was

dominant in the last HGSC also harboring NF1 mutation.

Profiles were more heterogeneous in other subtypes. Two of

three clear cell tumors and two of three low-grade serous cases

had an HRD-related dominant signature. Signature S1 was

dominant in one clear cell OvC, one LGSC, and the

endometrioid tumor.
Plasma genomic alterations

We first assessed the fraction of cell-free DNA from ovarian

cancer in each of the 24 cases. LC-WGS of cell-free DNA

(median depth 1.07×, range 0.53–1.41) detected ctDNA in 21

of 24 cases (87.5%). Median tumor fraction was 12.65% (range

5.50%–41.41%). Plasma tumor fraction was correlated with

tissue tumor fraction (Pearson correlation coefficient = 0.67,

p < 0.001, Figure S2A). Median GAF was 15.2% (range,

5.8–81.9).

Comparison of CNA profiles in plasma samples (in cases

with TF > 0) and tumor counterparts showed a low correlation

(Figure 4A). However, some cases had very similar CNA profiles

with almost all tumor CNAs also detected in plasma (Figure 4B).

Correlation between plasma and tumor CNA profiles tended to

be higher in cases with the highest plasma TF (Pearson

correlation coefficient 0.55, p = 0.0095, Figure S2B).

All but one (93%, five of six amplifications and all deletions)

recurrent altered region identified with tumor GISTIC analysis

were also observed in at least one plasma sample

(Supplementary Table 2). Deletions in chromosome 19

(19p13.3 and 19q13.33) were observed in most plasma samples

(Figure 5A). Eight of 18 patients with plasma 19q13.33 deletion

also displayed this deletion in tumor counterparts. A similar

observation (7 of 19) was made for 19p13.3 deletion.

Correlations between tumor and plasma were independent

from baseline plasma TF, pathological subtype, and site of

tumor biopsy (Figure 5A).
Whole-exome analysis of plasma
samples

We then explored plasma samples and germline

counterparts with WES (median depth 123.71×, range 80.68–

242.55). We encountered technical issues and were not able to

perform WES in one case. TF defined by WES was lower than

LC-WGS TF (median 0.1, range 0.1–0.61) and was correlated to

LC-WGS TF (Supplementary Figure 3A). Plasma CNA profiles

defined by LC-WGS were closer to tumor than plasma WES

profiles (Supplementary Figure 3B).

We observed a median of 21 somatic mutations (range, 5–

115) with all cases displaying a low mutational load (median 0.13
TABLE 1 Clinical and molecular characteristics of patients included
in the ovarian cancer cohort of the PERMED-01 trial.

Number of patients 24

Median age (years, range) 54.3 [21.7–71.1]

Histology

- HGSC
- LGSC
- Clear cell
- Endometrioid
- Carcinosarcoma

16
3
3
1
1

Site of baseline biopsy

- Peritoneum
- Lymph nodes
- Liver
- other

9 (38%)
7 (29%)
6 (25%)
2 (8%)

Platinum-resistant at inclusion 22 (92%)

Priori lines of chemotherapy

- Median (range) 3 (1-6)

Most frequent somatic alterations

- TP53 mutation
- ARID1A mutation
- ARID1A loss
- PI3KCA mutation

15 (63%), Including 15/16 HGSC (92%)
2 (8%, all clear cell)
2 (8%, all LGSC)
2 (8%, 1 clear cell, 1 endometrioid)

Actionable genetic alterations 10 (42%)

Genomic-guided therapies 3 (13%)

- Lapatinib
- Sorafenib
- Everolimus

ERBB2 amp, PD
KRAS mut, SD
PIK3CA mut, PR
Data are expressed as N (%) unless otherwise specified. HGSC, high-grade serous cancer;
LGSC, low-grade serous cancer; PD, progressive disease; SD, stable disease; PR, partial
response.
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FIGURE 2

Frequency plot of recurrent copy number alterations identified in tumor samples using the GISTIC algorithm. Frequencies of losses (left) and
gains (right) are plotted as a result of chromosome location. x-axis: top = log-scale ratio; bottom = q-values. Alterations described in TCGA are
underlined in blue. Green lines represent the threshold for significance.
FIGURE 3

Copy number signature exposures for each patient. Stacked bar plots representing copy number signature exposures according to (10). Patients
were gathered according to tumor pathological subtypes. CC, clear cell; LG, low-grade serous; CS, carcinosarcoma; En, endometrioid.
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mut/Mb, range 0–0.99). Plasma TMB was not correlated to

tumor TMB assessed by panel-based sequencing (Pearson

correlation 0.13, Supplementary Figure 3C). Among all

mutations detected, some involved the 60 genes also evaluated

in tumors with our panel-based sequencing (Figure 5B). Thirty-

three tumor mutations were detected in plasma (including 21

clonal mutations), whereas 60 (33 clonal) were not identified by

WES. One NF1 somatic mutation not detected by tumor

sequencing was identified with plasma WES. When combining

plasma LC-WGS and WES, we observed at least one tumor

alteration in 21 of 24 patients (88%) including the three cases

with LC-WGS TF equal to 0, who had circulating somatic

mutation detected by WES. Circulating variant allele fraction

was 3% or lower in the three cases, under the usually admitted

detection threshold of circulating CNAs by LC-WGS. Actionable

genetic alterations were identified in plasma in all three patients

who received genomic-guided therapies.

Moreover, WES analysis allowed the identification of specific

molecular processes associated with genomic instability. We

identified a median of 5.5 large-scale state transitions (range
Frontiers in Oncology 07
1–14) and a median of five loss-of-heterozygosity events (range,

0–14). The incidence of these events was similar between high-

grade serous tumors and other pathological subtypes (p = 0.85

and 0.76, respectively).

It is of note that germline WES allowed identification of one

additional TP53 mutation with a variant allele fraction in

germline DNA equal to 7.7%, and a similar frequency (8.2%)

in tumor DNA. This mutation was related to clonal

hematopoiesis in a patient who subsequently (21 months later)

developed acute myeloid leukemia with complex karyotype. She

died of leukemia 10 months after diagnosis.
Correlation of plasma genomic
alterations to clinical outcome

We then performed an exploratory assessment of the impact

of ctDNA features on PFS. PFS was correlated with plasma TMB

(HR = 8.6; 95% CI [1.4–52]) and circulating GAF (HR = 8.9; 95%

CI [0.91–87]) (Supplementary Table 3). Median PFS was 4.0
A

B

FIGURE 4

Correlation between plasma and tumor copy number alteration profiles determined by LC-WGS in tumor with baseline plasma tumor fraction
(TF) >0. (A) Pearson correlation for each patient. (B) Examples of tumor and plasma CNA profiles in two cases (1399 and 1343).
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(95% CI [2.6–NA]) months in patients with high (higher than

the median) plasma TMB vs. 7.4 [3.5–NA] months in low TMB

cases (p = 0.041), and 3.5 [2.8–NA] vs\. 9.3 [4.6–NA] months in

cases with high and low GAF (p = 0.011), respectively (Figure 6).

Similar trends were observed in the HGSC subset

(Supplementary Table 3). Of note, neither pathological

subtypes (HGSC vs. others, HR = 1.48, 95% CI [0.59–3.61])

nor number of prior lines of chemotherapy (<3 vs. ≥3; HR =

0.87, 95% CI [0.36–2.09]) were correlated to PFS in our set.

Finally, a supervised analysis of CNAs associated with

shorter PFS was conducted in the HGSC subset to avoid

subtype-specific bias. This exploratory analysis identified three

genomic regions differentially altered between cases with short

and long PFS (split on the median). Two regions were deleted in

case with short survival: 6q11.1-6q27 (including ESR1, FOXO3,

ARID1B, UTRN, PRMD1, and PNRC1) and 8p23.3-8p23.1. A

large part of chromosome 8 [from 8p23.1 to 8q24.3 (including

FGFR1 andMYC)] was observed as amplified in cases with short

PFS (Supplementary Table 4).
Discussion

We show that low-coverage WGS and WES are feasible in

plasma from heavily pre-treated OvC. Even though plasma
Frontiers in Oncology 08
analyses cannot reflect a comprehensive genomic profile of

tumor samples, some disease characteristics can be identified

in 88% of patients and some ctDNA features are associated

with prognosis.

We describe here a comprehensive genomic analysis of the

OvC subset of the PERMED-01 study. PERMED-01 showed that

actionable genomic alterations can be identified in more than

half of patients with pre-treated metastatic carcinoma (12).

However, as also described in other genomic-guided treatment

trials (19–21), less than 20% of patients received therapies

matched with their molecular alterations, and only 1 of 20

patients experienced clinical benefit with this therapy. Similar

results were observed in the current OvC cohort with only three

patients receiving matched therapies and one displaying partial

response. Most frequent genomic alterations identified in this

heavily pre-treated dataset were consistent to usually described

alterations. High-grade serous carcinomas were TP53-mutated

and displayed high genomic instability (9). ARID1A and

PIK3CA alterations were frequent in other subtypes (22–26).

Using LC-WGS, we observed that most of the tumors displayed

an HRD profile, consistent with previous observations with the

same technologies (10). Patterns of chromosomal instability and

HRD can also be identified in plasma from patients with OvC

and are able to differentiate malignant serous tumors from

benign adnexal masses (27). This may also allow using HRD
A B

FIGURE 5

Copy number alterations and mutation profiles of ctDNA. (A) Heatmap of genomic alterations identified in tumors and plasma counterparts. TF,
tumor fraction; HGSC, high-grade serous carcinoma; LGSC, low-grade serous carcinoma; EOC, endometrioid ovarian cancer; CC, clear cell.
Stars represent cases with at least one tumor alteration identified in plasma. (B) Upset chart showing the comparison of single-nucleotide
variants identified using WES versus t-NGS.
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detection in plasma analysis instead of tumor-based assays in

order to prescribe PARP inhibitors that are routinely

recommended both in the first-line and in recurrent setting

(28–31). In our analysis, plasma and tumor CNA profiles were

highly correlated in cases with the highest tumor fraction.

ctDNA genomic instability was similar to that was observed in

the tumor counterpart. Moreover, even in cases with low TF, we

were able to identify at least one tumor CNA in 85% of ctDNA

samples, with 19p13.3 and 19q13.33 deletions as the more

frequent shared alterations. The 19q13.33 amplicon comprises

BAX. The corresponding protein is involved in p53-induced

apoptosis and low BAX expression is correlated to platinum

resistance by upregulation of the Bcl2/Bcl-xL axis (32–35).

19p13.3 deletion has been described in ovarian clear cell

cancer (36). Within this locus, the most obvious candidate is

STK11, a well-known tumor suppressor gene involved in Peutz-

Jeghers syndrome. STK11 loss has already been shown in

ovarian serous carcinoma and may favor mTOR activation (37).

Our observations concerning ctDNA detection by LC-WGS

are in line with a recent analysis of 46 patients treated in the first-

line setting (38). Main tumor CNAs were retrieved in plasma at

diagnosis suggesting that plasma LC-WGS analysis can be used as

a surrogate of tumor alterations. Our results also suggest that the

higher the amount of genomic alterations [both at the mutation

(TMB) and CNA (GAF) levels], the poorer the prognosis. This

may lead to implement ctDNA features as prognostic tools that

would help patients and clinicians to choose the most adapted

therapeutic strategies. Even though the small size of the cohort
Frontiers in Oncology 09
precludes performing multivariate analysis, the fact that high-

grade serous cases with the highest GAF or the highest TMB also

tended to have the poorest PFS suggests that it was independent

from the pathological classification.

Some genomic alterations were associated with PFS.

Chromosome 6q contains several tumor suppressor genes, and

its deletion has been described in various tumor types, including

Luminal B breast cancer, one of the most aggressive breast

cancer subtype (39). Chromosome 8q24 amplification,

including MYC, is widely described to be associated with

tumorigenesis, notably in serous ovarian cancer (9, 38).

However, despite the fact that MYC mRNA expression was

associated with survival in The Cancer Genome Atlas dataset

(40), the correlation of MYC amplification to ovarian cancer

prognosis remains unclear (41).

Another innovative aspect of our study concerns the WES

assessments of plasma from patients with OvC. To our

knowledge, we are the first to describe this technology in this

setting. We identified at least one tumor mutation in 21/24

patients (88%), close to what we can expect with panel-based

NGS in these tumors with low mutation burden (42), and to what

has been described in pre-treated metastatic cancers (43). As

already shown, plasmaVAF was lower than tumor VAF, reflecting

a lower tumor fraction in the bloodstream (44, 45). A

disappointing result was the moderate capacity to identify clonal

mutations (53% of TP53mutations). This can be explained by our

choice to maximize the amount of data we could obtain with this

technology by sequencing cell-free DNA samples with TF<10% as
A B

FIGURE 6

Kaplan–Meier curves for progression-free survival in the whole cohort according to (A) tumor mutation burden (TMB) and (B) genome altered
fraction (GAF). Groups are split according to the median. p, log-rank test.
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assessed with LC-WGS. This threshold of 10% was set to optimize

mutation results in other diseases with higher mutation rates (46).

A TF above 25% has also been described to improve ctDNA

detection sensitivity and agreement with tumor WES in a meta-

analysis of more than 300 patients with various cancer types (47).

Nevertheless, it is worth noting that we identified circulating

mutation in the three cases with TF equal to 0, with mutant

allele fractions of 3% or lower, under the admitted sensitivity of

LC-WGS. Moreover, we identified one somatic NF1mutation not

observed in tumor tissue, suggesting polyclonal evolution in this

patient. This polyclonal evolution has been widely described in

other tumor types such as breast cancer (48).

Particular attention should be given to germline sequencing

besides cell-free DNA WES. It not only increases specificity by

filtering single-nucleotide polymorphisms, but also can detect

preliminary signals of clonal hematopoiesis. Hence, one patient

in our set harbored TP53 mutation in germline DNA at the time

of inclusion and developed acute myeloid leukemia less than 2

years later. Limiting analysis to tumor and cell-free DNA may

have led to interpret this mutation as subclonal. Germline

sequencing is thus of high interest, notably in patients with

prior treatment with alkylating agents and/or anthracyclines at

high risk of induced hematological myeloid malignancies (49, 50).

Our work has limitations. First, its small size limits the

prognostic analyses. However, this sample size is close to what

has been published in other tumor types (44, 45, 51). Second, to

be more comprehensive, panel-based NGS on cell-free DNA

would have been of interest for comparison to tumor NGS

mutation profile. Third, single-tumor biopsies were performed

in the PREMED-01 trial. Multisite biopsies would have allowed a

deeper exploration of tumor spatial heterogeneity and

correlation to plasma analysis. Fourth, PERMED-01 did not

plan to collect subsequent plasma samples after matched

therapies initiation. We thus were not able to analyze multiple

time points and could not explore ctDNA kinetics after

treatment initiation, which is known to be correlated to

survival (52). We were also not able to analyze clonal

evolution under therapeutic pressure (53). Moreover, the low

tumor mutation burden in ovarian cancer did not allow

exploring mutation signatures, such as BRCA-like and

APOBEC signatures, by plasma WES as is can be done in

other tumor types (46).

In conclusion, the combination of LC-WGS and WES can

detect ctDNA in most pre-treated OvCs. Some ctDNA

characteristics associated with a higher amount of genomic

alterations, such as circulating GAF and plasma TMB, may be

prognostic. ctDNA assessment with LC-WGS may be a promising

and non-expansive tool to evaluate disease evolution in this

disease with high genomic instability. Larger and prospective

studies are required to confirm our observations.
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12. Bertucci F, Gonçalves A, Guille A, Adelaïde J, Garnier S, Carbuccia N, et al.
Prospective high-throughput genome profiling of advanced cancers: results of the
PERMED-01 clinical trial. Genome Med (2021) 13(1):87. doi: 10.1186/s13073-021-
00897-9

13. Mouliere F, Chandrananda D, Piskorz AM, Moore EK, Morris J, Ahlborn
LB, et al. Enhanced detection of circulating tumor DNA by fragment size analysis.
Sci Transl Med (2018) 10(466). doi: 10.1126/scitranslmed.aat4921

14. Beroukhim R, Getz G, Nghiemphu L, Barretina J, Hsueh T, Linhart D, et al.
Assessing the significance of chromosomal aberrations in cancer: methodology and
application to glioma. Proc Natl Acad Sci USA (2007) 104(50):20007–12. doi:
10.1073/pnas.0710052104

15. Bertucci F, Finetti P, Guille A, Adélaïde J, Garnier S, Carbuccia N, et al.
Comparative genomic analysis of primary tumors and metastases in breast cancer.
Oncotarget (2016) 7(19):27208–19. doi: 10.18632/oncotarget.8349

16. Bertucci F, Ng CKY, Patsouris A, Droin N, Piscuoglio S, Carbuccia N, et al.
Genomic characterization of metastatic breast cancers. Nature (2019) 569
(7757):560–4. doi: 10.1038/s41586-019-1056-z

17. Rustin GJS, Vergote I, Eisenhauer E, Pujade-Lauraine E, Quinn M, Thigpen
T, et al. Definitions for response and progression in ovarian cancer clinical trials
incorporating RECIST 1.1 and CA 125 agreed by the gynecological cancer
intergroup (GCIG). Int J Gynecol Cancer (2011) 21(2):419–23. doi: 10.1097/
IGC.0b013e3182070f17

18. McShane LM, Hayes DF. Publication of tumor marker research results: The
necessity for complete and transparent reporting. J Clin Oncol (2012) 30(34):4223–
32. doi: 10.1200/JCO.2012.42.6858
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