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Importance: The utilization of artificial intelligence for the differentiation of

benign and malignant breast lesions in multiparametric MRI (mpMRI) assists

radiologists to improve diagnostic performance.

Objectives: To develop an automated deep learning model for breast lesion

segmentation and characterization and to evaluate the characterization

performance of AI models and radiologists.

Materials and methods: For lesion segmentation, 2,823 patients were used for

the training, validation, and testing of the VNet-based segmentation models,

and the average Dice similarity coefficient (DSC) between the manual

segmentation by radiologists and the mask generated by VNet was

calculated. For lesion characterization, 3,303 female patients with 3,607

pathologically confirmed lesions (2,213 malignant and 1,394 benign lesions)

were used for the three ResNet-based characterization models (two single-

input and one multi-input models). Histopathology was used as the diagnostic

criterion standard to assess the characterization performance of the AI models

and the BI-RADS categorized by the radiologists, in terms of sensitivity,

specificity, accuracy, and the area under the receiver operating characteristic

curve (AUC). An additional 123 patients with 136 lesions (81 malignant and 55

benign lesions) from another institution were available for external testing.

Results: Of the 5,811 patients included in the study, the mean age was 46.14

(range 11–89) years. In the segmentation task, a DSC of 0.860 was obtained

between the VNet-generated mask and manual segmentation by radiologists.

In the characterization task, the AUCs of the multi-input and the other two

single-input models were 0.927, 0.821, and 0.795, respectively. Compared to
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the single-input DWI or DCE model, the multi-input DCE and DWI model

obtained a significant increase in sensitivity, specificity, and accuracy (0.831 vs.

0.772/0.776, 0.874 vs. 0.630/0.709, 0.846 vs. 0.721/0.752). Furthermore, the

specificity of the multi-input model was higher than that of the radiologists,

whether using BI-RADS category 3 or 4 as a cutoff point (0.874 vs. 0.404/

0.841), and the accuracy was intermediate between the two assessment

methods (0.846 vs. 0.773/0.882). For the external testing, the performance of

the three models remained robust with AUCs of 0.812, 0.831, and 0.885,

respectively.

Conclusions: Combining DCE with DWI was superior to applying a single

sequence for breast lesion characterization. The deep learning computer-

aided diagnosis (CADx) model we developed significantly improved specificity

and achieved comparable accuracy to the radiologists with promise for clinical

application to provide preliminary diagnoses.
KEYWORDS

breast, magnetic resonance imaging, convolutional neural networks, deep learning,
artificial intelligence
1 Introduction

Multiparametric magnetic resonance imaging (mpMRI)

consisting of functional imaging techniques such as dynamic

contrast-enhanced MRI (DCE-MRI) and diffusion-weighted

imaging (DWI) is widely used for the screening, diagnosis, and

preoperative evaluation of breast diseases (1–3). Several studies

have demonstrated that mpMRI can provide complementary

morphology and function data for the discrimination of benign

and malignant breast tumors, significantly improving the

diagnostic accuracy in breast cancer and reducing unnecessary

breast biopsies of benign lesions (4–7).

However, mpMRI produced massive amounts of image data

with a high spatial and temporal resolution, and radiologists face

challenges in the correct interpretation (2, 8). Although the US

Breast Imaging-Reporting and Data System (BI-RADS) lexicon

provides a structured common language for interpretation and

reporting, the defined rules for converting specific imaging

features into a diagnostic category are not available (9). Most

researchers employed multivariate logistic regression analysis to

determine imaging features that jointly are associated with

malignancy (6, 7, 10, 11).

With the advances in computer technology, extracting large

amounts of data from medical images using automatic

algorithms becomes more feasible (12, 13). In particular, deep

learning (DL) algorithms based on convolutional neural

networks (CNNs) for image analysis have achieved

prominence for lesion characterization in breast MRI (14–16).
02
The current methods always use manual annotation to identify

and delineate lesions although it is a tedious and time-

consuming process and leads to deviations in the presence of

background parenchymal enhancement (BPE) (17–19).

Therefore, the purpose of our study was to develop a fully

automated DL computer-aided diagnosis (CADx) model for breast

lesion accurate segmentation and characterization. Firstly, using

CNNs to segment the breast lesions from the DCE and DWI. Then,

based on the segmentation results, we designed two single-input

models using DCE and DWI as input sequences, respectively, and a

multi-input model combining the two sequences to differentiate

benign and malignant lesions and compare the performance of the

AI models and the BI-RADS categorized by the radiologists.

Finally, we collected data from another medical center to test the

robustness of the proposed models.
2 Related works

DL is a type of machine learning with hundreds of deep

layers of neural networks. Each layer learns to detect features of

increasing complexity from the images and then combines

lower-level features to form more abstract higher-level

representational attributions or features to discover

distributional features of the data (20). In contrast to

traditional machine learning (ML) methods, DL can learn

directly by navigating the data space without feature

engineering and achieve an end-to-end result output (21).
frontiersin.org

https://doi.org/10.3389/fonc.2022.946580
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2022.946580
Consequently, more medical image research studies are focusing

on DL methods, and such methods have outperformed most

traditional ML methods. The study of DL in breast MRI mainly

focuses on lesion detection and segmentation, characterization

and classification, and radiogenomics.

2.1 Lesion identification and
segmentation

Segmentation is a highly relevant task in medical image

analysis. One of the earliest works was made by Cirean et al. (22).

The network predicts the category label of each pixel by

providing the local region (patch) around it as input. Due to a

large number of overlapping patches, the network must run

separately for each patch, leading to extremely slow operation.

Furthermore, there is a trade-off between localization accuracy

and the use of context. Subsequently, Ronneberger et al. (23)

modified and extended the fully convolutional network

architecture. The new network adopted a U-shaped

architecture without any fully connected layers and used only

the effective part of each convolution, i.e., the segmentation map

contains only the pixels available in the full context of the input

image. In addition, the authors preserved extensive feature map

channels so that more information can flow into the final

recovered segmented images, which allows the network

suitable for fewer training images and produces more accurate

segmentation. Up to now, UNet is always the basic network

architecture for image segmentation tasks. Considering that

diagnostic and interventional images in medicine are often

volumetric, researchers further explored segmentation

algorithms applicable to 3D images. Çiçek et al. (24) and

Milletari et al. (25) designed 3DUNet and VNet, respectively,

by replacing all 2D operations with corresponding 3D

operations in UNet or adding a new loss layer specifically

designed for the segmentation task based on Dice similarity

coefficient (DSC) to UNet.

DCE-MRI includes the temporal acquisition of 3D volumes

before and after intravenous injection of paramagnetic contrast

agent, hence having four-dimensional data, which is essential for

breast lesion analysis. The traditional UNet fails to capture

temporal information. To overcome this drawback, Chen et al.

(26) constructed a spatiotemporal network by modifying the

standard U-shaped network and adding a novel convolutional

long short-term memory (ConvLSTM) structure for extracting

spatiotemporal information while preserving high spatial

resolution. In addition, the 3TP UNet, which utilizes a three-

time point approach to improve lesion segmentation

performance, was proposed and optimized. Results showed

that the network outperforms classical and some new deep

learning methods with an average DSC exceeding 60%, laying

the foundation for a protocol-independent approach (27, 28).
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2.2 Lesion characterization and
classification

Breast lesion diagnosis belongs to a classification task. At this

clinical step, multiple breast modalities are often used and

integration of the findings is required (29). Conventional MRI

examinations perform direct diagnosis mainly on the basis of

morphological features of breast lesions, while DCE-MRI is

based on rapid scanning imaging sequences and uses

pharmacokinetic models to determine the intra- and

extravascular temporal intensity profiles of contrast agents and

to analyze changes in perfusion, microcirculation, and capillary

permeability at the lesion site. Thus, current clinical image

analysis systems are mainly concerned with displaying

enhanced regions and their voxel-by-voxel kinetic profiles and

corresponding threshold levels.

Herent et al. (30) created a lesion feature model using a 50-

layer residual neural network based on a single two-dimensional

T1-weighted fat-suppressed MRI obtained after intravenous

injection of gadolinium chelate selected by the radiologist,

reaching a weighted mean area under the receiver operating

characteristic (ROC) curve (AUC) of 0.816 on the independent

challenge test set. Zhou et al. (31) and Antropova et al. (32)

compared the diagnostic performance for benign and malignant

categorization of lesions in DCE-MRI by radiomics analysis and

CNN models based on ResNet50 and VGG19, respectively.

Significant improvements in predictive performance in

assessing the malignancy of lesions were observed in DL

compared to handcrafted features. To optimize the structure

of the CNN model, Hizukuri et al. (33) initially identified a

baseline model from AlexNet, ZFNet, VGG16, and GoogLeNet

in terms of the AUC. Afterward, the hyperparameters in the

baseline model, such as the number of convolutional layers, the

number of filters, and the size of the filters, were optimized using

the Bayesian optimization with the Gaussian process. The model

achieved high classification performance with accuracy,

sensitivity, specificity, positive predictive value, and negative

predictive value of 92.9%, 93.3%, 92.3%, 93.3%, and 92.3%,

respectively. However, it should be noted that the model was

designed only for the differential diagnosis of breast masses.

In addition, it has been investigated to incorporate dynamic

and volumetric components of DCE-MRI into breast lesion

classification using maximum intensity projection (MIP)

images, and the results demonstrated that combining

volumetric and dynamic DCE-MRI components can

significantly improve CNN-based lesion classification (34, 35).

For more comprehensive use of the information contained in

MRI, some studies have explored the addition of DWI and T2-

weighted volumes along with DCE-MRI to improve the

specificity of clinical breast MRI protocols further (2, 36–39).

However, the relevant studies employing DL methods are fewer.
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2.3 Radiogenomics

Several state-of-the-art models, which exploit MRI images,

have been developed for other purposes, such as differentiating

the molecular subtypes of breast cancer and predicting breast

cancer recurrence and pathologic complete response in patients

receiving adjuvant therapy. Zhu et al. (40) investigated three

different deep learning methods to conduct radiogenomic

analysis of breast cancer: training from scratch, transfer

learning, and off-the-shelf deep features. The best AUC

performance was achieved by the off-the-shelf deep features

approach with 0.65 (95% CI, [0.57, 0.71]). Another study applied

a traditional CNN and a recurrent network using ConvLSTM.

When the developed models were tested on an independent

dataset, the accuracy was 0.4–0.5. Then, by re-tuning the models

through transfer learning, the overall classification accuracy was

improved by greater than 30% (41).

Assessing the efficacy of treatment is also an important

clinical application of radiogenomics. It is expected to reveal

the prognostic connection between imaging and patients by

fusing imaging and genetic and pathological features. So far,

there have been several attempts to develop CNN-based

approaches with the objective of predicting pathological

complete response (pCR) in breast patients using pretreatment

MRI examinations, and the models all achieved an average AUC

of more than 70% (42–45).
3 Materials and methods

This cross-sectional, retrospective, multicenter study was

approved by the Ethics Committee of the Chinese People’s

Liberation Army (PLA) General Hospital (No. S2019-093-01),

and the requirement for individual consent was waived due to

the retrospective nature of the analysis.
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3.1 Study dataset

A total of 5,688 female patients undergoing breast mpMRI in

the 1st Medical Center of PLA General Hospital from January

2011 to May 2020 were retrospectively enrolled. There were

2,823 patients who were randomly selected for training,

validation, and testing of the segmentation model, and 3,303

patients with the original BI-RADS classification and

pathological validation were used to train, validate, and test

the characterization model (Figure 1). For the characterization

task, the unit for the calculation and statistics was named

“breast,” and each patient had two breasts. A breast is defined

as benign if only benign lesions were present in it, malignant if

only malignant lesions were present in it, or malignant if both

benign and malignant lesions were co-existing in it. After

excluding 48 lesions with an exhibited evident mismatch of

location in the MRI report and surgery or biopsy or with a

history of surgical intervention or other treatment prior to MRI

examination, the study included 3,303 female patients with 3,607

pathologically confirmed lesions (2,213 malignant and 1,349

benign). Another 123 female patients with 81 pathologically

confirmed malignant lesions and 55 benign lesions were

collected from the 6th Medical Center from July 2020 to

September 2021. The MRI protocol was attached to

the Supplement.
3.2 Deep learning system

The code implementations were in-house developments

based on Python 3.6.8 (https://www.python.org), and the

software modules numpy, scipy, pandas, and sklearn were

utilized. Figure 2 summarizes the workflow of the DL

algorithm, consisting of the following two steps: 1) imaging

segmentation of breast lesions and 2) lesion characterization of

benign and malignant.
FIGURE 1

Flowchart of the final analysis cohort. A total of 5,811 patients were included in this study. A total of 5,688 patients within our institution were
used for the segmentation and characterization model training, validation, and testing, and 123 patients from another institution were used for
external testing of the proposed characterization model.
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3.2.1 Imaging segmentation of breast lesions
A 2D VNet framework was implemented for DCE imaging

of lesion segmentation (23, 25). On DCE sequence, three phases,

the precontrast, initial uptake, and 8–10 min delay, were selected

as the input of the model, with the size of 512 * 512 * 3. Since the

number of slices of DWI is less than that of DCE due to the

influence of thickness, the segmentation model of DWI adopted

the Attention-UNet (46). The high b-value and low b-value

images of DWI were input into the network as different

channels, with the size of 256 * 256 * 2. Both VNet and

Attention-UNet used the same segmentation loss function.

The loss function is a combination of binary cross-entropy

(BCE) and DSC on each of the above four semantic levels,

which is described as

Lossfunction =
1
2
BCELoss +

1
2
DiceLoss

BCELoss = −
1
Mo

M

i=1
Yi · log bYi

� �
+ 1 − Yið Þ · log 1 − bYi

� �� �

DiceLoss = 1 −
2oN

i pigi

oN
i p

2
i +oN

i g
2
i

where Yi is the ground truth and Ŷ i is the predicted

probability for all the M pixels and the sums run over the N

voxels of the predicted binary segmentation volume pi ∈P and

the ground truth binary volume gi ∈G.
In the training set, 80 epochs in total with Adam

optimization and a momentum of 0.9 were used. Due to the

limitation of GPU memory, the batch size parameter was set to

16. The initial learning rate was 0.0001 and multiplied by 0.1

every 6 epochs. In the inference subset, a breast MRI volume can

be segmented by processing it in a feedforward manner through

the network. The output of the last convolutional layer, after
Frontiers in Oncology 05
sigmoid, consists of a probability map for background and

foreground. The voxels having a higher probability (>0.5) that

belong to the foreground than to the background are considered

part of the anatomy.
3.2.2 Lesion characterization of benign and
malignant

A 3D version of ResNet was implemented for lesion

characterization (47). The final workflow schematic is shown

in Figure 3. Considering that DCE contains more lesion

information than DWI, 48 filters were set for DCE and 16

filters were set for DWI and then concatenated to form 64 filters.

The network consists of 4 Residual blocks, and the basic block

was repeated 3, 4, 6, and 3 times within the Residual blocks,

respectively. The basic block consists of 3 * 3 * 3 convolution,

Relu, Batch Normalization layer, and a shortcut connection. A

single dense layer with a sigmoid activation function was used to

generate the final likelihood values. To initialize the weight

parameters of the network, He initialization was used (48).

Since the models are easy to get overfitted and the scanning

mode can be widely ranged among radiologists, to improve the

generalization performance and robustness of our models, we

changed the image orientation by implementing a combination

of randomly flip and rotate on our input images as data

augmentation. Flip is to turn over the images horizontally and

vertically along the given axis, and rotation is to turn about the

images around 90° along the specified axis. To optimize the

weights, we used stochastic gradients with Adam momentum of

0.9. During training, we used a batch size of 12 and an initial

learning rate of 0.001, divided by 10 after the 5th epoch.

To compare the effects of different sequences on the

characterization of breast lesions, DCE, DWI, DCE and DWI,

and their corresponding segmentation results were used as

inputs to the model, respectively, and thus, two single-input
FIGURE 2

Flowchart of the deep learning algorithm. DCE and DWI were respectively input into the AI model to obtain lesion segmentation results and
preliminary diagnosis. Then, the images from the two sequences were integrated and input into the 3D multi-input model to obtain the ultimate
diagnosis.
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models and one multi-input model were obtained. The images

were organized into two categories and tested using the three

learned models to obtain the benign or malignant labels. In

addition, Grad-CAM, a visualization method, was used to create

a heat map that highlights the essential parts of the input image

that are considered important in each block for character

distinction (49).
3.3 Statistical evaluation

For lesion segmentation, the manual segmentation results by

the radiologist in DCE were defined as the ground truth, and the

DSC was used to perform a quantitative comparison between the

model and the ground truth (50).

For lesion characterization, histopathology was used as the

diagnostic criterion standard to analyze the sensitivity,

specificity, positive predictive value (PPV), negative predictive

value (NPV), diagnostic accuracy, and ROC curves with AUCs

of the models and radiologists. In assessing the performance of

radiologists, the BI-RADS category was dichotomized. BI-RADS

2 and 3 were considered as benign and BI-RADS 4 and 5 were

considered as malignant. Moreover, considering that BI-RADS 4

had a wide range of probabilities of malignancy, extending from

greater than 2% to less than 95% (51), we decided to include such

type of lesions as benign for reassessment. All statistical analyses

were performed with Python 3.6.8 statistic modules. Standard

deviations and confidence intervals were calculated by using
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bootstrap analysis with 100,000-fold resampling as in Litjens

et al. (52). For clinical evaluation, the McNemar test was used to

compare the categorical characterization results of the three

models and radiologists with p-values <0.05 considered

statistically significant.
4 Results

4.1 Study population and lesion
characteristics

The internal dataset analysis cohort consisted of bilateral

breast mpMRI datasets from 3,303 patients [mean age,

45.4 ± 11.3 years (standard deviation); range, 11–89 years] and

304 patients have bilateral breast lesions. In total, there were

3,607 enhancing lesions identified and segmented: 1,394 (38.6%)

were benign and 2,213 (54.6%) were malignant. Detailed

pathological information of the lesions included in the dataset

is summarized in Table 1.
4.2 Imaging segmentation

In this section, we compare the segmentation method based

on VNet with UNet and Attention-UNet. The VNet architecture

achieved the highest DSC of 0.860 with precision and recall of

0.867 and 0.853, respectively. Furthermore, the statistical results
FIGURE 3

The framework for the segmentation of the breast images and the characterization of lesions. The whole framework is divided into two parts.
The upper part represents the image segmentation process. By inputting images into the segmentation networks, such as VNet and attUNet, the
mask of the breast region is obtained. By applying the mask to the input image, the breast lesion can be segmented. The following part
represents the target characterization. The DCE and DWI sequences of the unilateral breast are input to the multi-input model to obtain the
probability of malignancy.
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of all comparison methods are summarized in Table 2. Figure 4

shows example images of the 2D breast lesion segmentation

results, the masks produced by the VNet were quite similar to

the region segmented manually, and significant structural details

of the lesions were further preserved.
4.3 Model visualization

Two malignant tumors and one benign tumor correctly

diagnosed by the model were selected to visualize the regions

of interest. From Figure 5, it can be observed that the heat maps

generated from the Grad-CAM are able to locate the lesion areas

with higher activations than normal areas, with deeper color

indicating higher activation, which presented an intuitive

interpretation of what the models have learned from the

training data and proved the networks can be automatically

driven to focus on the lesions.
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4.4 Lesion characterization

The sensitivities, specificities, PPVs, NPVs, diagnostic

accuracies, AUCs, and the corresponding 95% CI for the three

models and radiologists are summarized in Table 3.

For the internal test, in the three models of single-input DWI

or DCE and multi-input mpMRI, the overall accuracies were

0.721, 0.752, and 0.846, respectively. Compared with the other

two single-input models, the multi-input model obtained the

highest sensitivity of 0.831, specificity of 0.874, and accuracy of

0.846. In addition, by increasing the input sequence, the PPV of

the model increased from 0.827 to 0.926 and the NPV increased

from 0.630 to 0.741. For the external test, the single-input DWI

and multi-input models were almost identical in terms

of accuracy with 0.790, outperforming the single-input DCE of

0.775. The multi-input model achieved the highest specificity of

0.875, but the highest sensitivity was obtained by the single-

input DWI model of 0.805.
TABLE 2 The results of the segmentation models.

Method DSC Precision Recall

VNet 0.860 0.867 0.853

Attention-UNet 0.829 0.815 0.843

UNet 0.802 0.800 0.804
frontie
TABLE 1 The characteristics and pathological types of patients included in the study.

Parameter Internal dataset External dataset

Total Training Validation Test

Age

Mean (range) 46.09 (11~89) 45.92 (11~87) 46.16 (13~85) 46.84 (20~89) 48.45 (27~80)

Number

Women 3,303 2,339 724 469 123

Pathology

Benign 1,394 961 282 151 56

Adenosis 584 402 122 60 5

Fibroadenoma 370 254 76 40 30

Mastitis 165 103 41 21 4

Intraductal papilloma 224 163 36 25 14

Phylloid tumor 49 38 6 5 3

Hamartoma 2 1 1 0 0

Malignant 2,213 1,495 446 272 82

Medullary carcinoma 10 8 2 0 2

Mucinous carcinoma 37 23 11 3 2

Carcinoma in situ 212 150 35 27 8

Invasive carcinoma 1,954 1,314 398 242 70
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The performance of the radiologists was also evaluated.

When both categories 4 and 5 were classified as malignant, the

sensitivity, specificity, and accuracy were 0.978, 0.404, and

0.773, respectively. When category 5 was classified as

malignant, the sensitivity, specificity, and accuracy were

0.904, 0.841, and 0.882, respectively. Regardless of whether

using BI-RADS category 3 or 4 as the cutoff point, radiologists

had higher sensitivity with statistical significance than either of

the models.

Further comparisons were performed to assess whether

there are differences between the model and the radiologist’s

characterization methods in clinical terms (Supplementary

Table 1). There was no statistically significant difference

between single-input DCE or DWI and multi-input mpMRI in

the characterization results (p = 0.057, p = 0.260). Multi-input

mpMRI and two classifications of diagnostic results by

radiologists both have different results with higher detection

rates by radiologists (p < 0.001, p = 0.003).

The ROC curves of the classification task in the three

different models and radiologists are given in Figure 6. The

multi-input model obtained the highest AUC values in both

internal and external tests: 0.927 (95% CI, 0.893–0.956) and

0.885 (95% CI, 0.842–0.922), respectively.
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5 Discussion

In this study, we developed a CADx model, combining a

VNet-based segmentation model and a ResNet-based

classification model for implementing benign and malignant

characterization of breast lesions in mpMRI. The multi-input

model achieved the best classification performance with an

accuracy of 0.846 and an AUC of 0.927, demonstrating the

superiority of multiple sequences over a single sequence.

Moreover, in comparison with the characterization results of

the radiologists, it obtained a generally comparable accuracy

while significantly improving the specificity.

Previous research studies have reported the usefulness of DL

for diagnostic imaging of breast lesions with MRI (17, 18, 31,

53–55). Truhn et al. (18) constructed a deep residual neural

network (ResNet18) for the characterization of enhancing

lesions in MRI and achieved superior performance compared

to radiomic analyses. In their study, the radiologist must first

identify the lesion to make use of the system, yet this process

may lead to detection errors. Zhou et al. (54) used the entire

segmented breast as input to predict the presence of lesions

inside. The main innovation was to localize the lesion, but their

model could only detect lesions with a high probability of
FIGURE 4

Examples of the 2D breast lesion segmentation results. Examples 1 and 2: the fibroglandular structure was dense and the lesions showed mass-
like enhancement with an irregular lobulated pattern and hairy margins. Examples 3 and 4: the lesions showed non-mass-like enhancement
with a distribution characterized by lobular segments and internal enhancement characterized by inhomogeneous string–ring-like and patch-
like features, respectively.
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malignancy. In our study, two CNN models were firstly used to

identify and segment lesions prior to diagnosis, reducing the

time radiologists take to review images to locate lesions,

especially for non-mass-like enhancements. We also compared

the sample size and DSC with other relevant research on breast

lesion segmentation (56–60). Maicas et al. (59) proposed a

segmentation method that combined global inference in the

continuous space with deep learning for the problem of breast

mass segmentation from DCE-MRI and obtained a DSC of 0.77.

The study of Zhang et al. (56) also included only mass-type

lesions. The difference was that they customized a 3D model in

addition to a 2D model to take advantage of the potential spatial

information of MRI volume. Compared to the 2D model, the 3D

model achieved slightly better performance in terms of the DSC

on the same dataset. In order to integrate the advantages of 2D

and 3D networks, Wang et al. (58) proposed a mixed 2D and 3D

convolutional network with a multiscale context (M2D3D-MC)

for lesion segmentation with 90 studies and obtained a DSC of

0.77. This method focused on 2D as well as 3D information, but
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due to the limitation of data, the result of the DSC was not

very good.

Since our AI diagnosis system used a tandem of the

segmentation model and the classification model, we used 2D

slices from three temporal phases of DCE images and DWI

images with different b-values for segmentation and input the

results into the classification model, which not only had a much

lighter computation and higher calculation speed but also

effectively preserved 3D contextual information. Furthermore,

our study included 2,247 cases with 100,164 slices. Despite

differences in the training datasets and some heterogeneity of

MRI parameters, our model achieved comparable DSC

performance similar to the published methods and is well-

accepted by radiologists.

Currently, DCE is most commonly used in AI diagnostic

models (33, 35, 61, 62). The addition of other sequences, such as

DWI, to obtain higher diagnostic specificity has also started to be

explored (63–65). Dalmis ̧ et al. (17) investigated a DL model

with an mpMRI protocol combining DCE-MRI, T2, and DWI.
FIGURE 5

Examples of the attended regions through the Grad-CAM. The pathological types of the four cases were adenosis, benign lobular tumor, ductal
carcinoma in situ, and invasive carcinoma. With the visual model display, the brighter area that contains lesion extent can be observed,
demonstrating that the classification model can focus on the lesion area effectively.
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Unlike us, they used the apparent diffusion coefficient (ADC)

value obtained from DWI and applied random forest to integrate

the results. In comparison, considering that lesion heterogeneity

is insufficiently described by a single ADC threshold, our model

used the DWI images to retrieve more detailed structural and

functional features and trained only one model to input

multisequences, accomplishing lesion characterization. Hu
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et al. (55) also employed a CNN to extract and pool low- to

mid-level features and trained a support vector machine

classifier on CNN features to distinguish benign and

malignant lesions. Their method involved more manual

intervention without implementing a complete end-to-end

process. Our multi-input characterization model adopted the

early fusion method to learn the shallow information of the two
TABLE 3 The diagnostic performances of the characterization models and radiologists.

Method (internal test results/
external test results)

Specificity (95%
CI)

Sensitivity (95%
CI)

PPV
(95% CI)

NPV
(95% CI)

Accuracy (95%
CI)

AUC
(95% CI)

DWI 0.629 (0.528, 0.728) 0.772 (0.704, 0.837) 0.790 (0.724,
0.852)

0.610 (0.505,
0.702)

0.721 (0.664, 0.776) 0.795 (0.738–
0.847)

0.768 (0.681, 0.846) 0.805 (0.740, 0.866) 0.836 (0.772,
0.893)

0.729 (0.643,
0.811)

0.790 (0.736, 0.840) 0.831 (0.779–
0.880)

DCE 0.709 (0.612, 0.802) 0.776 (0.709, 0.840) 0.827 (0.765,
0.886)

0.630 (0.541,
0.731)

0.752 (0.696, 0.804) 0.821 (0.766–
0.873)

0.839 (0.763, 0.907) 0.732 (0.658, 0.803) 0.869 (0.807,
0.926)

0.681 (0.598,
0.763)

0.775 (0.724, 0.824) 0.812 (0.756–
0.865)

DCE and DWI 0.874 (0.800, 0.939) 0.831 (0.772, 0.887) 0.926 (0.875,
0.965)

0.741 (0.654,
0.821)

0.846 (0.800, 0.888) 0.927 (0.893–
0.956)

0.875 (0.806, 0.936) 0.731 (0.660, 0.801) 0.896 (0.838,
0.947)

0.690 (0.610,
0.796)

0.790 (0.740, 0.840) 0.885 (0.842–
0.922)

BI-RADS by radiologists
2, 3 and 4, 5

0.404 (0.302, 0.510) 0.978 (0.952, 1.00) 0.747 (0.687,
0.805)

0.911 (0.813,
1.00)

0.773 (0.720, 0.824) 0.691 (0.638–
0.744)

0.571 (0.473, 0.667) 0.963 (0.929, 0.993) 0.767 (0.705,
0.826)

0.911 (0.813,
1.00)

0.804 (0.752, 0.805) 0.767 (0.717–
0.813)

BI-RADS by radiologists
2–4 and 5

0.841 (0.760, 0.914) 0.904 (0.856, 0.947) 0.911 (0.864,
0.952)

0.830 (0.750,
0.904)

0.882 (0.840, 0.920) 0.873 (0.827–
0.916)

0.804 (0.723, 0.879) 0.878 (0.823, 0.928) 0.867 (0.740,
0.890)

0.818 (0.750,
0.904)

0.848 (0.800, 0.892) 0.841 (0.792–
0.885)
PPV, positive predictive value; NPV, negative predictive value; 95% CI, 95% confidence intervals; AUC, the area under the curve; DWI, diffusion-weighted imaging; DCE, dynamic contrast
enhancement; BI-RADS, Breast Imaging-Reporting and Data System. Bold indicates better results.
BA

FIGURE 6

The corresponding ROC curves of the three different models and radiologists. (A) Results of the internal test set and (B) results of the external
test set.
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sequences of DCE and DWI and fused the two sequences to

learn the deeper information in the later stage. Although this

approach differs from previous methods, it proves to be more

simple, accessible, and effective, showing comparable diagnostic

performance to the radiologists.

It is worth noting that there were misdiagnosis cases, both by

the AI model and radiologists. We examined the findings of

mpMRI, the results of radiologists, and the pathological features

of these cases.

For false-positive (FP) lesions, the main pathological types of

lesions produced by the AI model are mastitis and intraductal

papilloma. These benign lesions may occasionally show

suspicious features on breast MRI, but generally do not

require specific treatment with minimal risk of future cancer

development (66). Of the 21 cases of mastitis, the model

misdiagnosed 10 cases, while the radiologists included 17 cases

as category 4 or 5, compared to a mild improvement. Of the 25

cases of intraductal papillomas, the model misdiagnosed 5 cases,

3 of which were associated with atypical ductal hyperplasia

(ADH), a low-grade neoplastic intraductal hyperplasia with

varying risks of progression (67). Therefore, it is reasonable to

classify them as malignant and recommend biopsy or other

treatments. Overall, the automatic classification yielded 19 false

positives, 47 fewer than the radiologists, effectively improving

diagnostic specificity.

For false-negative (FN) lesions, the pathological types of

lesions produced by the AI model were invasive carcinoma,

ductal carcinoma in situ, and mucinous carcinoma. Lesions of

invasive carcinoma with a maximum diameter of less than 1 cm

were more likely to be recognized as benign lesions. In some of

the cases, radiologists could make a correct diagnosis, but the AI

system overlooks the lesions. Several factors may explain the

discrepancy. When two or more lesions present in the breast

simultaneously, especially in the coexistence of benign and

malignant pathologies, the model may give average results,

leading to an underestimation of the malignancy. In addition,

a few lesions are accompanied by swollen lymph nodes, but this

factor was not considered in our study. Mammography has

obvious advantages in detecting ductal carcinoma in situ with

microcalcification (68–70). Radiologists can combine

mammogram results and perform clinical breast examinations

for suspicious lesions, hence a higher accuracy. Finally, for the

missed diagnosis of mucinous carcinoma, our main

consideration was the included data were so little that the

model may not be comprehensive in learning the

characteristics of such lesions.

To sum up, our results showed that the multi-input model is

beneficial for BI-RADS category 4 lesions by proving additional

specificity. Therefore, we suggest that the added value of the

current multi-input model could be as an adjunct decision-

supporting tool for lesions of lower clinical suspicion to make a

confident diagnosis of benignity, thus obviating biopsy
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intervention. In addit ion, paying attention to the

characteristics of FN lesions and comprehending the

disadvantages of the CNN model based on the results of this

study may help radiologists use this model effectively and

improve their diagnostic performance possibly.

Furthermore, the technical variability of scanning imaging

has also been studied through another institution and different

MRI scanners. In this external test, we observed a decrease in

performance in terms of AUC of 4.2% points. Through

retrospective analysis of FN and FP results, the error modes

are similar to those of the previous internal test set. Therefore,

we concluded that the model was robust and the decrease in its

effectiveness was mainly due to the selection bias of the data. In

the external dataset, the DWI single-input model showed an

increase in AUC from 0.71 to 0.76 compared with the DCE. We

attributed it to the fact that the DWI images in the external

dataset were obtained with the b-value set to 1,000 s/mm2,

resulting in a reduced image signal-to-noise ratio and better

sharpness compared to the partial DWI images in the internal

dataset with a b-value of 800sec/mm2.

It is important to acknowledge that this study has some

limitations. First, since data from only two medical centers were

utilized, it is difficult to evince from the presented results how

the developed models might perform with data acquired under

differing protocols. Future studies should focus on collecting

representative, large, and multi-institutional datasets to test the

CADx model. Second, we cannot determine whether the

diagnostic performance of radiologists will be significantly

improved with the aid of the multi-input model. Another

observer study is necessary, in which two reading conditions

would be evaluated: reading without AI aid and reading with AI

aid. Lastly, our model uses only two breast MR sequences. It is

necessary to design a complete automated diagnostic system

incorporat ing other MRI sequences and pat ients ’

clinical information.
6 Conclusion

The findings of this diagnostic trial demonstrated that the

use of mpMRI in combination with DL had significantly

improved the diagnostic performance and achieved acceptable

diagnostic accuracy at the clinic level. It can be expected that the

proposed DL-based CADx model can help radiologists by

providing preliminary diagnosis, enabling greater efficiencies

in interpreting breast mpMRI images.
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