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Nano-pulse stimulation™ therapy
(NPS™) is superior to
cryoablation in clearing murine
melanoma tumors

Amanda McDaniel1*, Bruce Freimark1, Cebrina Navarro1,
Kristin Von Rothstein1, Dacia Gonzalez1, Keith Linder2

and Richard Nuccitelli 1*

1Department of Biology, Pulse Biosciences, Hayward, CA, United States, 2Department of
Dermatopathology, Linder Pathology Services, Raleigh, NC, United States
Background: Nano-Pulse Stimulation™ Therapy (NPS™) is a new, bioelectric

modality that applies ultrashort pulses of electric energy to trigger regulated cell

death in treated tissues. Instead of initiating necrosis by heating or freezing, NPS

therapy permeabilizes intracellular organelles to activate the cell’s own self-

destruct pathway of programmed or regulated cell death. Unlike cryotherapies

that can both damage structural tissues and diffuse into the periphery beyond the

margins of the lesion, NPS only affects cells within the treated zone leaving

surrounding tissue and acellular components unaffected.

Methods: We generated melanoma tumors in mice by injecting B16-F10 cells

intradermally and compared the efficacy and resulting skin damage from Nano-

Pulse Stimulation Therapy with that of cryoablation in clearing these tumors.

Results: The results of the study demonstrate that NPS is superior at clearing B16-

F10 melanoma lesions. NPS permanently eliminated up to 91% of all tumor lesions

with a single treatment compared to cryoablation that only eliminated up to 66%.

Importantly, NPS permanently eliminated these lesions with no recurrence and

with minimal dermal fibrosis, underlying muscle atrophy, permanent hair follicle

loss or other markers of permanent skin damage.

Conclusions: These findings suggest that NPS is a promising new modality for the

clearance of melanoma tumors and is a more efficacious, less damaging approach

than cryoablative methods for the treatment of aggressive malignant tumors.

KEYWORDS

nano-pulse stimulation therapy (NPS), regulated cell death, cryoablation, B16-F10,
melanoma, dermal fibrosis and scarring, nanosecond pulsed electric fields (nsPEF)
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Introduction

Cutaneous melanoma is the most aggressive and lethal form of

skin cancer. Over the past few decades, the incidence of melanoma

has been steadily increasing and in 2022 alone there are projected to

be nearly 100,000 new cases diagnosed, with over 7% of those cases

resulting in mortality (1). Early-stage disease is usually managed with

surgical excision alone, but removal of the malignant tissue eliminates

further exposure to the immune system. Some other methods to

ablate lesions have the additional advantage of initiating an immune

response. Two such therapies are cryotherapy (2) and Nano-Pulse

Stimulation Therapy (3) so both have been used in this study to

compare the efficacy and skin damage resulting from each of them.
Nano-pulse stimulation therapy

Every cell in our bodies contains a fail-safe mechanism called

regulated or programmed cell death that allows it to self-destruct

when it reaches the end of its useful life, encounters a lethal gene

mutation or an injury that it is unable to repair (4–6). Nano-Pulse

Stimulation™ Therapy (NPS™) activates this pathway using

ultrashort electric pulses. Unlike direct-contact ablation

technologies that kill cells by necrosis using heat or cold, NPS is a

bioelectric energy modality that triggers the cell’s natural self-destruct

pathway by initiating a transient permeabilization of the plasma and

organelle membranes of targeted cells without causing thermal

damage. This alters the function of internal cellular organelles,

including the mitochondria and endoplasmic reticulum (7), without

disrupting the extracellular tissue, primarily collagen-rich dermal

foundation. The current lesion size limitation is 1 cm in diameter

for a single treatment, but larger lesions can be treated with multiple

applications. Previous published work includes treatments of

seborrheic keratosis (8), sebaceous hyperplasia (9), warts (10) and

basal cell carcinoma (11). In animal studies, NPS has shown high

efficacy in treating a variety of malignant murine tumor types

including rat hepatocellular as well as mouse breast, fibrosarcoma,

squamous cell carcinoma (SCC), pancreatic, lung and melanoma

tumors (12–18).
Cryotherapy

Due to the low cost of cryoablation, it has become an alternative

to other more traditional surgical methods for cancer treatment.

Cryoablation has been used to treat bone, cervical, eye, kidney, liver,

lung, and prostate cancers (19–22). Some of the noted drawbacks to

cryoablation have been the potential for scarring and long-term nerve

damage caused by the treatment itself (23), as well as a question as to

its long-term efficacy and ability to prevent microscopic spread of

cancers (24, 25). While cryoablation and NPS are both considered

focal therapies, NPS only affects cells between the two sets of

microneedles of the applicator while cryoablation spreads beyond

the applicator surface due to thermal diffusion.

In this study we demonstrate that NPS has superior efficacy in

clearing a B16-F10 murine melanoma tumor, without reoccurrence
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with minimal dermal fibrosis and tissue damage. Since NPS is highly

efficacious while producing less damage to tissue it is a promising

minimally invasive physical modality for the treatment of tumors,

particularly those that are not surgically resectable.
Materials and methods

In Vivo tumor model

Mice: Female C57BL/6J mice, 6-8 weeks old (Jackson

Laboratories, Sacramento, CA) were acclimated for at least 3 days

before treatment, housed in groups of 10, and both flanks were shaved

before the start of tumor inoculations. Temperature and humidity

were monitored daily, and animals were maintained on a 12-hour

light/dark cycle. Water (Milli-Q) and food (Pirolab Diet 20 chow)

were given ad libitum. All experiments were performed in accordance

with animal care guidelines set forth by the Pulse Biosciences IACUC.

Tumors: The B16-F10 tumor line was obtained from ATCC

(Manasus, VA, cat # CRL-2539) and propagated in tissue culture

with DMEM supplemented with 10% v/v fetal bovine serum (FBS),

penicillin/streptomycin, and harvested for inoculation between

passages 9-12 for all studies. Tumors were initiated in mice by

intradermal (i.d.) injection into the right flank with 2x105 cells/

30µL in Hank’s balanced salt solution (HBSS). Tumor growth was

measured twice a week by calipers. The volumes were determined

using the formula: volume = length x width2/2. Tumors were

randomized to treatment groups when the largest diameter reached

~5mm on Day 6 post tumor inoculation (PTI). Mice were removed

from the study if the animal lost more than 20% of their initial body

weight, appeared moribund, the tumor was ulcerated, or the tumor

volume exceeded 2000mm3. The day at which each mouse was

sacrificed or found dead was recorded and used to generate a

Kaplan-Meier survival curve. Mice who cleared the lesion were

continually monitored for tumor regrowth until study completion

on Day 65, at which point mice were sacrificed and skin lesions

removed for histological analysis.
NPS and cryoablation tumor treatments

Six days post-inoculation, mice that developed tumors were

treated with either NPS energy delivered by the CellFX® System

(Pulse Biosciences, Hayward, CA) or cryotherapy using a 5mm

closed-end conical metal cryoprobe (Brymill, Ellington CT, model

CRY-AC-3 B800). Tumors were injected into the intradermal space

within the skin so that they could be stretched over a platform

designed to isolate them from the body and internal organs

(Figure 1). Before treatment, each cage of mice was placed into a

chamber containing 2.1% isoflurane in oxygen to induce an

anesthetized state. Once mice were recumbent, each mouse was

individually placed onto the treatment platform, receiving inhaled

isoflurane directly from a nose cone for the duration of the procedure,

typically 2-3 minutes. Upon completion of each treatment mice were

returned to their home cage for recovery. All procedures were

performed according to IACUC-approved protocols.
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Nano-pulse stimulation (NPS) therapy

NPS therapy was delivered using a 5.0 × 5.0 × 3.5mm treatment

tip attached to a handpiece plugged directly into the CellFX® device.

The treatment tip contained two rows of 5 microneedles 3.5 mm long,

spaced 5mm apart. Mouse tumors were treated by stretching the skin

containing the tumor over a translucent silicone treatment post and

inserting the probe needles to flank the sides of the tumor (Figure 1).

A light source housed under the treatment post was employed to

illuminate the tumor treatment area to aid in placement of the

microneedles around the tumor. Each tumor received either a low-

mid dose of 180 mJ/mm3 or a high dose of 360 mJ/mm3. The energy

doses chosen were selected based on previously performed dose-

response tumor clearance studies (Figure 2). The low-mid dose was

established as effective at clearing >60-70% of all treated tumors and

the second higher dose was capable of clearing >90-100%.
Cryotherapy

Cryotherapy was delivered as a single dose of a cryosurgical

system with a 5mm closed-end conical probe cooled with liquid

nitrogen applied directly to the tumor (Brymill Corp., Ellington CT).
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The cryoablation dispenser (model CRY-AC-3 B800) was filled with

liquid nitrogen and the probe tip was pre-chilled to -40°C as

measured by a thermal imaging camera (FLIR, Estonia; model

FLIR-E64501). Mouse skin was stretched across the treatment post

and cryotherapy was applied to the tumor for the designated time,

during which the temperature was continually monitored, and

the probe received a cooling burst every ten seconds to keep the

temperature stable at -40°C. Cryoablative temperatures rely on the

formation of ice crystals in tissues as the cell death mechanism (26).

Durations of exposure, defined as “doses,” were chosen based upon

previous clinical findings showing that exposures under one minute

were less likely to induce complete cell death of all tumor cells, than

were exposures lasting longer. Exposure length is thus a critical

variable as longer exposures are more likely to permanently

eliminate a lesion (21, 27). We chose 45 seconds (45s) as the low-

mid dose and 90 seconds (90s) as the high dose.
Skin biopsies

After euthanasia, a rectangle of skin (2.5 cm long by 1.5 cm wide)

containing the treatment area in the center, was excised andattached

flat to paper card stock without stretching, and submersed in 10%

neutral-buffered formalin. After 24-48 hours of fixation, each skin

sample was bisected in the center of the treatment area, samples were

marked with surgical ink to maintain orientation, and both halves

were embedded in paraffin along their treatment area cut surfaces.

Samples were routinely processed for paraffin histology (AcePix,

Hayward, CA), sectioned to 5 micrometers, and stained with

hematoxylin and eosin (H&E) or Gomori’s trichrome.
Histological analysis of skin samples

Assessment of histopathology was performed by a board-certified

veterinary pathologist with expertise in dermatopathology. Skin

treatment areas were compared for treatment-related tissue scarring

and injury that included dermal fibrosis, width of fibrosis, hair follicle

loss, intactness of epidermis, cutaneous trunci muscle atrophy/loss,

and inflammation. Dermal fibrosis was identified by linearization,
FIGURE 2

The percentage of treated tumors that are completely cleared as a
function of the energy applied during treatment. Bars represent the
Standard Error of the Mean.
A B C

FIGURE 1

Images of the CellFX™ treatment platform and a treated melanoma tumor. (A) CellFX Pulse Generator; (B) Montage of images illustrating the procedure
used to treat the melanoma tumors by stretching the skin containing the tumor over a translucent silicone light post and aligning the tumor with the
application electrode followed by treatment with the CellFX system; (C) Transillumination images of a typical melanoma over time, Before treatment,
immediately after treatment, 3 days post treatment and 25 days after treatment.
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compactness, and thickness of dermal stroma. Cutaneous trunci

muscle atrophy/loss was recognized as segmental muscle thinning

or absence in the treatment area. Skin lesions were scored using a

standard severity scale: 0 = no change, 1 = mild, 2 = moderate, and 3 =

marked (Table 1). All histology slides were randomized and scored in

a blinded manner. If lesions differed in sections from the same

treatment, then the most severe lesion was scored. Histopathology

scores were compared across all groups using a Kruskal-Wallis one-

way analysis of variance (ANOVA).
Statistical analysis

Statistical analyses were performed using GraphPad Prism

software (v9, La Jolla, CA). Tumor elimination rates were compared

between groups using a chi-square contingency test (Figure 3).

Kaplan-Meier survival curves were compared by log-rank (Mantel-

Cox) test (Figure 4). Kruskal-Wallis non-parametric ANOVA was

used to compare histopathological scores generated for each marker

of tissue damage for histological samples (Figure 4). A two-tailed p-

value of < 0.05 was considered statistically significant (*p<0.05;

**p<0.01; ***p<0.001).
Results

Efficacy of tumor clearance

Intradermal B16-F10 murine melanoma tumors grow rapidly in

mice and normally reach a size that requires euthanasia within 3

weeks (Figure 3A). However, treatments with both NPS and

cryoablation greatly slow this growth and usually result in tumor

shrinkage within 2 weeks. Tumors that cleared following NPS

treatment remained cleared and did not recur. However, even after

initial clearance with cryoablation, tumor growth would resume for

many of the tumors within 20-30 days of initial clearance. When mice

were treated with a low-mid dose (180 mJ/mm3) of NPS, tumors were

permanently eliminated in 78% of mice (18/23) and when treated

with the higher dose (360 mJ/mm3) of NPS energy the percentage

increased to 96% (21/22). In contrast, the lower dose of cryo (45s)

eliminated only 58% (14/24) of all tumors and the higher dose (90s)

only showed a slight improvement to 66% (16/24). The higher dose of

cryo exposure failed to reach the level of efficacy of even the low-mid
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dose NPS. The rate of complete tumor elimination was significantly

greater in the high dose NPS (360 mJ/mm3) group compared to both

the low-mid (**p=0.0096) and high (*p=0.0391) dose cryo groups

(Figure 5). The efficacy of each treatment group was also reflected in

the survival rate. Mice treated with high-energy NPS (360 mJ/mm3)

were the most likely to survive until the study endpoint (91%) and this

was significantly longer than for mice treated with a low dose of cryo

(58%) (Figure 4; *p=0.0159).
Histological analysis of post-
treatment tissue

Histopathology confirmed the absence of melanoma in

treatment areas in all samples evaluated. Evidence of scar in all

treatment groups was only mild (Figure 6, 7, S1-4, Table S1). Dermal

fibrosis, width of fibrosis, hair follicle loss, and cutaneous trunci

muscle atrophy/loss were on average mild or mostly mild. Notably,

dermal fibrosis was significantly greater (*p=0.0179) after treatment

with a high dose of cryoablation (90s) relative to a low dose (45s)

(Figures 6, S1-2, Table S1). However, there were no statistically

significant differences between the remainder of the treatment

groups for lesion scores. Inflammation was mostly absent in most

samples, regardless of treatment and did not differ significantly. The

epidermis was intact in all samples and erosions and ulcers were

not present.
Discussion

The B16-F10 murine melanoma model was the first used to

demonstrate the ability of NPS therapy to permanently eliminate

intradermal melanomas (14, 15, 28). It was discovered quite early that

the minimum electric field strength required was on the order of 20

kV/cm and that the most likely mechanism involved the formation of

pores in lipid membranes (29, 30). The additional discovery that only

about 400 mV is required across a lipid membrane to

electropermeabilize it (31), suggested that the approximate size of

the NPS target must be on the order of 0.2 um, the size of smaller

intracellular organelles such as mitochondria. A single NPS pulse has

little effect on the tumor but as the pulse number increases, the

electropermeabilization effect becomes more evident (Figure 2).

However, this response does not depend on any significant
TABLE 1 Severity scoring of markers of tissue damage.

Marker Definition Scoring System

Dermal
Fibrosis

Linearization and compactness of dermal collagen and
thickness of dermis

0=no lesion, 1=mild, 2=moderate, 3-marked

Lesion size Width of dermal fibrosis was scored 0=no lesion, 1- mild, 2=moderate, 3=marked

Hair follicle
loss

Number of follicles missing in area of fibrosis 0=no follicle loss, 1=mild, 2=moderate, 3=marked

Muscle
Atrophy/loss

Thinning of panniculus (twitch) muscle, thinning of
muscle fibers and loss of muscle fibers

1=Partial loss (thinning), 2=Full-thickness loss of muscle for short distance 5-6 follicles wide or
less; 3=Full-thickness loss of muscle greater than 5-6 follicles

Inflammation Amount of inflammation 0=no inflammation; 1=mild, 2=moderate, 3=marked
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temperature increase (32, 33) which indicates the cell death

mechanism induced by NPS is of a non-thermal nature.

NPS has also demonstrated high efficacy in the treatment of

tumors in other murine models of cancer. The tumor elimination

rate is typically around 75-100% dependent upon the model and

treatment energy used (34). NPS demonstrated 100% efficacy in

eliminating 4T1 murine breast cancer in one study (35), in another
Frontiers in Oncology 05
study a 75% elimination rate was observed after NPS treatment of

mouse hepatocellular carcinomas (36) and a 80-90% response rate

was noted in the treatment of rat hepatocellular carcinomas (37).

Within our laboratory alone, we have shown that an energy of 360

mJ/mm3 eliminates between 90-100% of tumors across several

murine tumor types, including B16-F10 melanoma (Figure 2).

Response rates are related to tumor type and size as well as
FIGURE 4

Kaplan-Meier Survival data to day 65 for each treatment. The high dose NPS group survival is significantly better than the 45s cryo treatment group. Both
treatment does of NPS had higher rates of survival than either cryo group (log-Rank Mantel-Cox test, *p<0.05).
A

B

D E

C

FIGURE 3

Growth rates of individual tumors treated with the treatment indicated above each graph. Each color represents a single tumor. N represents the
percentage of tumors completely cleared in each case (A) Untreated; (B) Cryo (45s); (C) Cryo (90s); (D) NPS (180 mJ/mm3); (E) NPS (360 mJ/mm3).
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A B

D E

C

FIGURE 6

Histopathology scoring of histology sections collected on day 65 from each tumor treatment. Scale: 0=no lesion, 1=mild, 2=moderate, 3= marked. (A)
Dermal fibrosis was significantly higher for the 90s cryo treatment than the 45s treatment (Kruskal-Wallis ANOVA, *p<0.05); (B) Lesion width showed no
significant differences between the different treatments; (C) Hair follicle loss was similar for all treatments; (D) Muscle atrophy/loss: 1=partial loss; 2= full-
thickness loss of muscle for short distance; 3=extension of atrophy beyond full-thickness loss. There was no significant difference in atrophy among the
four treatments; (E) Inflammation score indicated only very minor inflammation at 65 days for the four treatments.
FIGURE 5

The percentage of tumors that were completely eliminated by the indicated treatments. Both low-mid (180 mJ/mm3) and high (360 mJ/mm3) NPS
treatment groups exhibited higher rates of complete tumor elimination than either the low (45 s) or high (90 s) cryoablation treatment groups. (Chi
square test: *p<0.05, **p<0.01).
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treatment energy. NPS has also typically exhibited an ability to

induce an immune response after treatment, likely due to the

immunogenic nature of the RCD process triggered by NPS (3,

37–40).

In addition to the high efficacy in treating murine tumors, NPS

exhibits similar high levels of efficacy in treating human skin lesions

while producing limited damage to the skin itself (8, 41, 42).

Histologic examination has shown only a minimal degree of

epidermal and dermal inflammation associated with NPS

treatments and this was less than typically observed in skin treated

with cryoablative and other physical methods of lesion removal.

These low levels of inflammation lead to less abnormal collagen

deposition resulting in less dermal fibrosis and therefore less

permanent scaring (43). Clinical trials utilizing NPS in the

treatment of seborrheic keratosis, sebaceous gland hyperplasia, non-

genital warts and basal cell carcinoma have all shown successful

treatment outcomes (8, 11, 41, 42). Based on the results of these trials

the CellFX® device, used to deliver NPS energy, recently attained

medical device clearance for the treatment of human benign skin

lesions in the USA (FDA 510(k)), Canada (Health Canada) and the

EU (CE mark).

While NPS and cryoablation share treatment similarities, the

mechanism each uses to destroy cells is quite different. NPS uses

ultrashort, high voltage electric pulses that generate transient

nanopores in cell and organelle membranes, leading to the

initiation of a regulated cell death process in the exposed cells while

leaving acellular tissue components unharmed (43, 44). It can also

treat tissues with more precise boundaries than thermal-based

treatment modalities, ensuring the treatment zone is highly focal to

the lesion (3). In contrast, the cryoablation mechanism of cell death
Frontiers in Oncology 07
involves the quick drastic cooling of the tissue to -40°C which leads to

the formation of ice (26, 45). Ice formation causes immediate cell

shrinkage and damage to intracellular proteins and membranes. Over

time the continued exposure to extremely low temperatures causes

thrombosis, tissue hypoxia and eventual necrosis. Cryo exposure also

causes cell death indirectly, as the formation of ice within tissues can

destroy supporting structural tissue and vasculature that is required

for the survival of cells. Vascular endothelial cells can be significantly

damaged, and as the tissues gradually thaw, reperfusion draws in

platelets that can cause significant clotting and blockage of blood

vessels (46–48). This ischemic outcome serves to starve the treated

tissue of needed blood supply. The ischemia can also cause

hyperemia, erythema, and edema through the production of

molecules that cause vasodilation and inflammation (47, 49). While

these effects are critical to the mechanism of cryo-induced cell death

they also have the potential to significantly damage surrounding

tissues due to thermal diffusion, particularly if longer exposure

times and multiple cycles are being utilized for treatment.

One of the biggest potential drawbacks to the use of cryosurgical

techniques, is that regimens aggressive enough to completely

eliminate tumors without recurrence are also highly damaging to

other tissues. When cryotherapy is used to ablate cancerous lesions in

the clinic it requires the use of multiple cycles and longer freeze times,

which increases the likelihood of scarring and damage to underlying

structures and peripheral tissues (50, 51). This has kept cryotherapy

from being a recommended first line therapy for most malignant

lesions and tumors and only remains an option when surgical

excision is not (24). The current strategy for elimination of

cancerous lesions with cryo therapies such as non-melanoma skin

cancers (NMSCs), prostate, kidney or hepatic lesions (52) is typically
FIGURE 7

Histological sections of skin regions where the tumor had been treated stained with Gomori’s trichrome to assess collagen linearization and compaction
(inset 4X greater magnification of black box region marked on the left). (A) Section showing no damage in which collagen and muscle are structurally
intact with no loss of hair follicles; (B) Mild-moderate damage indicated by slight linearization and compaction of collagen indicating dermal fibrosis and
loss of hair follicles; (C) Moderate-Marked damage indicated by moderate linearization and compaction of dermal collagen, clear loss of hair follicles and
significant muscle atrophy across entire treatment site.
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to overtreat and extend the margins into the periphery to ensure

complete elimination of all fast growing malignant cells to prevent

reccurrence or even metastasis (52). Obviously, the complete

elimination of all tumor cells is imperative, and the primary

endpoint of any treatment used to eliminate a malignant lesion.

However, minimizing the destruction of normal cells and tissues is

also vital and an obvious objective in any clinical trial. Thus, one of

the largest potential benefits of NPS treatment over cryoablation

therapies is its high rate of tumor clearance at a dose that

demonstrates very minimal damage to surrounding tissues.

Additionally, when cryoablative treatments are used to treat

melanomas, they are typically used in combination with

immunotherapies, other surgical procedures and/or to debulk non-

surgically accessible metastatic lesions (53, 54). Trials are currently

being conducted to investigate the use of therapies that combine

immune adjuvants and/or immune checkpoint blockade with

cryotherapy to treat melanoma and other aggressive cancers (55–

57). These studies are intended to harness the immune response that

is induced by the release of antigens after treatment and direct it

towards an adaptive CD8+ memory response that has the ability to

target and destroy tumor cells left over after the primary mechanism

of cell death has ceased (57). The potential for abscopal effects that

may target metastatic sites is also being investigated (58).

Although we only examined the single-agent efficacy of NPS on

primary tumor elimination in this study, previous published studies

have documented the ability of NPS to inhibit both the growth of a

tumor cell rechallenge and prevent metastasis in a CD8-dependent

manner (13, 15, 17, 18, 34, 38). The RCD process induced by NPS is

likely responsible for priming this CD8+ T cell- mediated immune

response (44). The combination of NPS with immune adjuvants

appears to have an additive effect that boosts treatment efficacy and

prevents the growth of a tumor cell rechallenge as evidenced in studies

conducted within our laboratory. In the future, we may plan studies to

compare the immune responses induced by NPS with those induced

by cryoablation.
Conclusion

NPS displayed superior efficacy over cryoablation with negligible

impact to the skin tissue in our side-by-side preclinical comparison.

Although NPS has not yet been used in the human clinic to treat

aggressive malignant tumors such as melanoma, it has displayed a

high rate of efficacy in the treatment of murine tumor types that are

typically difficult to kill, without reoccurrence. NPS shares many of

the features that make cryotherapies attractive, such as the ability to

target hard-to-access lesions and tumors that are untreatable with

surgical means, without the associated thermal tissue damage

characteristic of cryotherapy.
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SUPPLEMENTARY FIGURE 1

Representative composite image based on average severity scoring for Cryo

(45s) condition, shown at 10X and 40X magnification. Severity scoring for all
metrics of tissue damage were as follows: Dermal Fibrosis = 1; Lesion Width = 1;

Follicle Loss = 1; Muscle Atrophy = 1; Inflammation = 1.

SUPPLEMENTARY FIGURE 2

Representative composite image based on average severity scoring for Cryo
(90s) condition, shown at 10X and 40X magnification. Severity scoring for all

metrics of tissue damage were as follows: Dermal Fibrosis = 1; Lesion Width = 2;
Follicle Loss = 2; Muscle Atrophy = 2; Inflammation = 0.

SUPPLEMENTARY FIGURE 3

Representative composite image based on average severity scoring for NPS

(180 mJ/mm3) condition, shown at 10X and 40Xmagnification. Severity scoring
for all metrics of tissue damage were as follows: Dermal Fibrosis = 1; Lesion

Width = 1; Follicle Loss = 1; Muscle Atrophy = 1; Inflammation = 1.

SUPPLEMENTARY FIGURE 4

Representative composite image based on average severity scoring for NPS
(360mJ/mm3) condition, shown at 10X and 40Xmagnification. Severity scoring

for all metrics of tissue damage were as follows: Dermal Fibrosis = 1; Lesion
Width = 1; Follicle Loss = 1; Muscle Atrophy = 2; Inflammation = 0.
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