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Objective: To build a machine learning (ML) prediction model for prostate

cancer (PCa) from transrectal ultrasound video clips of the whole prostate

gland, diagnostic performance was compared with magnetic resonance

imaging (MRI).

Methods:We systematically collated data from 501 patients—276 with prostate

cancer and 225 with benign lesions. From a final selection of 231 patients (118

with prostate cancer and 113 with benign lesions), we randomly chose 170 for

the purpose of training and validating a machine learning model, while using

the remaining 61 to test a derived model. We extracted 851 features from

ultrasound video clips. After dimensionality reduction with the least absolute

shrinkage and selection operator (LASSO) regression, 14 features were finally

selected and the support vector machine (SVM) and random forest (RF)

algorithms were used to establish radiomics models based on those features.

In addition, we creatively proposed a machine learning models aided diagnosis

algorithm (MLAD) composed of SVM, RF, and radiologists’ diagnosis based on

MRI to evaluate the performance of ML models in computer-aided diagnosis

(CAD). We evaluated the area under the curve (AUC) as well as the sensitivity,

specificity, and precision of the MLmodels and radiologists’ diagnosis based on

MRI by employing receiver operator characteristic curve (ROC) analysis.

Results: The AUC, sensitivity, specificity, and precision of the SVM in the

diagnosis of PCa in the validation set and the test set were 0.78, 63%, 80%;

0.75, 65%, and 67%, respectively. Additionally, the SVM model was found to be

superior to senior radiologists’ (SR, more than 10 years of experience) diagnosis

based on MRI (AUC, 0.78 vs. 0.75 in the validation set and 0.75 vs. 0.72 in the

test set), and the difference was statistically significant (p< 0.05).

Conclusion: The prediction model constructed by the ML algorithm has good

diagnostic efficiency for prostate cancer. The SVM model’s diagnostic
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efficiency is superior to that of MRI, as it has a more focused application

value. Overall, these prediction models can aid radiologists in making

better diagnoses.
KEYWORDS

artificial intelligence, prostate cancer, ultrasound, machine learning, support
vector machine
Introduction

Prostate cancer (PCa) is one of the most common cancers in

males, and its prevalence has increased at an alarming rate over

the last several decades (1). According to GLOBOCAN 2020, in

2020 there were approximately 1,414,259 new cases of PCa and

375,304 PCa-related deaths worldwide, with a particularly high

prevalence in developed countries (2). The early clinical

manifestations of prostate cancer are sufficiently nonspecific that

patients often ignore it in its early phases and therefore only seek

treatment when it has already developed. Therefore, early

diagnosis of PCa is crucial. Prostate-specific antigen (PSA)

testing, digital rectal examinations (DRE), and transrectal

ultrasonography (TRUS) guided prostate system biopsies are the

most used PCa screening methods in clinics (3, 4), but these

diagnostic tools may still lead to a certain degree of

overdiagnosis (5).

In the past decade, the role of MRI in the diagnosis of

prostate cancer stages has significantly developed. The

introduction of coil imaging in the rectum and the advent of

some basic techniques, such as magnetic resonance spectrum

imaging, dynamic contrast-enhanced MRI, and diffusion-

weighted imaging (DWI), have improved the diagnostic

accuracy of MRI and its potential to improve the treatment

decision-making process (6). However, it must be emphasized

that multiparametric magnetic resonance imaging (mpMRI) has

been evaluated only in patients in whom the risk of clinically

significant PCa was judged sufficiently high to warrant biopsy.

Therefore, a prebiopsy mpMRI must not be used as an initial

screening tool. Indeed, based on its low specificity, mpMRI in

very low-risk patients would result in an increase in false-
ancer; MRI, magnetic

; RF, random forest;

is algorithm; CAD,

R, senior radiologist;

ion operator; DWI,

curve; ROC, receiver

y; TRUS, transrectal

efficients; ROI, region
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positive findings and subsequent unnecessary biopsies (5).

Another classical imaging diagnosis of PCa has largely relied

on ultrasonography (US), including transrectal ultrasound

(TRUS), contrast-enhanced ultrasonography (7), and

ultrasound elastography (8). However, sonologists’ evaluations

of tumor tissue have primarily relied on semantic features from

the visual perspective, which is an approach that misses many

image features that represent tumor heterogeneity. Therefore,

early accurate diagnosis of prostate cancer remains a

clinical challenge.

As a new frontier, ML-based radiomics could extract many

quantitative features from encrypted digital images, which could

then be used to deeply mine the biological information of tumors

and analyze the heterogeneity of tumors, thus aiding clinical

decision making (9). However, it has been reported that the ML

ultrasound diagnostic model is rarely used to evaluate PCa

because prostate cancers located in the central zone are often

difficult to detect visually—they are confused with the

hypoechoic endoglandular background tissue. Plus, the

application of ML methods on prostate cancer prediction is

mostly based on static transrectal images, which cannot fully

display the patient's tissue information, meaning that the

application of ML methods for prostate cancer prediction

based on transrectal video clips remains problematic.

Accordingly, we adopted ML models based on whole

prostate transrectal ultrasound video clips on PCa prediction.

The ML algorithms were better at forming predictions because

they could use the ultrasound video clips to make a prediction

based on global information from whole prostate transrectal

tissue. To test the performance of the ML algorithms, we

compared their diagnostic results with radiologists’ diagnosis

based on MRI, finding that the SVM algorithm adopted in this

paper had better performance in terms of PCa prediction. In

addition, we creatively proposed a machine learning models

aided diagnosis algorithm (MLAD) to evaluate the performance

of ML models in computer-aided diagnosis (CAD).
Materials and methods

Local ethics committees approved the study (2022-YX-047).
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Study participants

We obtained the ultrasound video clips data from

Dongyang Hospital, which is affiliated with Wenzhou

Medical University. From January 2021 to December 2021,

we recruited 276 patients with PCa and 225 patients with

benign lesions of the prostate, which included benign prostatic

hyperplasia, fibromuscular tissue, atypical glandular tissue, and

chronic prostatitis.

The inclusion criteria were as follows: (a) was an elderly male

(aged above 55); (b) had solid prostate masses found by digital

rectal examination, TRUS, or MRI; (c) had undergone prostate

biopsy or surgery and obtained the pathological diagnosis

results; and (d) had not received treatment for prostate

diseases before TRUS. In addition, we excluded patients with

rectal malformation or rectal surgery who could not be

examined by transrectal ultrasound.

Finally, of the 231 patients—113 having PCa and 118 benign

lesions—we randomly selected 170 for the purpose of training
FIGURE 1

The flowchart of inclusion and exclusion of the study population.
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and validating anMLmodel, while using the remaining 61 to test

derived models. The processes underlying the inclusion and

exclusion of study participants are shown in Figure 1.
Video clips acquisition

We collected all ultrasound data related to the prostate

using the Esaote MyLab™ ClassC ultrasound machine (Esaote,

Genoa, Italy) with the TRT33 Transrectal Biplane Transducer

(frequency range 3–13MHz). Four sonologists, each with over

ten years of experience in transrectal ultrasound, performed all

ultrasound scans. First, they placed a condom on the TRT33

probe, then inserted it into the rectum, adjusted the probe

depth, and rotated the probe for multidirectional prostate

examination. Second, they scanned the entire transverse

section of the prostate grayscale ultrasound, before scanning

the prostate from top to bottom and storing 10 seconds of

video clips.
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Manual segmentation

For manual segmentation, we loaded the video clips into the

3D Slicer v.4.11. Two sonologists (S1 and S2, each with more

than five years of TRUS prostate diagnosis experience) manually

segmented the region of interest (ROI) from the prostate. They

were blinded to the MRI and pathological results. We drew the

entire prostate gland as an ROI from every video frame and used

intra- and inter-class correlation coefficients (ICCs) to evaluate

the reproducibility of radiomics feature extraction. First, S1 and

S2 separately segmented video clips of 30 randomly selected

patients, and then, two weeks later, S2 segmented images of the

30 patients once more. After that, S1 performed the remaining

video clip segmentation. We only included the features with an

ICC value equal to or higher than 0.8 that indicated excellent

reproducibility in the other feature selection process.
Feature extraction and selection

We performed extractions of radiomics features by using a

radiomics extension of a 3D Slicer software, SlicerRadomics

(Version 3.0.1) (10). For this, we extracted 851 radiomics

features from each patient, including shape features (14), first-

order statistical features (18), gray-level co-occurrence matrix

features (24), gray-level dependence matrix features (14), gray-

level run-length matrix features (16), gray-level size zone matrix

features (16), neighborhood gray-tone difference matrix features

(5), and wavelet-based features (744).

We performed feature selection using programs written

in Python (Version 3.8.8, Python Software Foundation). First,

according to pathological results, we divided all data into benign

and malignant groups and inserted labels 0 and 1 into the data.

Second, we used the two independent samples t-test and Mann-

WhitneyU test to test all the features, before deleting the features in

the benign and malignant groups that failed to meet either of the

first two tests. Third, the least absolute shrinkage and selection

operator (LASSO) regression selected features in the training and

validation set.Weexcluded the featureswithzerovarianceusing the

variance filtering method. Fourth, we performed the LASSO

method for further dimensionality reduction of the features and

selected the most valuable features (11). We then repeated the 10-

fold cross-validation on training and validation set process 100,000

times to obtain the optimal value of parameter l, which we

introduced into the LASSO method to calculate the regression

coefficients of each feature. Finally, we selected the features with

non-zero coefficients.
Machine learning

Python scikit-learn 0.24.2 package (12) was used to support

vector machine modeling and evaluation. We randomly divided
Frontiers in Oncology 04
the training and validation set into the training set and the

validation set at a ratio of 8:2. First, we used a Gaussian kernel

support vector machine (SVM) model and a random forest (RF)

model to classify features in the training set and established two

nonlinear classifiers. In the SVM classifier, kernel size

parameters (g, gamma) and regularization parameters (C, cost)

of the SVM kernel function were optimized. We then selected

the parameters with the best performance through 10-fold cross-

validation on the training set. In the RF classifier, the number of

estimators (n_estimator) was optimized through 10-fold cross-

validation on the training set. Finally, we applied the SVMmodel

and RF model to the validation set and test set.
MRI results collection

Participants underwent prostate MRIs with a 1.5T Siemens

Magnetom Avanto magnetic resonance scanner (Erlangen,

Germany), including the standard T2-weighted MRI, T1-

weighted MRI, and diffusion-weighted MRI. We included the

MRI results of the validation and test set in the analysis. Two

junior radiologists (each with less than 5 years of experience) and

two senior radiologists (eachwithmore than10years of experience)

reviewed each case in order to provide an independent diagnosis.
Machine learning models aided
diagnosis algorithm

Using the SVM model and RF model, we can obtain the

probabilities of PCa separately. To evaluate the performance of

ML models in CAD, we proposed a machine learning models

aided diagnosis algorithm (MLAD) (Equation 1) which

integrates the prediction performance of SVM, RF, and

radiologists’ diagnosis. In this algorithm, we chose SVM as the

main model and RF as the sub model.

SSVM =   0:5 − PSVMj j
SRF =   0:5 − PRFj j

SMLAD =   SSVM0:5 *PSVM +   0:5−SSVM0:5 *  
SRF
0:5 *PRF +   0:5−SRF  0:5 *VR

� �
 

8>><
>>:

(1)

PSVM: probability of PCa from SVM model; PRF: probability

of PCa from RF model; VR: result value of PCa from radiologists’

diagnosis (0: benign, 1: malignant); SSVM: prediction confidence

score of SVM; SRF: prediction confidence score of RF
Statistical analysis

WeusedSPSS 25.0 software to conduct a statistical analysis and

tested the normality of continuous variables using the Levene test.

Weanalyzedcontinuousvariables obeyinganormaldistributionby
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using the independent samples t-test and analyzed those not

obeying a normal distribution by using the Mann-Whitney U

test. We then compared categorical variables using the chi-square

test. Unless otherwise specified, we expressed the continuous

variables as median (standard deviation, SD) and the categorical

variables as n (%). We also evaluated the area under the curve

(AUC) as well as the sensitivity, specificity, and precision of the

SVMmodel and MRI in diagnosing prostate cancer by employing

receiver operator characteristic curve (ROC) analysis. P< 0.05

indicated a significant difference. The overall flowchart of the

study is outlined in Figure 2.

Results

Clinicopathological features of
the patients

The clinicopathological features in the training set,

validation set, and test set are shown in Table 1. The average

ages of patients in the training set, validation set, and test set

were 72.02, 71.21, and 69.64, respectively, while the respective

mean PSA values were 19.91, 22.77, and 46.98. The number of

benign lesions were 83 (48.8%), 15 (44.1%), and 30 (49.2%). The

number of PCa were 87 (51.2%), 19 (55.9%), and 31 (50.8%). We

found no significant differences between the validation and test

set in terms of age, PSA, or pathological results (p > 0.05).
Feature selection

From each patient, we extracted 851 features from the

ultrasound video clips using the LASSO regression model in
Frontiers in Oncology 05
the training set. In the LASSO model, we repeated the 10-fold

cross-validation process 100,000 times in order to generate the

optimal penalization coefficient lambda (l).
Finally, we chose a l value of 0.029470517025518096. After

dimensionality reduction with LASSO regression, 14 features

were selected, consisting of original (3) and wavelet features (11).

The subset of features ultimately selected by the LASSO

algorithm is shown in Table 2. Figure 3, meanwhile, shows the

selection of significant parameters in features in the training set

and the definition of the linear predictor, while Figure 4 shows

the generation of the optimal penalization coefficient lambda.
Modeling and effectiveness

We first selected the SVM algorithm to establish the

radiomics model based on the selected 14 features.

Traditionally, the prediction performance has been optimized

for the following parameters: C, gamma, and the shape of the

kernel. We then constructed a pipeline with two steps: a scaling

step and an SVM step. It is best to scale data before passing them

to an SVM. Next, we varied the relevant RBF parameters, C and

gamma, logarithmically, varying by one order of magnitude at a

time. We used a 10-fold cross-validation scheme. Finally, we

identified the best SVM estimator (C=45.20, gamma=0.001) and

stored it as an SVM model. As with the SVM model, in the RF

algorithm, we varied the number of estimators by one order of

magnitude at a time in order to obtain the best RF model

(n_estimators=10000). The AUC, sensitivity, specificity, and

precision of the SVM and RF model in the diagnosis of PCa in

the validation set and the test set were as follows: (1) SVM

results: 0.78, 63% (95%CI: 0.38–0.83), 80% (95%CI: 0.51–0.95),
FIGURE 2

Overall flow chart of the study, including image acquisition and segmentation, feature extraction, feature selection, machine learning, and evaluation.
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80% (0.51–0.95); 0.75, 65% (95%CI: 0.45–0.80), 67% (95%CI:

0.47–0.82), 67% (95%CI: 0.47–0.82); (2) RF results: 0.77, 63%

(95%CI: 0.39–0.83), 87% (95%CI: 0.58–0.98), 86% (95%CI:

0.56–0.97); 0.69, 45% (95%CI: 0.28–0.64), 93% (95%CI: 0.76–

0.99), 88% (95%CI: 0.60–0.98). For comparison, two junior

radiologists (each with less than 5 years of experience) and

two senior radiologists (each with more than 10 years of

experience) respectively gave their independent diagnosis of

PCa based on MRI results. The AUC, sensitivity, specificity,

and precision of two radiologists in the diagnosis of PCa based

on MRI were as follows: (1) JR results: 0.65, 63% (95%CI: 0.39–

0.83), 67% (95%CI: 0.39–0.87), 71% (95%CI: 0.44–0.87); 0.65,

71% (95%CI: 0.52–0.85), 60% (95%CI: 0.41–0.77), 65% (95%CI:
Frontiers in Oncology 06
0.46–0.80); (2) SR results: 0.75, 63% (95%CI: 0.39–0.83), 87%

(95%CI: 0.58–0.98), 86% (95%CI: 0.56–0.97); 0.72, 61% (95%CI:

0.42–0.78), 83% (95%CI: 0.65–0.93), 0.79 (95%CI: 0.57–0.92)

(Table 3). According to the statistical results, the SVM model

was superior to radiologists’ diagnosis based on MRI (AUC, 0.78

vs. 0.65/0.75 and 0.75 vs. 0.65/0.72) (Figure 5), and the results of

the SVMmodel and SR were statistically significant (p< 0.05). To

evaluate the performance of ML models in CAD, we integrated

the SVMmodel and RF model with JR and SR diagnosis through

MLAD separately (SVM+RF+JR and SVM+RF+SR). The AUC,

sensitivity, specificity, and precision of the MLAD model in the

diagnosis of PCa in the validation set and the test set were as

follows: (1) SVM+RF+JR: 0.8, 74% (95%CI: 0.49–0.90), 87%
TABLE 1 Characteristics of patients in the training, validation and test datasets.

Training set Validation set Test set P value

Age(y)* 72.02±8.721 71.21±6.246 69.64±8.262 0.161

PSA(ng/mL)* 19.91±44.56 22.77±65.51 46.98±114.89 0.065

Pathology 0.871

No.of Benign(-)(%) 83(48.8%) 15(44.1%) 30(49.2%)

BPH 68(40%) 13(38.3%) 25(41%)

BPH & prostatitis 11(6.4%) 1(2.9%) 3(4.9%)

BPH & BCH 1(0.6%) 0 2(3.2)

BPH & LGIN 3(1.8%) 1(2.9%) 0

No. of Pca(+)(%) 87(51.2%) 19(55.9%) 31(50.8%)

GS6 30(17,6%) 9(26.5%) 14(23%)

GS7 38(22.4%) 7(20.6%) 8(13.1%)

GS8 10(5.9%) 2(5.9%) 6(9.8%)

GS>=8 9(5.3%) 1(2.9%) 3(4.9%)
front
BPH, benign prostatic hyperplasia; BCH, basal cell hyperplasia; LGIN. low-grade intraepithelial neoplasia.
*Data are expressed as mean ± standard deviation.
p< 0.05 indicates significant differences in patients’ clinicopathological features in the validation and test sets.
TABLE 2 The subset of radiomics features ultimately selected by the LASSO algorithm.

Feature Image type Feature Class Feature Name LASSO coefficients

1 Original Firstorder Range 0.049561

2 Original glcm ClusterProminence 0.004193

3 Original glszm ZoneEntropy 0.011709

4 Wavelet-LHL firstorder Skewness -0.055034

5 Wavelet-LHL glcm ClusterShade -0.025479

6 Wavelet-LHL glcm Correlation 0.010685

7 Wavelet-LHH gldm LargeDependenceLowGrayLevelEmphasis 0.018646

8 Wavelet-HLL glszm GrayLevelNonUniformity -0.073279

9 Wavelet-HHH firstorder Median -0.050800

10 Wavelet-HHH glcm ClusterShade 0.025124

11 Wavelet-HHH gldm LargeDependenceLowGrayLevelEmphasis 0.039665

12 Wavelet-LLL glszm LargeAreaHighGrayLevelEmphasis -0.026230

13 Wavelet-LLL glszm SizeZoneNonUniformityNormalized 0.021580

14 Wavelet-LLL glszm SmallAreaHighGrayLevelEmphasis 0.056598
First-order features describe the distribution of voxel intensities within the image region defined by the mask through commonly used and basic metrics. GLCM features describe the
second-order joint probability function of an image region constrained by the mask. They are defined as P. GLDM features quantify gray-level dependencies in an image, and GLSZM
features quantify gray-level zones in an image.
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(95%CI: 0.58–0.98), 88% (95%CI: 0.60–0.98); 0.72, 68% (95%CI:

0.49, 0.83), 70% (95%CI: 0.50, 0.85), 70% (95%CI: 0.50, 0.85); (2)

SVM+RF+SR: 0.86, 74% (95%CI: 0.49–0.90), 93% (95%CI: 0.66–

0.99), 93% (95%CI: 0.66–0.99); 0.81, 81% (95%CI: 0.62, 0.92),

80% (95%CI: 0.61–0.92), 81% (95%CI: 0.62–0.92). According to

the statistical results, the MLAD model with senior radiologists’

diagnosis (SVM+RF+SR) was superior to senior radiologists’

diagnosis based on MRI and the SVM model (AUC, 0.85 vs.

0.75/0.78 and 0.81 vs. 0.72/0.75) (Figure 5), and the results were

statistically significant (p< 0.05). The results thus demonstrated

that the SVM model and RF model can improve the predictive

performance of PCa through MLAD.
Frontiers in Oncology 07
Discussion

ML-based radiomics transforms visual image information

into in-depth feature quantitative data, extracts a large amount

of image characteristic information from medical images, and

constructs pre-measurement models based on feature

information (13, 14). In this study, we carried out feature

extraction of the prostate creatively from ultrasound video

clips. The prediction model constructed by the ML algorithm

has good diagnostic efficiency in PCa, and, compared with the

SVM model with an MRI, the diagnostic efficiency is better and

has a more specific application value.
B

A

FIGURE 3

Selection of significant parameters in features in the training set and definition of the linear predictor. (A) Spearman’s correlation coefficients
were calculated for the fourteen selected features. (B) Characters classification weight of the features.
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TRUS is widely used in clinical practice because it is safe,

radiation-free, inexpensive, and easy to perform (15, 16). The

outline of the prostate is usually clearly displayed, and the

boundary between the isoechoic peripheral and hypoechoic

central zone is demarcated. Approximately 70% of PCa is located

in the peripheral area, and most PCa is hypoechoic. However,

tumors in the central location are often difficult to detect because

they are confused with the low-echoic endoglandular background

tissue. Thus, TRUS has only moderate accuracy in PCa detection in

the general population (17). Therefore, we used the video clips of

the prostate to serve as the feature extraction data in order to avoid

losing a key portion of the information.
Frontiers in Oncology 08
By extracting high-throughput data and establishing an

efficient and stable prediction model, radiomics can provide an

auxiliary diagnosis for clinical practice. Features selection is the

key to ML research. However, data redundancy and over-fitting

will occur if the high-throughput feature extraction is not

selected (18–20). Jin et al. used the ML method to predict

lymph node metastasis of early cervical cancer and extracted

106 imaging omics features from lymph node ultrasound

images. Through a combination of LASSO and ridge

regression, they selected the key features from the high-

dimensional features to avoid overfitting. They then selected

six features for classification research, which represented the
BA

FIGURE 4

Generation of the optimal penalization coefficient lambda. (A) Ten-time cross-validation for tuning parameter selection in the LASSO model.
(B) LASSO coefficient solution path for the 14 features.
TABLE 3 Diagnostic performance of machine learning model and MRI on a per-lesion basis.

Dataset and Method Sensitivity (95% CI) Specificity (95% CI) Precision (95% CI) AUC P Value Kappa

SVM Model

Validation 0.63 (0.38-0.83) 0.80 (0.51-0.95) 0.80 (0.51-0.95) 0.78 0.012 0.42

Test 0.65 (0.45-0.80) 0.67 (0.47-0.82) 0.67 (0.47-0.82) 0.75 0.015 0.312

RF Model

Validation 0.63 (0.37-0.83) 0.87 (0.58-0.98) 0.86 (0.56-0.97) 0.77 0.003 0.481

Test 0.45 (0.28-0.64) 0.93 (0.76-0.99) 0.88 (0.60-0.98) 0.69 0.001 0.382

MRI-JR

Validation 0.63 (0.39-0.83) 0.67 (0.39-0.87) 0.71 (0.44-0.87) 0.65 0.084 0.294

Test 0.71 (0.52-0.85) 0.60 (0.41-0.77) 0.65 (0.46-0.80) 0.65 0.015 0.31

MRI-SR

Validation 0.63 (0.39-0.83) 0.87 (0.58-0.98) 0.86 (0.56-0.97) 0.75 0.003 0.481

Test 0.61 (0.42-0.78) 0.83 (0.65-0.93) 0.79 (0.57-0.92) 0.72 0.0003 0.445

SVM+RF+JR

Validation 0.74 (0.49-0.90) 0.87 (0.58-0.98) 0.88 (0.60-0.98) 0.8 0.000464 0.591

Test 0.68 (0.49-0.83) 0.70 (0.50-0.85) 0.70 (0.50-0.85) 0.72 0.003 0.377

SVM+RF+SR

Validation 0.74 (0.49-0.90) 0.93 (0.66-0.99) 0.93 (0.66-0.99) 0.85 0.00009 0.652

Test 0.81 (0.62-0.92) 0.80 (0.61-0.92) 0.81 (0.62-0.92) 0.81 0.000002 0.606
frontie
SVM model, support vector machine model; RF model, random forest model; MRI-JR, junior radiologists’ (less than 5 years of experience) diagnosis based on MRI; MRI-SR, senior
radiologists’ (more than 5 years of experience) diagnosis based on MRI. p< 0.05 indicates a significant difference in the discrimination of the SVM model and MRI diagnosis.
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texture complexity of tumors and correlated with the high

degree of tumor heterogeneity (21). By contrast, in our study,

we extracted a total of 851 features. We used the LASSO

algorithm to filter all the features and retained only the 14

non-zero features with a solid correlation with PCa. The results

show that the AUC of the prediction model in the PCa of the

training set, validation set, and test set were respectively 0.82,

0.78, and 0.75. The difference was not statistically significant (p

>0.05) and it has been shown that the feature selection method

used in this study can effectively restrain data overfitting.

Out of 14 selected image omics features (22), one was taken

from the first-order range, i.e., the range of gray values in the

ROI; one was from the gray-level co-occurrence matrix (GLCM),

which describes the second-order joint probability function of

an image region constrained by the mask; one was from the

gray-level size zone matrix (GLSZM), which quantifies gray level

zones in an image; and the remaining 11 were taken from

wavelet (23), subsets of texture features. Among the selected

radiomics features, texture features based on wavelet account for

the majority, which indicates that texture features have a good

classification function. Furthermore, they are related to the

composition of heterogeneous cells with noticeable molecular

and microenvironmental differences in malignant tumors,

indicating that the texture characteristics of tumors are highly

correlated with heterogeneity (21).

The commonly used modeling methods of radiomics are

mainly divided into statistical and ML-based methods. ML

approaches are then typically subdivided into supervised and

unsupervised learning, with SVM and RF being the most widely

used approaches in supervised learning (24–28). Previous

literature has reported that both SVM and RF show good

stability. Specifically, SVM and RF show good diagnostic

efficiency in constructing a small sample prediction model

(29). The basic principle of SVM is to divide a hyperplane into

a given training queue space to distinguish different types of

samples (30). In this study, we used SVM and RF to construct a
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radiomics prediction model. The AUC of SVM in the validation

and test set was 0.78 and 0.75, respectively, showing that the

model had high diagnostic efficiency and stability.

To evaluate the diagnostic efficacy of the ML prediction

SVM model in PCa, we compared the SVM model with MRI

diagnosis. In Rosenkrantz et al.’s study, it was reported that the

sensitivity, specificity, and precision of PCa detection using a

fusion of T2-weighted images and diffusion-weighted images

were 60.8%, 80.3%, and 71.0%, respectively (31). The results of

Katahira et al.’s study, meanwhile, which used T2WI and DWI

to detect prostate cancer, showed that the sensitivity, specificity,

and AUC were 61.2%, 82.6%, and 0.755, respectively (32). In our

study, the AUC, sensitivity, specificity, and precision of two

radiologists in the diagnosis of PCa based on MRI were 0.65/

0.75, 63%/63%, 67%/87%, 71%/86%; 0.65/0.72, 71%/61%, 60%/

83%, 65%/79% (the former is the diagnosis results of JR, and the

latter is the diagnosis results of SR). The diagnostic power of

MRIs in this study was similar to that observed in previous

studies. The results show that the SVM model had higher

diagnostic efficiency than a diagnosis based on MRI (AUC,

0.78 vs. 0.65/0.75 and 0.75 vs. 0.65/0.72). In the extended

experiment, the MLAD model with SR diagnosis (SVM+RF

+SR) showed the best performance in statistics, which means

the SVM model and RF model can improve radiologists’

diagnosis performance.

In spite of its findings, it must be acknowledged that this

study suffers from some limitations. The most obvious limitation

is that it was a retrospective study with a small sample size,

limiting its power and precluding firm statistical conclusions.

For example, the CI of AUC sensitivity, specificity, and precision

has a large range. The second limitation is that it was a single-

center study, and thus we cannot exclude single-centered effects.

Finally, we carried out ROI segmentation manually, which is

inefficient and may lead to bias among different delineators, thus

resulting in the reduced diagnostic capability of the prediction

model. Although the radiomics model performed well in this
BA

FIGURE 5

Comparison of ROC between the ML models and MRI in the validation set and test set. (A) shows the ROC curves of the validation set. (B) shows
the ROC curves of the test set. (MRI-JR: junior radiologists’ diagnosis based on MRI, MRI-SR: senior radiologists’ diagnosis based on MRI).
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study, future studies must combine clinical factors closely related

to PCa to build a more robust model.

It is rare to use the ML ultrasound diagnostic model to

evaluate PCa. Therefore, we aimed to build an ultrasound

diagnostic prediction model based on ML to provide a solid

theoretical basis for the accurate and individualized treatment

of PCa.
Conclusions

In our study, we innovatively used ultrasound video clips

instead of images to form a dataset on which we could build an

ML model. The ML-based prediction models have good

diagnostic efficiency in PCa. In the SVM model, the precision,

sensitivity, and specificity are better than that seen in diagnosis

based on MRI. Thus, based on our MLAD, the SVM model and

RF model can contribute to improve radiologists’ diagnosis

performance based on MRI; indeed, the MLAD model in

conjunction with senior radiologists’ diagnosis shows the best

performance among all models. In our future work, we intend to

combine the ultrasound transverse and longitudinal video clips

of the prostate to build a better ML model and use deep learning

and neural networks in the ultrasonic diagnosis of prostate

cancer. The model developed in our study could contribute to

reducing barriers and providing a convenient way for

community hospitals to improve PCa diagnosis.
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