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Small extracellular vesicles (EVs) in the last 20 years are demonstrated to

possess promising properties as potential new drug delivery systems,

biomarkers, and therapeutic targets. Moreover, EVs are described to be

involved in the most important steps of tumor development and progression

including drug resistance. The acquired or intrinsic capacity of cancer cells to

resist chemotherapies is one of the greatest obstacles to overcome to improve

the prognosis of many patients. EVs are involved in this mechanism by

exporting the drugs outside the cells and transferring the drug efflux pumps

and miRNAs in recipient cells, in turn inducing drug resistance. In this mini-

review, the main mechanisms by which EVs are involved in drug resistance are

described, giving a rapid and clear overview of the field to the readers.
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Introduction

Extracellular vesicles (EVs) are small cell-released particles with a diameter ranging

from 30 to 1,000 nm (1). EVs are a heterogeneous population that can differ in size,

properties, and biological function and classified according to their biogenesis pathway

(2). In addition, from the first attributing role, consisting in managing cellular waste,

nowadays it is well recognized that EVs play a central role in cell–cell communication (3),

both in physiological and in pathological conditions, and their cargoes have been

distinguished in different components from proteins to miRNA, going through mRNA

and lncRNA, among others (4). EVs were also employed as drug delivery systems (DDS)

displaying very suitable properties for this purpose and obtaining interesting results in

preclinical and clinical trials (2, 5).

The history of EVs started in the second half of the 1940s in the previous century, when

in 1945 Chargaff working on blood coagulation observed small “membrane debris”

sedimented at high-speed centrifugation of plasma supernatant (6). The following year,
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his observation was reported as “a variety of minute breakdown

products of blood corpuscules” (7). Twenty-one years later, Peter

Wolf described in more detail Chargaff’s remarks, saying that it

could be a material “originated from platelets but it is

distinguishable from the intact ones”. This claim was confirmed

by electron microscopy images that Wolf himself described as

“platelet dust” (8). For almost 20 years, other electron microscopy

images showed structures with a size under 1,000 nm. In

particular, in 1974, Nunez et al. reported, for the first time,

structures later called multivesicular bodies (MVB) (9), opening

up the path in the identification of a subtype of EVs that

originated from MVB, later called exosomes or small EVs (30–

150 nm). The biogenesis of these structures was demonstrated to

start from late endosomes, which are formed by the inward

budding of MVB membranes forming intraluminal vesicles

(ILVs), which fuse back with the plasmatic membrane and

released by cells as small EVs [later called exosomes (10)] as

described by Cliff Harding in 1983 (11). Starting from the early

1980s, many studies on EVs have increased the knowledge in this

field and scientists began to deeply understand the multiple

biological functions in which EVs are involved. For almost a

decade, small EVs were identified as a vehicle to remove

unnecessary molecules from cells, like a cellular garbage disposal

(12). In the 1990s, small EVs were identified to have an

immunological function (13), followed by a large number of

studies highlighting that EVs were involved in intercellular

communication mechanisms playing a role in physiological or

biologically important processes, such as lactation, inflammation,

cell proliferation, and neuronal function (14–16). Moreover, other

studies showed that EVs are implicated not only in pathological

processes, namely, thrombosis (17), diabetes, and atherosclerosis

(18), but also in the development and progression of diseases such

as liver (19) and neurodegenerative diseases (20) and, recently, in

cancer (21, 22). In cancer, many processes like cell proliferation,

migration, invasion, epithelial-to-mesenchymal transition,

angiogenesis, lymphogenesis, immune suppression, and

metastasis (23) are regulated by EVs. In the late 1990s,

important studies were published about EVs. Starting with the

work of Raposo et al. (13) that demonstrates that EVs derived

from immune cells are capable of presenting antigens, other

groups started new projects about a new vaccine approach

based on EVs. The first approach on vaccines using EVs was

explored by Zitvogel et al. in 1998 (24). In their work, the authors

described how EVs secreted by dendritic cells loaded with tumor

antigens are able to eradicate cancer cells. Based on advances in

the next decades, Escudier et al. conducted a clinical trial (25).

This work has been a starting point for many studies on the

physiological role of EVs and their possible applications as

biomarkers, and an opportunity to new therapeutic approaches.

In the last few years, lines of evidence for the implication of EVs in

the development of anticancer drug resistance have increased and

have been extensively studied. This mini-review will focus on the

role of EVs in cancer drug resistance exploring and describing the
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main mechanisms of action through a synthetic description of the

major scientific works in the field. Also, a brief description of the

most important research papers is provided in Table 1, which

aims to give an impression of this field and, overall, to give the

readers a rapid and clear overview of the involvement of EVs in

drug resistance mechanisms.

The term EVs used in this review, independent of the term

used in the article referred to, refers to a mixed population of

small EVs ranging from 30 to 200 nm since the available

isolation methods are not able to discriminate vesicles

originated from different pathways.
EVs mediated drug resistance

The hallmarks of drug resistance are basically summarized in

six points: (1) alteration of drug targets (2), activation of drug

pumps, (3) detoxification mechanisms, (4) reduced susceptibility

to apoptosis, (5) increased ability to repair DNA damage, and (6)

altered proliferation. Also, local modifications of stroma, tumor

microenvironment (TME), and local immunity could contribute

to the development of resistance (66). Keeping in mind these

notions, EVs are involved in cell–cell communication and cargo

sharing/delivery, and these characteristics have been associated

with chemo- and targeted therapies’ resistance as detailed here.

In the next paragraphs, the most important mechanisms by

which EVs regulate drug resistance will be described.
Activation of drug-efflux pumps

Efflux pump mechanisms are physiologically important in

many processes such as toxin clearance from the gastrointestinal

tract, elimination of bile from the hepatocytes, effective

functioning of the blood–brain and placental barrier, and the

renal excretion of drugs. In drug-resistant tumors, the

overexpression of these proteins (67) allow the cells to reduce

the intracellular drug concentration to a sublethal dose. Many

research papers described the role of EVs in the transferring of

drug efflux pumps from resistant to sensitive cancer cells.

Among the delivered proteins are frequently described ATP-

binding cassette (ABC) family, like P-glycoprotein (P-gp,

MDR1, and ABCB1), breast cancer (BC)-resistant proteins

(ABCG2, BRCP, and ABCA3), and multidrug-resistant protein

1 (MRP-1) (45, 46, 68–72). The mechanism by which EVs

transfer proteins among cells is commonly called EVs-

mediated horizontal transfer of drug efflux pumps. BC cells

were able to export doxorubicin in the extracellular medium by

EVs shedding, thus reducing intracellular accumulation of the

drug. Moreover, EVs mediate the transfer of functional proteins

or RNAs (miRNA and mRNA) that modulate the expression

and function of P-gp. The P-gp is found to be overproduced in

cancer cells to remove cytotoxic drugs from cells and is
frontiersin.org
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TABLE 1 EVs cargoes and drug resistance mechanisms.

miRNA

Cell of
origin

EV
content

Target Cancer
type

Type of
resistance

Mechanism Ref.

MCF-7 and MDA-MB-231 DOX and PTX-
resistant cells MCF7 CSCs

miR-155 TGF-b, FOXO-
3a, and C/EBP-
b mRNA

BC DOX and PTX
resistance

Contributing to
drug resistance and
promoting EMT
and CSC
phenotypes

(26)

MDA-MB-231 cells miR-1246 CCNG2 BC DOC, EPI, and
GEM resistance

Promoting cell
proliferation,
migration, and drug
resistance

(27)

BC cells resistant to TAM miR221/222 P27 and ERa BC TAM resistance Downregulation of
p27 and ERa
protein increasing
cell proliferation

(28)

Trastuzumab-resistant BC cells miR-567 ATG5 BC Trastuzumab
resistance

Regulating
autophagy

(29)

MCF7 miR-567 ATG5 BC Trastuzumab
resistance

MiR-567 delivered
by EVs revert cell
resistance to
trastuzumab

(30)

HL60/AR MRP-1; miR19b,
miR20a

HL60 Acute myeloid leukemia MDR Transferring
chemoresistance
through EVs from
resistant to sensitive
cells

(31)

MiaPaCa, Colo-357 miR-155 Unknown Pancreatic cancer GEM Small EV-mediated
mechanism of drug-
induced acquired
chemoresistance in
PC cells. miR-155
induced suppression
of gemcitabine-
metabolizing
enzyme, DCK

(32)

MCF7-Tam miR-221/222 MCF7 BC TAM Vesicles containing
miR-221/222 act as
signaling molecules
in cell–cell
communication for
tamoxifen resistance

(33)

786-0 Sor res, ACHN sor res. miR-31-5p 786-0 Sor sens,
ACHN sor
sens

Advanced renal cell
carcinoma

Sorafenib EVs shuttled miR-
31-5p can transfer
resistance
information from
sorafenib-resistant
to sensitive cells by
directly targeting
MLH1

(34)

SYO-1, HS-SYII, 1273/99 and YaFuS-resistant cells microRNA-761 SYO-1, HS-
SYII, 1273/99,
and YaFuS

Synovial sarcoma Pazopanib EV miR-761
delivering affects
chemosensitivity of
synovial sarcoma
cells to Pazopanib
by targeting TRIP6,
LMNA, and SIRT6

(35)

TMZ-resistant GBM cells miR-1238 GBM-sensitive
cells

Glioblastoma Temozolomide MiR-1238 levels are
higher in TMZ-
resistant GBM cells

(36)

(Continued)
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TABLE 1 Continued

miRNA

Cell of
origin

EV
content

Target Cancer
type

Type of
resistance

Mechanism Ref.

and their small EVs
than in sensitive
cells. Higher levels
of miR-1238 are
found in the sera of
GBM patients than
in healthy people.
The loss of miR-
1238 may sensitize
resistant GBM cells
by directly targeting
the CAV1/EGFR
pathway

Proteins

Cell of
origin

EV
content

Target Cancer
type

Type of
resistance

Mechanism Ref.

ADM-resistant MCF-7 cells UCH-L1, P-gp MAPK/ERK BC ADM resistance Overexpression of
UCH-L1 enhanced
multidrug resistance
in BC

(37)

Peripheral blood Evs from BC patients TRPC5 P-gp BC Anthracycline/
taxane-based
chemotherapy

EVs stimulate the
production of P-gp
in the recipient cells
by Ca2+- and
NFATc3-mediated
mechanisms

(38)

EVs derived by PTX treated MDA-MB-231 cells Survivin N/A BC PTX resistance Promoting cell
survival and drug
resistance

(39)

DOC-resistant variant of MCF-7 P-gp Stimulating
drug efflux

BC DOC resistance Drug resistance is
transferred as well
as P-gp from drug-
resistant to sensitive
BC cells

(40)

HER2-positive BC cells TGFb1 and PD-L1 Unknown BC Trastuzumab
resistance

Neuromedin U
induces the escape
of immune response
in HER2-positive
BC cells by
increasing the
expression of
TGFb1 and PDL1

(41)

HER2 positive SKBR-3 and BT474 cells HER2 Unknown BC Trastuzumab
resistance

Inhibition of
Trastuzumab
activity in vitro

(42)

Basal-like BC cells PD-1 Unknown BC Immunosuppression ESCRT-related
protein ALIX
regulates EGFR
activity and PD-L1
surface presentation
in BC cells

(43)

Mesenchymal stem cells TGFb, C1q and
semaphorins

PDL-1
overexpression

BC Immunosuppression Inducing
differentiation of
monocytic myeloid-
derived suppressor

(44)

(Continued)
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TABLE 1 Continued

Proteins

Cell of
origin

EV
content

Target Cancer
type

Type of
resistance

Mechanism Ref.

cells into highly
immunosuppressive
M2-polarized
macrophages at
tumor beds

Su-DHL-4, Balm-3, OCI-Ly1 CD20 Unknown B-cell lymphoma Rituximab
resistance

EVs protect target
cells from rituximab
action through the
expression of CD20

(45)

DU145RD and 22Rv1RD MDR-1/P-gp Unknown Prostate cancer DOC Small EVs expelled
from DU145 and
22Rv1 docetaxel-
resistant variants
(DU145RD and
22Rv1RD)
conferred docetaxel
resistance to
DU145, 22Rv1 and
LNCaP cells

(46)

MCF7 ADM res P-gp/TrpC5 HME cells BC ADM MCF-7/ADM cell-
derived MVs
transferred both P-
gp and TrpC5 to
HMECs, and
TrpC5-containing
MVs modulated the
expression of P-gp
in HMECs via the
translocation of the
transcription factor
NFATc3

(47)

MG-63DXR30 MDR-1 mRNA/P-gp MG-63 Osteosarcoma DOX resistance Multidrug-resistant
osteosarcoma cells
are able to spread
their ability to resist
to the effects of
doxorubicin
treatment on
sensitive cells by
transferring small
EVs carrying MDR-
1 mRNA and its
product P-
glycoprotein.

(48)

KBv200 ABCB1 KB Epidermoid carcinoma MDR Chemotherapeutic
agents can increase
Rab8B-mediated
release of EVs
containing ABCB1
from drug-resistant
cells to sensitive
recipient cells;
acquire a rapid but
unsustainable
resistance to evade
the cytotoxicity of
chemotherapeutic
agents.

(49)

(Continued)
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TABLE 1 Continued

Proteins

Cell of
origin

EV
content

Target Cancer
type

Type of
resistance

Mechanism Ref.

OSCC cell lines ATP1A1, ATP1B3 Unknown Oral squamous cell
carcinoma

CPT resistance OSCC-derived EVs
may regulate
cisplatin resistance
through a cellular
efflux system

(50)

RKO/R p-STAT3, GSTP1p Unknown CRC 5-FU resistance p-STAT3-
containing small
EVs contribute to
acquired 5-FU
resistance in CRC.

(51)

SGC-7901/VCR CLIC1 SG7901 Gastric cancer Vincristine Small EVs
transferring CLIC1
could induce the
development of
resistance to
vincristine in vitro

(52)

BC cells under hypoxic conditions TGFb and IL10 Unknown BC Immunosuppression Suppress T-cell
proliferation via
TGFb

(53)

Acute lymphoblastic leukemia cell line MDR P-gp Unknown Acute lymphoblastic
leukemia

MDR Purified EVs
transfer functional
P-gp from resistant
cancer cells to drug-
sensitive cells in
vitro

(54)

LncRNAs

Cell of origin EV content Target Cancer
type

Type of
resistance

Mechanism Ref.

DOX-resistant breast cancer cell lines. MCF7
and MDA-MB-231

Lnc RNA-H19 Unknown BC DOX resistance Inhibition of
apoptosis and
enhancing of cell
proliferation and
drug resistance

(55)

ER-positive BC cells LncRNA-UCA1 Cleaved
Caspase 3

BC TAM resistance Caspase 3
intracellular levels
are decreased
impairing TAM-
induced apoptosis

(56)

HER2-positive BC cells LncRNA-SNHG14 Bcl2/BAX
signaling
pathway

BC Trastuzumab
resistance

LncRNA-SNHG14
may induce
resistance to
trastuzumab
through inhibition
of Bcl2/Bax
apoptotic pathway.

(57)

Eca109 MDR cells linc-VLDLR Eca 109 Esophageal
cancer

MDR Linc-VLDLR EVs,
secreted by the
drug-resistant
esophageal
carcinoma cells,
could cause the
acquired drug-
resistance
phenotype of target
cells by regulating

(58)

(Continued)
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demonstrated to cover a pivotal role in drug resistance together

with TRPC (transient receptor potential channel) proteins (73).

EVs could also transfer drug metabolizing enzymes to

inactivate drugs. Yang et al. described that the expression of

GSTP1 (glutathione S-transferase P1), an enzyme belonging to

phase II drug-metabolizing proteins, was higher in doxorubicin-
Frontiers in Oncology 07
resistant cells and in their EVs, which are capable of transferring

the GSTP1 enzyme to sensitive cells (74). Accordingly, a high

level of GSTP1 in circulating EVs may be an indication of a

drug-resistant profile and could be used as a drug resistance

predictive marker (74) as already demonstrated for the

expression of GSTP1 on tumor cells (75, 76).
TABLE 1 Continued

LncRNAs

Cell of origin EV content Target Cancer
type

Type of
resistance

Mechanism Ref.

the expression of
ABCG2

Sunitinib-resistant renal cancer cells LncARSR Endothelial cells Renal
cancer

Sunitinib LncARSR is
identified as a
mediator of
sunitinib resistance
in renal cell
carcinoma by acting
as a competing
endogenous RNA
for miR-34 and
miR-449, and show
that small EV-
mediated
transmission of
lncARSR can confer
resistance to
sensitive cells

(59)

Other cargoes

Cell of origin EV content Target Cancer type Type of
resistance

Mechanism Ref.

Cervical cancer cells ceRNA of miR-34b Unknown Cervical cancer CPT resistance EVs carrying
HNF1A-AS1 as a
ceRNA of miR-34b
to promote the
expression of
TUFT1 and the
drug resistance of
CC cells

(60)

Mouse mammary tumor TS/A cells Unknown Unknown BC Immunosuppression Inhibition of NK
cell tumor toxicity
stimulated by IL-2

(61)

Metastatic BC cells Unknown Unknown BC Immunosuppression Blocking T-cell
proliferation and
NK cell cytotoxicity

(62)

DOX-resistant MCF-7 cells DOX N/A BC DOX resistance DOX accumulation
in shed vesicles

(63)

TAM- and metformin-resistant MCF-7 cells N/A N/A BC TAM and
metformin
resistance

ERa decreased
activity. Activation
of AKT and AP-1,
NF-kB, and SNAIL1

(64)

Patients with mBC resistant to hormonal therapy mtDNA N/A BC Endocrine therapy
resistance

Promoting ER-
independent
oxidative
phosphorylation

(65)
frontiersi
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Cell viability could even be enhanced by EVs’ transferring of

pro-survival factors like cell surface receptors, miRNAs, and

cellular proteins. These cargoes could improve cell viability by

decreasing apoptosis and activating proliferative signals (77–81).
Intercellular communication between
the microenvironment and tumor cells

As described in the Introduction, EVs are involved in cell–cell

communication. This mechanism could play a role in the

bidirectional crosstalk between tumoral and stromal cells also

regarding drug resistance mechanisms. EVs derived from cancer-

associated fibroblasts (CAFs) are described to be involved in drug

resistance in different types of tumor. In colorectal cancer, EVs

derived from CAFs are able to induce chemoresistance to 5-FU

and oxaliplatin both in vitro and on patient-derived mouse

xenografts (82). CAF-EVs are able to promote stemness and

resistance in CRC cells in vitro and in vivo also by transferring

the lncRNA H19 (83), H19 is an activator of b-catenin pathway.

Previous studies demonstrated that the b-catenin pathway is

involved in tumor progression and drug resistance (84–86).

Interestingly, CAFs are naturally resistant to gemcitabine and

their EVs transfer the gemcitabine chemoresistance phenotype in

pancreatic ductal adenocarcinoma (PDAC) by delivering the

SNAIL mRNA that increase SNAIL protein expression

promoting proliferation and drug resistance (87). A recent work

highlighted that CAF-EVs are involved in oxaliplatin resistance in

CRC by transferring the CCAL (colorectal cancer-associated

lncRNA) and activating the b-catenin pathway (88). CCAL

interacts with mRNA-stabilizing protein HuR (human antigen

R) increasing b-catenin mRNA and protein levels. Another work

described the effect of stromal EVs in multiple myeloma cells

inducing resistance to bortezomib, which could be linked to the

activation of JNK, p38, p53, and Akt pathways (89). The release of

EVs from mesenchymal stem cells carrying miR-222/miR-223 is

linked to drug resistance in BC cells (90). ZEB1 mRNA

encapsulated in EVs derived from mesenchymal transformed

lung cells can transfer gemcitabine and cisplatin chemoresistance

and the mesenchymal phenotypes to epithelial NSCLC cell

line (91).
RNA (miRNA, lncRNA, and mRNA)-
mediated drug resistance

Micro RNAs are small noncoding RNAs of 13–29 nucleotides

involved in gene regulation and different biological and

pathological processes, including the formation and

development of tumors and drug resistance. In the last years,

miRNAs are one of the most studied cargoes of EVs. As described,

drug resistance mechanisms are heterogeneous and complex, and

most of them are also regulated by miRNAs (92). miRNAs could
Frontiers in Oncology 08
promote drug resistance through the activation of metabolizing

enzymes, in turn favoring drug inactivation or the expression of

drug efflux pumps. The transfer of miRNA-365 by tumor-

associated macrophage (TAM)-derived EVs to pancreatic ductal

cells is described to induce resistance to gemcitabine in pancreatic

adenocarcinoma by upregulating the triphosphate-nucleotide

pool in cancer cells and inducing the cytidine deaminase

enzyme that is able to inactivate gemcitabine (93). As

mentioned, EV miRNAs could regulate the expression of ABC

transporters that are involved in the efflux of intracellular drugs. It

is described that, in ovarian cancer (OC) cells, there is an inverse

correlation between the expression of Caveolin 1 (Cav1) and

ABCB1, and this proportion is supposed to be driven by Cav1 (94,

95). Kanlikilicer et al. demonstrated that Cav1 levels in

macrophages when co-cultured with OC cells are selectively

dysregulated by the release of miR-1246 via EVs by OC cells.

miR-1246 secreted in EVs inhibits the expression of Cav1 and

upregulates ABCB1 expression to induce tumor-promoting

phenotype and drug resistance in vitro and in vivo (96). As

described for the transport of drug efflux pumps, even miRNAs

could display a double-action behavior in the occurrence and

development of drug resistance. Some miRNAs could have a

positive effect on drug resistance, enhancing drug sensitivity in

cancer cells. An analysis conducted by Liu et al. showed that EVs

containing miR-128-3p were able to downregulate the expression

of the MDR5 protein thus enhancing oxaliplatin sensitivity in

resistant colorectal cancer cells (97). Another way to inhibit drug

resistance is the regulation of glycolysis. Cancer metastasis,

invasion, and drug resistance are also dependent on the

anabolic profile of tumor cells that promotes the decrease in

extracellular pH leading to the reduction of cytotoxic T-cell

function in the TME acquiring strong survival advantages (98,

99). The GLUT protein family is involved in the intracellular

uptake of glucose (100) and the regulation of glycolysis could be a

strategy to contrast drug resistance (101). GLUT1 is demonstrated

to be overexpressed in several tumors (102, 103), and its activation

is associated with the regulation of mTOR. A decreased expression

of mir-100-5p is described to be involved in drug resistance in

many tumors. mTOR is the target gene of miR-100-5p that

decreases its expression, enhancing drug sensitivity in cancer

cells (104).

mRNA-mediated EVs are another player in the resistance

process. Cao et al. demonstrated that EVs containing the DNMT1

mRNA (DNA methyltranferase 1) induce the overexpression of

this enzyme in the recipient cells, playing an important role in the

cisplatin resistance mediated by EVs in the xenograft model (105).

In this research work, the underlying mechanism is not

investigated, but it could be speculated that the dysregulation of

Wnt and PI3K/AKT/mTOR signaling pathways, caused by an

altered methylation status in a variety of genes, was described to be

associated with resistance to standard treatments in many types of

cancer (106). It was also demonstrated that BC cells resistant to

doxorubicin possess an increased level of mRNA coding for a
frontiersin.org

https://doi.org/10.3389/fonc.2022.948843
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Palazzolo et al. 10.3389/fonc.2022.948843
detoxifying enzyme (GSTP1) and EVs derived from those cells are

capable of transferring the mRNA to sensitive cells and inducing

resistance (74). In vitro and in vivo experiments demonstrated that

normal astrocytes can protect glioma cells from apoptosis induced

by Temozolomide (TMZ) through the transfer of the mRNA of

O-6-methylguaninene-DNA methyltransferase (MGMT) by EVs

(107). EVs transfer of Zinc finger E-box homeobox 1 (ZEB1), a

transcription factor involved in the epithelial-to-mesenchymal

transition (EMT) process, induces the mesenchymal phenotype

and drug resistance in recipient lung cancer cells (91, 108). In

particular, this work described how EVs derived from

mesenchymal oncogenically transformed lung cells can transfer

chemoresistance and the mesenchymal phenotype to

recipient cells.

LncRNA delivered by EVs often serves as competing

endogenous RNA (ceRNA) to help miRNA in their drug

resistance regulatory mechanisms (109). LncRNAs have been

identified to be involved in cancer drug resistance by affecting

the expression of drug metabolizing enzymes (110). Two studies

described that EVs transferring lncRNA linc-ROR (111) and linc-

VLDRLR (112) induced sorafenib and doxorubicin resistance in

HepG2 cells (hepatocellular carcinoma) by activating the TGF-b
pathway (111) and increasing the expression of ABCG2 (112).

LncRNA urothelial carcinoma-associated 1 (UCA1) in NSCLC is

associated with the modulation of a gefitinib-resistant phenotype

by decreasing the expression of miR-143 and consequently

increasing the expression of its target FOS-like 2 (113). LncRNA

SBF2-AS1 is identified to be ceRNA of miR-151 and is involved in

the mechanism of DNA repair that is one of the leading

mechanisms of resistance to TMZ in neurological cancers (114).

In glioblastoma patients, the presence of EVs lncRNA SBF-AS1 in

the serum was found to be associated with TMZ resistance (115).

LncRNA could also act by regulating some RNA-binding proteins

as demonstrated for AFAP1-AS1 associated with shorter time

survival of HER-2-positive BC patients linked to trastuzumab

resistance. AFAP1-AS1 is responsible for trastuzumab resistance

by upregulating HER-2 expression through the binding of the

RNA binding protein AU-binding factor 1 (116).
EVs and possible applications
as biomarkers of tumor
therapy resistance

EVs can be isolated from various types of body fluids

including blood, urine, and saliva. It is demonstrated that in

the cancer patient population, the amount of EVs present in the

blood is more than double compared to healthy individuals

(117), suggesting that they could be new biomarker candidates

(118). A correlation between serum EVs containing miR-146-5p

could predict the efficacy of cisplatin in NSCLC patients in
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advanced stages and utilized for the real-time monitoring of

drug resistance manifestation (119). Xiao et al. described that

EVs derived from the serum of drug-resistant CRC patients (5-

FU resistance) are enriched in TAG72 (tumor-associated

glycoprotein 72) (120, 121). In BC preclinical models, it is

demonstrated that the cargoes of EVs are influenced by the

stress induced from drugs and could be correlated to the transfer

of resistance in metastatic sites mediated by the Pg-P protein

(40) or by miR-423-5p (122). Leukemia-derived EVs are

described to induce IL-8 release in bone marrow stromal cells,

thus protecting the cells from the effects induced by

chemotherapy (123). A high level of IL8 promotes the

expression of Pg-P and is required for the expression of the

MDR profile in BC (124) and, in renal cancer, is described to be

associated with sunitinib resistance (125). According to the

described implication of EVs in drug resistance, it could be

useful to set up methods for rapid isolation and characterization

of tumor-derived EVs to improve the personalization of the

therapies and to predict the drug response of the patient.

Moreover, targeted drugs against tumor-derived EVs should be

studied to reduce their non-beneficial effects as described in the

next paragraph.
Targeting EVs to reduce cancer
chemoresistance

Considering the importance of EVs in the regulation of

chemoresistance, a few drugs were utilized to inhibit their

production, release, or action.

It is described that drug-resistant cancer cells could produce

an increased number of EVs than their drug-sensitive

counterpart, thus contributing to the spread of resistance (45,

126–128). Some studies reported that, in drug-resistant cells,

there is a direct association between the presence of drug

resistance mediators and molecules involved in the production

of EVs. For instance, Annexin A3 is a protein involved in OC

platinum resistance and is also demonstrated to have a role in

the EVs’ production (129, 130). In the last years, an increasing

number of studies investigated the possibility to inhibit the

release of EVs from cancer cells. GW4869 is an inhibitor of

the neutral sphingomyelinase (131) and is able to sensitize

cisplatin-resistant OC cells by reducing EVs trafficking (105).

Moreover, rhamnose-emodin is a molecule that is described to

reduce the secretion of EVs from doxorubicin-resistant BC cells,

thus reducing the expression of EVs miRNAs involved in

chemoresistance (132). Therapeutic targeted antibodies against

cell surface receptors may be neutralized by EVs interaction.

Aung et al.’s research group described how Rituximab (anti-

CD20) is quenched by EVs expressing the target protein. The

authors also demonstrate that by blocking EVs biogenesis with
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indomethacin, the therapeutic benefits of the therapy were

restored (45). In another work, indomethacin is used to block

EVs secretion in order to increase the amount of cytoplasmatic

doxorubicin, its accumulation in the nucleus, and cytotoxicity

(133). In a CRC model, it was demonstrated that the interaction

mediated by EVs between cancer stem cells and fibroblasts

promoted the resistance to 5-FU and oxaliplatin and can be

reverted by blocking the release of EVs (82). Xie et al. developed

functionalized silica mesoporous nanoparticles (NPs) able to

selectively bind EGFR+-EVs derived from NSCLC through

aptamer recognition. NPs, after binding to EVs in the

bloodstream, are delivered to the liver and excreted in the

intestinal tract to be removed from the organism. It was

demonstrated that by employing this system, the in vivo

cancer metastatic overgrowth could be reduced (134).
Conclusions

The discovery of new cancer therapies is a stimulating topic

that is investigated by a lot of researchers all over the world. The

need for new therapeutic approaches is required because of the

interpatient variability in terms of drug response, and also the

development of drug resistance represents a very hard hurdle to

overcome. Drug resistance appears in almost all types of cancer,

and the underlying mechanisms are not yet clearly understood.

In the last few years, the wide implication of EVs in drug

resistance has been investigated, and in this manuscript, the

major implications in this process are described and

summarized. Although many described experiments are

limited to preclinical and often to an in vitro stage, it is

necessary to deeply investigate the roles of EVs in cancer drug

resistance for many important aspects.

First of all, the involvement of EVs in drug resistance and

their profiling could be exploited in the clinical approach to

define new hallmarks of prognosis of drug response avoiding

invasive procedures. On the other hand, as already explained,

clarifying the role of EVs on drug resistance could stimulate the

development of new anti-cancer strategies based on EVs

targeting to revert drug resistance. Most importantly, cancer-

released EVs should be deeply characterized, and their peculiar

properties should be investigated. In this way, the development

of new targeted strategies able to discriminate tumor-derived

EVs could be set up. Moreover, the employment of artificial EVs

could be considered in order to revert drug sensitivity (135, 136).

EVs have already been described to possess very suitable

properties as DDS to be loaded with different cargoes (drugs,

miRNA, and proteins) displaying high biocompatibility, and the

capacity to target cells is 10 times higher compared to

liposomes of the same size (137–140). EVs could also

represent a new DDS against neurological malignancies due

to their ability to cross the blood–brain barrier (141, 142). Due
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to the possibility to produce engineered EVs in vitro, they could

be developed to target different types of malignancies. There is

also the possibility of studying artificial EVs for therapeutic

employment with the advantage of producing standardized

EVs with a defined content to facilitate the transition into a

clinical application.
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