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Development and validation of a
radiomic nomogram based on
pretherapy dual-energy CT for
distinguishing adenocarcinoma
from squamous cell carcinoma
of the lung

Zhiyong Chen1†, Li Yi1†, Zhiwei Peng1, Jianzhong Zhou2,
Zhaotao Zhang1, Yahong Tao1, Ze Lin1, Anjing He1,
Mengni Jin1 and Minjing Zuo1*

1Department of Radiology, The Second Affiliated Hospital of Nanchang University,
Nanchang, China, 2Department of Radiology, The Quzhou City People’s Hospital,
Quzhou, Zhejiang, China
Objective: Based on pretherapy dual-energy computed tomography (DECT)

images, we developed and validated a nomogram combined with clinical

parameters and radiomic features to predict the pathologic subtypes of non-

small cell lung cancer (NSCLC) — adenocarcinoma (ADC) and squamous cell

carcinoma (SCC).

Methods: A total of 129 pathologically confirmed NSCLC patients treated at the

Second Affiliated Hospital of Nanchang University from October 2017 to

October 2021 were retrospectively analyzed. Patients were randomly divided

in a ratio of 7:3 (n=90) into training and validation cohorts (n=39). Patients’

pretherapy clinical parameters were recorded. Radiomics features of the

primary lesion were extracted from two sets of monoenergetic images (40

keV and 100 keV) in arterial phases (AP) and venous phases (VP). Features were

selected successively through the intra-class correlation coefficient (ICC) and

the least absolute shrinkage and selection operator (LASSO). Multivariate

logistic regression analysis was then performed to establish predictive

models. The prediction performance between models was evaluated and

compared using the receiver operating characteristic (ROC) curve, DeLong

test, and Akaike information criterion (AIC). A nomogram was developed based

on the model with the best predictive performance to evaluate its calibration

and clinical utility.

Results: A total of 87 ADC and 42 SCC patients were enrolled in this study.

Among the five constructed models, the integrative model (AUC: Model 4 =

0.92, Model 5 = 0.93) combining clinical parameters and radiomic features had

a higher AUC than the individual clinical models or radiomic models (AUC:

Model 1 = 0.84, Model 2 = 0.79, Model 3 = 0.84). The combined clinical-venous
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phase radiomics model had the best predictive performance, goodness of fit,

and parsimony; the area under the ROC curve (AUC) of the training and

validation cohorts was 0.93 and 0.90, respectively, and the AIC value was

60.16. Then, this model was visualized as a nomogram. The calibration curves

demonstrated it’s good calibration, and decision curve analysis (DCA) proved its

clinical utility.

Conclusion: The combined clinical-radiomics model based on pretherapy

DECT showed good performance in distinguishing ADC and SCC of the lung.

The nomogram constructed based on the best-performing combined clinical-

venous phase radiomics model provides a relatively accurate, convenient and

noninvasive method for predicting the pathological subtypes of ADC and SCC

in NSCLC.
KEYWORDS

dual-energy CT, dual-energy CT quantitative parameters, radiomics, lung
adenocarcinoma, lung squamous cell carcinoma
1 Introduction

Lung cancer is the second most common cancer worldwide

and the leading cause of cancer death (1). Non-small cell lung

cancer (NSCLC) accounts for approximately 85% of lung

cancers, with adenocarcinoma (ADC) and squamous cell

carcinoma (SCC) being the most common subtypes (2, 3). In

recent years, the prognosis of some lung cancer patients has

improved thanks to the rapid development of individualized

medicine and precise therapy, such as targeted therapies and

immunotherapy (4–6). However, different pathological subtypes

have distinct phenotypic and biological characteristics, which

directly affect clinical treatment and outcomes (6–8). For

example, bevacizumab has good effects in the treatment of

lung adenocarcinoma, but it may lead to a lung squamous cell

carcinoma patient bleeding profusely (9). Therefore, it is

important to accurately predict pathological subtypes before

treatment to establish better therapeutic strategies for NSCLC.

Currently, invasive biopsy for histological confirmation is

usually performed before the treatment of NSCLC (9, 10).

However, it is difficult to obtain a biopsy for several reasons.

First, lung cancer is a heterogeneous tumor, and the tissue

obtained from the biopsy of the lung tumor may contain only

a few tumor cells and may not reflect the complete biological

information (5, 9). Then, tumor samples are difficult to obtain in

some patients, ang biopsy is contraindicated, and so on. In

addition, biopsy may also increase the potential risk of cancer

transmission (11). Therefore, it is necessary to develop a reliable,

non-invasive, safe and economical approach to help pretherapy

predict the pathological subtypes in NSCLC for treatment

decision-making and prognosis estimation in NSCLC patients.
02
Dual-energy computed tomography (DECT) is a new

technology in the field of CT imaging in recent years. It not

only shows the morphological features of tumors, but also

provides extensive quantitative information (12). Many studies

have used DECT for tumor diagnosis and prediction. Zhang

et al. (13) found that quantitative parameters based on venous

phase DECT, including iodine concentration (IC), normalized

iodine concentration (NIC), and slope of the curve (lHU), can

effectively distinguish ADC and SCC of the lung. Radiomics

analyzes medical images in an automated high-throughput

manner and aims to extract quantitative and reproducible

tumor information that the human eye cannot distinguish,

quanti fy tumor heterogeneity , and monitor tumor

development, progression, and even prognosis (14–17). Many

studies have explored the role of radiomics in the pathological

classification of NSCLC. Zhu et al. (18) enrolled 129 NSCLC

patients for retrospective studies, and the LASSO regression

model was constructed by screening 5 radiomic features. The

result was that the radiomic features could be used as a

diagnostic factor to distinguish the histological subtypes

of NSCLC.

To further explore the additional value of the DECT image,

some studies combine DECT with radiomics. Liu et al. (19) built

and evaluated a pretherapy dual-energy CT-based clinical-

radiomics model that can effectively predict the clinical

response to systemic chemotherapy in patients with advanced

gastric cancer (AGC). However, to our knowledge, the

application and potential advantages of DECT-based

radiomics in predicting the pathological subtypes of NSCLC

have not been explored. Theoretically, DECT contains more

information than single-energy CT. Radiomic analysis of DECT
frontiersin.org
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images may extract more features relevant to tumor

heterogeneity and biology.

Therefore, the aim of this study was to establish an

independent predictive model for predicting the pathological

subtypes of NSCLC by combining clinical parameters and

DECT-based radiomic features. In addition, we provide a

visually quantitative nomogram in clinical practice, as an

additional predictive method for patients who cannot obtain

pathological subtypes before treatment.
2 Materials and methods

2.1 Patients

Eligible patients with NSCLC treated at the Second Affiliated

Hospital of Nanchang University between October 2017 and

October 2021 were retrospectively analyzed. This single-center

retrospective study was approved by the Ethics Committee of

Second Affiliated Hospital of Nanchang University (Ethics

Number: 2017061), and the requirement of informed consent

was exempted due to the retrospective study design. The

inclusion criteria were as follows: 1) all patients had standard

DECT plain scan and enhanced scan images; 2) all lesions were

examined by DECT within two weeks, and pathological results

were confirmed by puncture biopsy, fiberoptic bronchoscopy or
Frontiers in Oncology 03
surgical resection; 3) lesion diameter >10 mm, and the boundary

was clear; and 4) all patients had detailed clinical data, including

age, sex, smoking history, etc. Exclusion criteria included the

following: 1) patients who have been or are being treated for

oncological disease; 2) dense metal or implants interference in

the scanning area; and 3) patients who cannot cooperate during

scanning and who experience respiratory motion artifacts.

The patient recruitment process is presented in Figure 1. A

total of 129 patients were randomly divided at a ratio of 7:3 into

training and validation cohorts. The training cohort consisted of

90 patients (ADC 61, SCC 29), whereas the validation cohort

consisted of 39 patients (ADC 26, SCC 13).
2.2 Clinical features

The following pretherapy clinical features of each patient

were recorded from the medical system: age, sex, smoking status

(never, ever/always), carcinoembryonic antigen (CEA) level, and

distant metastasis (with/without).
2.3 Dual-energy CT image acquisition

The patient was in the supine position. After breath holding

at the end of inhalation, the dual-energy plain scan and dual-
FIGURE 1

Flow chart showing the patient selection and exclusion.
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energy enhanced scan in AP and VP were performed from the

thoracic inlet to the bottom of the lung.

CT scans were performed in DE mode on a second-generation

dual-source CT scanner (SOMATOM Definition FLASH, Siemens

Healthcare, Germany). After unenhanced CT was performed, 350

mg I/mL of nonionic iodinated contrast agent (Ioversol) at a dose of

1.2 mL/kg weight was injected into an antecubital vein together with

20 mL of saline at rates of 3 mL/s and 4 mL/s, respectively. AP and

VP dual-energy contrast-enhanced CT images were obtained after

post-injection delays of 30 and 60 s, respectively. The scan

parameters for the DECT mode were summarized as follows. The

tube voltages of A and B were set at 100 kVp and 140 kVp,

respectively, with a real-time adjustable variable tube current.

Collimation was 128 × 0.6 mm; rotation speed was 0.28 s/r;

gantry rotation was 330 ms; slice thickness was 5 mm. Finally,

100 kVp and 140 kVp images were acquired in the arterial and

venous phases, respectively, and 120 kVp equivalent mixed images

were generated (linear fusion coefficient, 0.4). These images were

reconstructed with a slice thickness of 1 mm and an interval of 1

mm using iterative reconstruction software (SAFIRE, Siemens

Healthcare, Germany).
2.4 Dual energy-CT image analysis

CT Semantic Feature Acquisition: Two radiologists (with

five and fifteen years of experience in diagnostic thoracic

imaging), blinded to the patient’s pathologic data, viewed and

analyzed the 120 kVp equivalent hybrid images and obtained CT

semantic features of each lesion. Six CT semantic features for

each mass were included (1): spiculation sign (2), lobulation sign

(3), null vacuole sign (4), tumor location (central/peripheral

type) (5), pleural effusion on the tumor side (yes/no), and (6)

pericardial effusion (yes/no). If any disagreements arose, final

consensus was reached through group discussions.

DECT Quantitative Parameter Acquisition: Data from AP and

VP DECT were loaded and postprocessed using specific software

(Siemens Healthcare, Germany). The iodine diagram was obtained

by the Liver VNC program. Manually, the region of interest (ROI)

was drawn as large as possible on the solid part of the primary

lesion, avoiding tumor margins, necrosis, cavities, calcifications and

large vessels. Then, the iodine concentration (IC, mean value, units

of 100 mg/ml) of the lesion was recorded in the ROI.

Simultaneously, ROIs were placed in the same slice to obtain the

ICs of the aorta. Finally, the normalized iodine concentration (NIC)

was calculated according to the following formula: NIC = IC

(lesion)/IC (artery). Then, through the Monogenetic program, the

CT values of 40 keV and 100 keV single energy images of the solid

part of the lesion were recorded. The slope of the spectrum

attenuation curves (lHU) was calculated using the following

formula: lHU=((CT40KeV-CT100keV)/60). All data were

measured three times and averaged.
Frontiers in Oncology 04
2.5 Radiomic analysis

2.5.1 Tumor segmentation
The 40-keV and 100-keV monoenergetic images (NIFTI

format) reconstructed in AP and VP were imported into the

open source software ITK-snap (version 3.8.0, University of

Pennsylvania, USA, http://www.itksnap.org). A radiologist (with

five years of experience in diagnostic thoracic imaging)

performed semi-automatic or manual combined semi-

automatic layer-by-layer segmentation of the lung window.

2.5.2 Feature extraction
Artificial Intelligence Kit software (A.K. Software; GE

Healthcare, China) was used to extract the radiomics features

from each ROI. A total of 107 features were extracted including

first-order statistical features, shape features, and texture

features. In addition, the software provides a variety of options

to standardize image preprocessing before feature extraction.

The extracted features were reproducible and based on the

benchmarks of the image biomarker standardization

initiative (IBSI).

2.5.3 Feature selection
To assess segmentation variability, 20 patients were

randomly selected and re-segmented after one month by the

same two radiologists. The inter- and intra-observer

reproducibility of tumor segmentation was assessed by

intraclass correlation coefficients (ICCs). The features with an

ICC greater than 0.75 are defined as having good repeatability.

After selecting the repeatable features based on ICC, the LASSO

algorithm was applied to select the most useful predictive

features in the training cohort.

2.5.4 Radiomics model establishment
Radiomics models were established by multivariable logistic

regression analysis of radiomic features selected in the images

from AP and VP DECT. Radiomic signatures, also called the

radiomic score (Rad-score), were calculated separately for the

training and validation cohorts in the AP and VP via a linear

combination of selected features weighted by their respective

coefficients in the model.
2.6 Clinical model and nomogram
establishment

Clinical features, CT semantic features, and DECT

quantification parameters are collectively referred to as clinical

parameters in this study.

Univariate analysis was performed for candidate clinical

parameters. The significant variables (p value < 0.05) in the

univariable analysis were then introduced into stepwise logistic
frontiersin.org
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regression analyses. The independent clinical predictors were

determined and the clinical model was established. Then, the

selected clinical predictors were combined with the radiomic

signatures of the arterial and venous phases to establish two

combination models. To visualize the prediction results of the

model for ADC and SCC, the nomogram was developed based

on the model with the best performance.
2.7 Evaluation and comparison of model
performance

Evaluation of the model included discrimination,

calibration, and clinical uti l i ty. Receiver operating

characteristic (ROC) curve analysis was used to evaluate the

predictive performance of each model. The Delong test was used

to compare the difference in the area under the curve (AUC)

between different models. The Akaike information criterion

(AIC) is used to compare the goodness of fit and parsimony

between models. Calibration curves were constructed to describe

calibration performance based on the agreement between

predicted and actual response probabilities. Decision curve

analysis (DCA) was used to determine the value of the

predictive model for clinical application and to determine the

net benefit to patients at each threshold probability.
2.8 Statistical analysis

IBM SPSS 25.0 (IBM, Armonk, NY, USA) software was used

for statistical analysis of clinical parameters: Normality of

distribution of continuous variables was tested using a

Kolmogorov–Smirnov test; independent samples t-test (or

Mann-Whitney U-test) for continuous variables and chi-

square test for categorical variables.

Other statistical analyses were conducted with R (version

4.1.2, http://www.r-project.org) software. The “MASS” package

was used for stepwise logistic regression to further filter clinical

features. The “glmnet” package was used for lasso logistic

regression to filter radiomic features and multiple logistic

regression to build models. The “pROC” package was used for

plotting ROC curves and calculating AUC values and related

indicators. And the “rms” package was used for drawing

nomograms and calibration curves. The Delong test was used

for comparison between models, and the Akaike information

criterion (AIC) was used for model ranking and selection. Two-

sided p values < 0.05 indicate statistical significance.
Frontiers in Oncology 05
3 Results

3.1 Clinical parameters

A total of 129 NSCLC patients, including 87 ADC patients

and 42 SCC patients, were enrolled in this study. After

univariate analysis, eight clinical parameters, including age,

sex, smoking status, spiculation sign, tumor location (central/

peripheral type), distant metastasis (with/without), NIC and l
HU in the VP, were significantly associated with the

pathological subtypes of NSCLC (p < 0.05; the results of

univariate analysis of patients’ clinical parameters are shown

in Table 1). Subsequently, three of these parameters (sex,

distant metastasis, and NIC in the VP) were selected using

stepwise logistic analysis to form the clinical model (related

data in eTable 1 in the Supplementary Materials).
3.2 Radiomic features selection and
radiomic signature building

The workflow of tumor segmentation, feature extraction and

selection, model establishment and evaluation is illustrated in

Figure 2. A total of 107 features were extracted from the

reconstructed 40 keV and 100 keV monoenergetic images

from AP and VP DECT for each patient, respectively.

Excluding features with low reproducibility according to ICC

(intra- and inter-observer ICC <0.75, ICC results are shown in

eTable 2 in the Supplementary Materials). Thus, the numbers of

40 keV and 100 keV in the AP (AP40 keV, AP100 keV), and 40

keV and 100 keV in the VP (VP40 keV, VP100 keV) features

were reduced to 76, 78, 86 and 84 respectively. Then, the LASSO

algorithm was used to exclude redundant features. This left 2, 3,

5, and 5 features at AP 40 keV, AP 100 keV, VP 40 keV, and VP

100 keV respectively (eTable 3 in the Supplementary Materials).

Finally, the five features selected from 40-keV and 100-keV

DECT images in AP were combined, and the radiomic signature

based on AP (rad-score AP) was established by multivariate

logistic regression analysis in the training cohort. The same

method was used to establish the radiomic signature based on

VP (rad-scoreVP). The radiomic score calculation formula is

presented in eTable 1 in the Supplementary Materials.
3.3 Prediction model establishment and
evaluation of model performance

All models were established by multivariate logistic

regression analysis.
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Clinical model: The clinical model (Model 1) consisted of

three clinical parameters (sex, distant metastasis, and NIC in the

VP). The AUCs of the training and validation cohorts were 0.84

(95% CI 0.75-0.93) and 0.87 (95% CI 0.77-0.98) respectively.

Radiomics model: The AUCs for the radiomics model in AP

(Model 2) and the radiomics model in VP (Model 3) in the

training cohort were 0.79 (95% CI 0.69-0.89) and 0.84 (95% CI

0.75-0.93), respectively; in the validation cohort, they were 0.78
Frontiers in Oncology 06
(95% CI 0.63-0.93) and 0.80 (95% CI 0.64-0.95), respectively.

Compared with AP, the AUC of the VP radiomics model was

higher, but there was no significant difference between the 2

AUCs (Delong test, P = 0.067).

Combined model: The combined clinical-arterial phase

radiomics model (Model 4) and the combined clinical-venous

phase radiomics model (Model 5) were established by

combining the clinical parameters with the radiomic features
frontiersin.org
TABLE 1 Clinical parameters of patients.

Variables Training cohort (n =90) P Validation cohort (n = 39) P

ADC (n=61) SCC (n=29) ADC (n=26) SCC (n=13)

Age (year) 62.03 ± 9.06 66.27 ± 8.97 0.040 60.08 ± 9.96 63.62 ± 9.81 0.300

Gender <0.001* 0.022*

Male 30 28 11 12

Female 31 1 15 1

Smoking <0.001* 0.029*

Never 15 15 7 9

Ever/Always 46 10 19 4

Spiculation 0.004* 0.307

Yes 48 13 16 5

No 13 14 10 8

lobulation 0.930 0.397

Yes 53 25 24 10

No 8 4 2 3

null Vacuole 0.628 0.687

Yes 12 7 7 2

No 49 22 19 11

tumor location 0.030* 0.687

Peripheral 53 25 24 10

Central 8 4 2 3

pleural effusion on the tumor side 0.738 0.852

Yes 5 3 2 2

No 56 26 24 11

pericardial effusion 0.274 0.608

Yes 5 0 1 1

No 56 29 25 12

distant metastasis 0.016* 0.420

Yes 21 3 7 2

No 40 26 19 11

CEA(ug/L) 3.18
(1.76,9.90)

2.60
(2.02,5.20)

0.610 2.33
(1.63,5.50)

3.28
(1.37,4.37)

0.532

NICAP 0.09
(0.04,0.18)

0.08
(0.01,0.14)

0.223 0.12
(0.05,0.20)

0.05
(0.03,0.12)

0.136

lHUAP 1.39 ± 1.03 1.14 ± 1.02 0.267 1.86 ± 1.40 1.01 ± 0.65 0.044*

NICVP 0.28
(0.16,0.46)

0.19
(0.08,0.33)

0.019* 0.37
(0.21,0.47)

0.17
(0.03,0.23)

0.003*

lHUVP 1.88 ± 1.07 1.21 ± 0.82 0.004* 2.17 ± 1.13 0.96 ± 0.69 0.001*
Data are the proportion of sample size, mean value ± SD or median (interquartile range). P values were the results of univariate analysis of each parameter, *p < 0.05.
AP, arterial phase; VP, venous phase.
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of AP and VP, respectively. The AUC values were 0.92 (0.86-

0.98) and 0.93 (0.88-0.98) in the training cohort and 0.90 (0.81-

0.99) and 0.90 (0.81-0.99) in the validation cohort.

The results showed that the predictive performance of the

combined model was significantly higher than that of the single

radiomic or clinical model (DeLong test, p > 0.05 for each

comparison). The combined clinical-venous phase radiomics

model (Model 5) had the best predictive performance (AUC:

training cohort 0.93, validation cohort 0.90), but there was no

significant difference in AUC between Model 5 and Model 4

(DeLong test, p=0.384). In addition, the Akaike information

criterion (AIC) was introduced to evaluate the goodness and

parsimony of fit of the model, and Model 5 achieved the lowest

AIC value at 60.16 among all prediction models. Based on the

overall consideration of ROC curves and AIC, Model 5 was

proven to have the best predictive performance, good goodness

offit and parsimony. The ROC curves, detailed performance and

AIC values of the five models are illustrated in Figure 3 and

Table 2. The result of the DeLong test is given in Table 3.
3.4 Development and performance
evaluation of the nomogram

Based on the above results, Model 5 with the best prediction

efficiency was selected and visualized as a nomogram for
Frontiers in Oncology 07
individualized patient prediction. Multivariate logistic

regression analysis showed that the clinical signature (odds

ratio (OR) = 1.11; 95% CI, 1.07 to 1.16; p < 0.001) and

radiomic signature (odds ratio (OR) = 2.21; 95% CI, 1.68 to

2.90; p < 0.001) represented independent predictors in the

nomogram (eTable 4 in the Supplementary Materials).

As shown in the nomogram (Figure 4), the radiological

signature accounted for the largest proportion compared with

the clinical signature, making it the most important biomarker

for distinguishing ADC from SCC. In clinical practice, based on

the obtained features, the clinical signature and radiomic

signature can be calculated using the formula. Then, the

probability of the predictive variable was converted into a

fraction corresponding to the first scale “point” at the top of

the nomogram. After adding up the corresponding prediction

probability, the risk of ADC was at the bottom of the nomogram.

The calibration curves (Figure 5A) of the nomogram

demonstrated good agreement between the nomogram

prediction and the actual observation. A nonsignificant

difference in the accompanied Hosmer–Lemeshow test

(p=0.384) indicated that the nomogram was adequately

calibrated without departure from the ideal fit. DCAs

(Figure 5B) were used to evaluate the clinical utility of the five

predictive models by calculating the net benefit at various

probability thresholds. According to the decision curves,

Model 5 was the most reliable clinical treatment tool for
frontiersin.org
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FIGURE 2

Work flow of tumor segmentation, feature extraction and signature building. ICC, intra-class correlation coefficient; LASSO, the least absolute
shrinkage and selection operator; ROC, receiver operating characteristic; DCA, decision curve analysis.
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predicting pathologic subtypes in NSCLC when the probability

threshold was above 0.25 in a patient’s or physician’s

clinical decision.
4 Discussion

In this study, we successfully developed and validated a

combined clinical-radiomics model based on DECT, which has

excellent performance in noninvasively stratifying the

pathological subtypes of NSCLC patients. Furthermore, we

visualized this model as a nomogram and demonstrated the

excellent performance of the nomogram by high AUC and low

AIC. DCAs indicated that the nomogram is a reliable clinical

treatment decision support tool for personalized prediction of

the pathological subtypes of NSCLC patients.
Frontiers in Oncology 08
Different pathological subtypes lead to different clinical

treatment strategies and prognoses for NSCLC patients (20–

22). Dual-energy imaging improves image quality to some

degree, expands the capabilities of traditional CT, and has the

potential to improve lesion detection and characterization (23–

25).Several previous studies have combined DECT with

radiomics or texture analysis (26–29). However, most feature

extractions are based on virtual monoenergetic, 120 kV

equivalent hybrid images or iodine images. Recently, some

researchers have demonstrated in their studies that radiomic

models based on multi-energy images can more effectively

support the diagnosis and prediction of tumors compared with

clinical and monoenergetic models As demonstrated by Liu et al.

(19), the radiomics model based on multi-energy images can

better predict the clinical response of systemic chemotherapy in

advanced gastric cancer (AGC) compared to clinical and
A B

FIGURE 3

ROC curve of model 1-5: (A) training cohort, (B) validation cohort.
TABLE 2 Prediction performance of model 1-5.

Cohort Model AUC (95%CI) SEN SPE ACC PPV NPV AIC

Training cohort Model 1 0.84(0.75-0.93) 0.78 0.83 0.80 0.93 0.66 88.87

Model 2 0.79(0.69-0.89) 0.66 0.83 0.72 0.88 0.65 90.81

Model 3 0.84(0.75-0.93) 0.80 0.80 0.79 0.88 0.66 83.36

Model 4 0.92(0.86-0.98) 0.93 0.83 0.90 0.91 0.86 64.06

Model 5 0.93(0.88-0.98) 0.96 0.76 0.90 0.89 0.92 60.14

Validation cohort Model 1 0.87 (0.77-0.98) 0.66 1.00 0.82 1.00 0.63 —

Model 2 0.78 (0.63-0.93) 0.81 0.66 0.76 0.84 0.61 —

Model 3 0.80(0.64-0.95) 0.85 0.66 0.79 0.85 0.66 —

Model 4 0.90(0.81-0.99) 0.81 1.00 0.87 1.00 0.70 —

Model 5 0.91(0.81-0.99) 0.70 1.00 0.79 1.00 0.60 —
frontiers
AUC, area under the curve; CI, confidence interval; SEN, sensitivity; SPE, specificity; ACC, accuracy; PPV, positive predictive value; NPV, negative predictive value; AIC, Akaike
information criterion.
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monoenergetic models. This study extracts the radiomics

features from DECT multi-energy images and jointly

constructs the model, which proves that the image radiomics

features extracted from DECT multi-energy images can reflect

the heterogeneity of NSCLC. Radiomics may serve as a

promising technique to predict the pathological subtypes

of NSCLC.

Among the clinical features selected in the combined model,

SCC is more common in males, and this sex difference among

NSCLC patients has been widely reported (30, 31). Distant

metastasis is more common in patients with ADC than in

those with SCC, which is also consistent with the biological

characteristics that lung adenocarcinoma is prone to early

hematogenous metastasis. In addition, the results of univariate

and multivariate analyses in this study showed that NICVP was

also an important clinical predictor. In enhanced DECT, IC

represents iodine deposition in tissue. The quantification of IC

can reflect the microvessel density (MVD) and perfusion of the

tumor (32–34). In this study, the NIC of adenocarcinoma was

higher than that of squamous cell carcinoma, indicating that the

MVD of adenocarcinoma was greater, which is consistent with

the results of previous pathological studies (35, 36). Moreover,

this result was significantly different in the venous phase but not
Frontiers in Oncology 09
in the arterial phase. This may be due to the different microvessel

densities and vascular permeabilities of different subtypes of

tumors, resulting in different times of iodine contrast agent

penetration into the intercellular space. This is consistent with

the results of a previous study by Zhang et al (13).

In terms of image selection, in DECT scanning, due to the

high X-ray attenuation at lower energy levels, when the photon

energy gradually decreases from 100 keV to 40 keV, the contrast

of the iodized structure gradually increases, but it is also

accompanied by an increase in image noise at lower energy

levels (37). Therefore, we selected 120 kV equivalent hybrid

images with both high contrast and low background noise in

evaluating the semantic features of CT lesions (38). In terms of

monoenergetic selection for radiomics model establishment, we

chose a 100 KeV image with fine detail but low contrast, and a 40

KeV image with higher contrast but more noise. As a result, the

AUC of the multi-energy image-based radiomics model was 0.79

and 0.84 in the AP and VP, respectively. This shows that the

combination of different energy images can deeply mine tumor

information and effectively distinguish ADC from SCC.

In terms of radiomic features, three types of radiomic

features were extracted: 1) “First-order statistics: Energy”,

describing the overall density of the tumor volume; 2) “Shape:

Compactness”, quantifying the compactness of the tumor

volume relative to that of a sphere (i.e., the most compact

shape); and 3) “texture features: spatial arrangement

relationship between voxel gray levels”, describing intra-tumor

heterogeneity (39, 40). Among the features we selected,

compared with the AP, the VP increased the first-order

statistics features (original first-order kurtosis, original first-

order skewness), and the first-order statistics features reflected

the overall density of the tumor. We believe that this is also

related to the different MVD and vascular permeability of
TABLE 3 Delong test between models 1-5.

Model 1 1

Model 2 0.500 1

Model 3 0.945 0.067 1

Model 4 0.035* 0.003* 0.036* 1

Model 5 0.016* 0.001* 0.009* 0.348 1

Model 1 Model 2 Model 3 Model 4 Model 5
*P<0.05.
FIGURE 4

Nomogram based on the clinical signature and radiomic signature in venous phase to predict the pathological subtypes of NSCLC patients.
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different subtypes of tumors, which may also lead to the slightly

lower AUC in the AP-based model than VP.

Our study had some limitations. First, it is a retrospective

study at a single center, which may lead to patient selection bias,

and the number of samples is limited. Future plans include

collaboration with other dual-energy CT centers to reduce bias

and expand the sample size. Second, the previous radiomics

model developed by He et al. (41) for the differential diagnosis of

solitary pulmonary nodules showed better differential diagnosis

performance based on the radiomics features of plain CT images

than those of contrast-enhanced CT images. This study lacks a

radiomics model based on plain CT. In the future, it is expected

to build a radiomics model based on DECT plain scans to mine

tumor features more comprehensively and improve the

performance of the model. Finally, semi-automatic or

semiautomatic and manual combined segmentation of lesions

is time-consuming and variable. In the future, it is expected to

combine radiomics with machine learning or deep learning to

create better models.
5 Conclusion

In this study, we developed and validated a combined

clinical-radiomics model based on pretherapy DECT to
Frontiers in Oncology 10
reliably predict ADC and SCC. Compared with the traditional

single clinical model, the combined model significantly

improved the prediction performance of ADC and SCC. The

combined clinical-venous phase radiomics model was visualized

as a nomogram, which could provide a relatively accurate,

convenient, and noninvasive method for the individualized

discrimination of ADC from SCC in NSCLC patients and

assist in clinical decision-making.
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