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Immunotherapies of
retinoblastoma: Effective
methods for preserving
vision in the future

Ling Wang, Shixu Li , Jun Mei and Lin Ye*

Shenzhen Eye Hospital, Jinan University, Shenzhen Eye Institute, Shenzhen, China
Retinoblastoma is the most common intraocular tumor in children. Patients

can be cured by enucleation, but it can lead to vision loss. Chemotherapy is the

main method of treatment for RB currently. Unfortunately, chemoresistant and

tumor metastasis often happen, resulting in a relatively poor prognosis.

Therefore, immunotherapy becomes one of the optimal choices. Targeting

not only tumor cells but also the active tumor microenvironment is a novel

strategy for RB treatment. Here, we conclude several potential targets for RB

immunotherapy, including gangliosides GD2, PD-1 and PD-L1, B7H3, EpCAM

and SYK. We also review the techniques for CART, bispecific antibodies and

genetically modified Dendritic cells according to the characteristics of different

targets and discuss the feasibility of immunotherapy with different targets.
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Introduction

Retinoblastoma has significant morbidity in young children and is one of the most

common ocular tumors in children. Virtually all cases of retinoblastoma occur because of

germline cancer susceptibility (1). Patients with this predisposition were also more likely

to develop bilateral retinoblastoma. In children with this inherited disorder,

retinoblastoma affects both eyes (bilateral) in 80% of cases and intracranial tumors

(trilaterally) in 5%. Enucleation can cure children with unilateral intraocular

retinoblastoma without any further treatment and subsequent vision loss. In localized

tumor cases, and where appropriate, it can also be treated by laser application of

cryotherapy or brachytherapy and/or local intra-arterial chemotherapy to save vision and

preserve the eye. At present, the most common treatment for retinoblastoma remains

systemic, subconjunctival, intraarterial, or intravitreal chemotherapy (2). It is also the

current standard of care for managing orbital exenteration cases. The tumor
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unresponsiveness and recurrence are the most significant

concern after chemo reduction. For larger tumors, systemic

chemotherapy can achieve an initial decrease in tumor size,

allowing for subsequent local treatment options. For

unresponsive extraocular and/or metastatic disease, reserve

high-dose systemic chemotherapy with stem cell rescue (3, 4).

Despite high overall survival rates (> 95%) in Western countries,

long-term survival is reduced in children treated with eye-

preserving radiotherapy and/or chemotherapy compared with

enucleation alone because of the higher incidence of secondary

malignancies (5, 6). Retinoblastoma can be transmitted to the

central nervous system via the optic nerve and to distant

metastatic sites in lymph nodes, bone, bone marrow, and liver

via the sclera via lymphatic or blood circulation to orbital bones.

High-dose chemotherapy is often unsuccessful in rescuing in

these cases, and because of its very aggressive nature, high-dose

may cause lifelong sequelae to the patient (2, 7–9). As a local

treatment modality, ophthalmic artery chemosurgery

significantly reduced the rate of enucleation in unilateral and

bilateral retinoblastoma, saving the majority of affected eyes

without compromising survival. Although treatment outcomes

are excellent in developed countries because of early diagnosis,

patients with both metastatic and recurrent disease are common

in developing countries, resulting in relatively poor prognosis.

Therefore, it is essential to find new treatment strategies that are

more effective and tolerable to effectively control retinoblastoma

and protect eyeball and children’s vision, especially with

minimal short- and long-term side effects.

Paradigm advances in cancer therapy have been made in the

past decades, targeting not only tumor cells but also the active

tumor microenvironment (TME) (10). The changes in the tumor

microenvironment and protein communication between

primary retinoblastoma and chemo-reduced retinoblastoma

have not been reported. Therefore, it is important to

understand the contribution of immune checkpoint markers in

the microenvironment of retinoblastoma tumors. The TME

comprises malignant and non-malignant cells such as

cytokine, growth factors, extracellular proteins, endothelial

cells, fibroblasts, and inflammatory cells (7). Targeting the

tumor microenvironment has great potential because new

immunotherapy strategies may be involved in tumor

progression and metastasis (10). Despite the evolving nature of

chemotherapeutic agents and the delivery of the agents, the

development of novel targeted treatments requires a better

understanding of the pathophysiology of retinoblastoma (9).

Targeting the tumor microenvironment is less likely to cause

adaptive mutations and metastasis because non-malignant cells

are genetically more stable than tumor cells (11). Exploring

functional changes in TME may provide essential considerations

for ongoing studies of primary and chemo-reduced

retinoblastoma. The use of immune checkpoint inhibitors has

improved overall survival rates in treating many different

solid tumors.
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In the present review, we described the latest innovations in

retinoblastoma immunotherapy targeting GD2, PD-1, B7H3,

EpCAM and SYK.
GD2

GD2, a disialoganglioside highly expressed in cancer cells (12),

is involved in many signaling cascade pathways, such as MAPK,

PI3K/Akt, and FAK/paxillin (13–15), in which cells can accelerate

proliferation, migration, and stemness chemoresistance. Previous

studies have focused on the diagnostic study of GD2 in some

disseminated diseases such as bone marrow and cerebrospinal

fluid. Since 1993, researchers have begun to examine the

expression of GD2 and GD2 synthase in retinoblastoma (16).

The most significant proportion of GD2 staining was studied in

non-white populations. GD2 was expressed primarily on the

membranes of retinoblastoma cells, and the positive rate of the

assay was 37%, which suggests that GD2 has the capacity to be a

potential therapeutic target for RB (17, 18). The heterogeneous

expression of GD2 in positively stained samples further

demonstrates a multifocal origin and distinct cytogenetic clones

within a tumor (19). The relationship between GD2 expression

and tumor stage and proliferation index suggests that GD2

expression is associated with poor patient prognosis (20). GD2

is widely expressed in retinoblastoma, and MYCN amplification

in pretreated chemo-refractory cases, suggesting that for

treatment of RB, anti-GD2 monoclonal antibodies may be

effective (21, 22). Anti-GD2 mAbs have three proposed

mechanisms of action against GD2-expressing tumor cells. First,

GD2 mAbs initiate the phagocytosis by macrophages (Figure 1A)

destruction of tumor cells by natural killer cells and the

cytotoxicity of granulocytes mediated by killing tumor cells.

Second, GD2 mAbs mediate the lysis of tumor cells via

complement-dependent cytotoxicity (Figure 1B). Third, GD2

mAbs direct induction of cell death due to the specific binding

of anti-GD2 mAbs to GD2 (Figure 1C) (23). In Michelle’s study

(24), intending to improve survival in high-risk neuroblastoma,

researchers used an anti-GD2-based monoclonal antibody

(dinutuximab) in the maintenance phase of treatment. COG-

ANBL0032 protocol comparing the ch14.18 antibody

(dinutuximab) in combination with isotretinoin and alternating

GM-CSF and IL-2 to single-agent isotretinoin in the maintenance

phase of treatment. There were 20% and 11% increases in event-

free survival (EFS) and 11% and 16% increases in overall survival

(OS) after 2 and 5 years, respectively.

Improved early response and outcome of GD2 monoclonal

antibody (hu14.18K322A) in children with newly diagnosed

high-risk neuroblastoma by six cycles of concurrent induction

chemotherapy with hu14.18K322A, GM-CSF, and low-dose IL-2

was evaluated by another group. After the first two cycles of

chemoimmunotherapy, 42 of 63 evaluable patients had partial

responses (PRs) or better. At the end of induction, partial
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responses or better were seen in 60 of 62 patients (97%). No

patient developed progressive disease throughout the induction

period (25).After being tested in clinical trials, anti-GD2

monoclonal antibodies proved their safety and efficacy

suggesting that GD2 could be an essential immune target for

the treatment of RB (21).

T lymphocytes isolated from patients were designed to

express CD19-specific chimeric antigen receptors (CARs) and

showed significant antitumor effects against acute B-cell

leukemia and non-Hodgkin’s lymphoma. CAR-T has two

distinguishing features: substantial toxicity of cytotoxic T

lymphocytes and specific antigen-binding of monoclonal

antibodies. It led to the creation of a GD2-specific chimeric

antigen receptor (CAR)-modified T-cell therapy for

retinoblastoma (Figure 1D) Sujjitjoon et al. developed a novel

4SCAR-GD2 T for the treatment of retinoblastoma (26). The

intracellular domain of 4SCAR-GD2 T contains CD28, 41BB,

and CD3z, and its scFv fragment derived from the monoclonal

antibody hu3F8, recognizes human GD2 (Figure 1E) In vitro

studies using Y79RB cells found that this 4SCAR-GD2 T had

high cytotoxicity. To mimic the high tumor burden in vivo, the

investigators increased the number of Y79RB cells by 3-fold after

the first round of killing and prolonged the co-culture time of

4SCAR-GD2 with Y79RB. After 6 days of co-culture, some

Y79RB cells survived with reduced expression of GD2 on their

cell surface compared to before (from 93.2% to 65.5%).

Typically, immune checkpoint blockade is the main reason for

tumor cell escape. Therefore, further detection was carried out

and revealed that there was no PD-L1 expression on the surface

of parental Y79RB cells. After co-culture with 4SCAR-GD2 T,

the expression of PD-L1 on the surface of Y79RB cells was up-
Frontiers in Oncology 03
regulated, and the expression of PD-1 on the surface of 4SCAR-

GD2 T in the co-culture system was also up-regulated. This

result indicates that PD1: PD-L1 is involved in the immune

escape of tumor cells and suppresses the function of CAR T cells

after repeated antigen exposure.
PD-1

Programmed cell death 1 (PD-1), programmed cell death

ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated

antigen-4 (CTLA-4), have been the focus of research in

immunotherapy fields (Figure 2). Promising results regarding

their efficacy in fighting tumors in patients with advanced tumors

continue to emerge (27). An indication of cancer, as noted in

numerous publications, is the absence of immune control (28).

Closely associated with tumorigenesis and progression and

playing a key role in tumor immune escape and TME

formation is PD-1 and its ligand PD-L1 (29). PD-1 is

commonly expressed on the surface of activated immune cells,

such as T cells, B cells, and bone marrow cells. These two ligands,

PD-L1 (B7-H1) and PD-L2 (B7-DC), expressed mainly in the

placenta, tonsil, and retina, both belong to the B7 family of cell

surface glycoproteins (30).PD-L1 is expressed in non-

hematopoietic cells such as endothelial, epithelial, and tumor

cells and appears in dendritic cells, myeloid cells, T and B cells,

and other hematopoietic cells (31). A widely accepted method to

assess PD-1/PD-L1 expression in cancer biology is

immunohistochemistry. The most widely used practice for

predictive biomarker detection of anti-PD-1/PD-L1 and CTLA-

4 therapies in tumors is IHC for PD-L1 protein expression (32).
A B D

E

C

FIGURE 1

Immunotherapy strategy targeting GD2. (A) Macrophage phagocytosis combined with retinoblastoma cells mediated by anti-GD2 Fc receptors.
(B) Complement activation on GD2-expressing retinoblastoma. (C) AntiGD2 monoclonal antibody is used for high-risk retinoblastoma. (D) CAR-
T cells recognize retinoblastoma cells via their specific T cell receptors against GD2. (E) Bispecific antibody of GD2 and CD3, redirecting T cells
and accessory immune cells (via their functioning Fc-fragment) toward retinoblastoma cells.
frontiersin.org

https://doi.org/10.3389/fonc.2022.949193
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Wang et al. 10.3389/fonc.2022.949193
The role of PD-1 in cancer immune evasion has been

demonstrated because, as a ligand for PD-1, PD-L1 is highly

expressed in some cancers (33). PD-L1 expression is not difficult

to find in many tumor types, such as melanoma and

glioblastoma, lung, kidney, head and neck, gastric, colon,

pancreatic, breast, cervical, uterine, and ovarian cancers (34).

PD-L1 is also expressed in hematological malignancies, such as

multiple myeloma, lymphoma, and various leukemia types, and is

associated with a worsening prognosis (35). However, the altered

pattern of tumor microenvironment in primary and

chemotherapeutic tumors has been documented in previous

studies. However, the differences in histopathological findings

and expression of immune markers in cases of primary

retinoblastoma (group I) and chemotherapeutic retinoblastoma

(group II) have remained to be studied to date. In Singh’s study,

the expression patterns of PD-1, PD-L1, and CTLA-4 proteins

differed in both groups of retinoblastomas. There was increased

expression of PD-L1 (46/144) and decreased expression of PD-1

(29/144) in primary retinoblastoma. A statistically significant

overall survival rate was observed in PD-L1-expressing tumors

(89.13%; P value = 0.015) compared to PD-1 expression (93.10%;

P value = 0.394). In chemically induced retinoblastoma, on the

other hand, the opposite pattern was observed, with increased

expression of PD-1 (48/118) and decreased expression of PD-L1

(22/118). PD-1 expression was statistically found to correlate

with overall survival in chemically induced patients (63.28%; P

value = 0.003). While no clear correlation was found with patient

outcomes, CTLA-4 protein expression revealed a similar pattern

in both primary and chemically induced retinoblastoma. While

evidence suggests that intrinsic expression of PD-1 promotes

tumor growth independent of adaptive immunity in a variety of

factors involving gene copy number alterations, epigenetic

modifications, and the tumor microenvironment in tumor cell
Frontiers in Oncology 04
lines, the exact mechanism by which PD-1 may be expressed

within tumor cells has not been clarified (32, 36–38).
B7H3

PD-L1 and PD-1, members of the B7 family, have been

evaluated in many studies for both expressions in RB (39, 40).

Researchers previously subjected primary retinoblastoma and

retinal tissue to a membrane proteomics study (41). The study

compared their expression of immunotherapeutic molecules,

and one of the B7 family checkpoint molecules, B7-H3

(CD276), was overexpressed in RB tumors compared to retinal

tissue. Many studies have shown that overexpression of B7H3 in

some malignancies can cause metastasis or severe complications

of cancer (42–47). B7H3 expression is highly heterogeneous.

Interestingly, when B7H3 levels are high in the lobules, they are

deficient in the blood vessels in the areas adjacent to the lobules

and vice versa. Several studies have reported the expression of

B7H3 in tumor vessels and tumor cells (48). In different diseases,

B7H3 is differentially expressed in the stroma and tumor cells;

for example, in colorectal and pancreatic cancers, a higher

percentage of B7H3 was positive in stroma than in tumor

cells, whereas in prostate cancer, B7H3 expression was higher

in tumor cells than in stroma; in RB tumors, B7H3 was observed

in mutually exclusive expression in tumors and blood vessels,

which has not been reported in other cancer types. This result

needs to be further investigated and examined whether it is

related to cells in the vasculature, such as endothelial cells, or

stromal cells surrounding the vasculature, such as pericytes and

fibroblasts, or whether it is related to differences between pre-

existing and newly generated vessels. Since the clinical

importance of any target molecule in RB tumors depends on
FIGURE 2

Immunotherapy anti PD-1 and PD-L1. PD-1 is expressed on the surface of CAR-T cells as an inhibitory receptor, while its ligands PD-L1 is mainly
expressed in antigen-presenting cells and tumor cells.
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certain histopathological features, the expression of B7H3 in

terms of differentiation status, site of invasion, and degree of

asexual reproduction of the tumor which is closely related to the

prognosis of the disease were investigated. Among these, in

terms of differentiation status, B7H3 is highly expressed in

poorly differentiated RB and less expressed in moderately or

well-differentiated RB tumors. A retrospective study of 326

primary RB tumors, showed that poorly differentiated tumors

were significantly associated with more than three high-risk

symptoms, particularly massive choroidal invasion (49). The

high expression of B7H3 in such tumors is beneficial for

targeted therapy.

The common metastatic areas of RB tumors are the central

nervous system (CNS), regional lymph nodes, bone marrow, and

bone (50). Its invasive status determines the areas where it

metastasizes. The invasion sites are classified as neurological

and non-neurological, depending on their prognosis and the

area of metastasis. Neurological invasion leads mainly to CNS

metastasis, whereas non-neurological invasion tends to

metastasize more to other systemic sites (51). Among them,

CNS metastasis has a poorer prognosis, probably because

chemotherapeutic agents cannot cross the blood-brain

barrier19, in which case adjuvant intrathecal or intracerebral

chemotherapy is required (52, 53). Compared with neural tissue,

B7H3 expression in invading non-neural tissue of RB tumors

showed a significant increase (54). B7H3 expression may be

suppressed when the tumor invades the optic nerve (40).

However, we could not find any support from the published

literature. One limitation is the number of samples that could be

analyzed for this correlation; however, if built with a larger

cohort, this finding may have clinical implications for the use of

B7H3 as a therapeutic approach.

There is a significant anti-tumor activity demonstrated by

B7-H3-targeted CAR-T cells against AML and melanoma for

both in vitro and xenograft mouse models. In clinical trials,

multiple therapeutic agents targeting B7-H3 have been

conducted. As an Fc-optimized monoclonal antibody (mAb)

against B7-H3, Enoblituzumab has been evaluated together with

an anti-programmed death 1 (PD-1) monoclonal antibody in

patients with B7-H3-expressing solid tumors during phase I

clinical study (Figure 3A). Another B7-H3-targeting antibody

for the treatment of brain and central nervous system tumors,

neuroblastoma, and carcinoma, radiolabeled 8H9, was also

evaluated in a phase I trial. (ClinicalTrials.gov: NCT00089245).

MGD009 is a bispecific antibody developed by MacroGenics

against B7-H3 and CD3, while the FDA partially shelved the two

clinical studies on MGD009 due to hepatotoxic events in

monotherapy trials, such as reversible transaminase level

increases with or without concomitant bilirubin level increases

(55) (Figure 3B).

The presence of B7H3 in RB tumors opens the way for

developing targeted therapeutic and immunotherapeutic

approaches. Furthermore, it is interesting to observe that the
Frontiers in Oncology 05
expression of B7H3 is reduced when the tumor enters the optic

nerve, so the next step should focus on the presence of molecules

that reduce B7H3 in the optic nerve bundle and their

implications for clinical treatment. Clinical data with 1 to 4

years of follow-up did not show any significant correlation

between patient survival and B7H3 expression. One with long-

term follow-up data is needed further to understand the

correlation between B7H3 expression and RB prognosis.
EpCAM

Epithelial cell adhesion molecule (EpCAM) was earlier

considered as a marker for adult liver stem/progenitor cells and

oval cells (56, 57), which is an epithelial cell adhesion molecule with

all the characteristics of tumor stem cells (CSCs). EpCAM is highly

expressed in aggressive tumors compared to RB, a non-invasive

tumor. Damages to the EpCAM gene may result in a substantial

decrease in cell proliferative capacity (58). Bispecific antibodies

(bsAb) are artificial molecules with dual specificity for two separate

antigens. The most common bsAb antigen on lymphocytes is an

invariant CD3 signaling complex that induces the activation of

polyclonal T cells. A number of anti-EpCAMbsAb and single-chain

antibodies have been produced and tested as immunotherapeutics

(Figure 4) (56, 59–62). The host antitumor immunity has a

significant contribution to preventing the development of

malignant tumors. However, when tumor cells lack tumor-

associated antigens or various co-stimulatory or major

histocompatibility complex molecules, the host mononuclear cells

may become dysfunctional. Aggressive RB primary tumors express

low levels of human leukocyte antigen (HLA) class I and II antigens,

which may be an advantage for tumor cells to escape t-cell or

natural killer (NK) cell-mediated attack (63). In this context, the

potential of a novel therapeutic modality using the bispecific

antibody-directed T-cell attack on tumor cells may become a

promising treatment for retinoblastoma. The bispecific antibody

can effectively induce lysis of tumor cells in vitro, thus reducing the

production of malignant ascites in patients with advanced ovarian

cancer (64). Mitra et al. studied the role and expression of EpCAM

in the development of retinoblastoma (65). The study found that

EpCAM+Y79 cells have strong proliferation and invasion ability

and neurosphere formation ability. Using fresh retinoblastoma

tissue, the co-expression of EpCAM and three other putative

tumor stem cell markers CD44, CD24 and ABCG2 was

examined. The results showed that not every tumor tissue

expressed CD44, CD24 or ABCG2, but the expression of EpCAM

could be detected. The use of preactivated PBMC and bispecific

antibodies to EpCAM × CD3 can promote lysis of RB cells.

Therefore, targeting CSC combined with conventional

chemotherapy should be the basic therapeutic strategy for

eradicating tumors. EpCAM is an attractive target for bsAb and

bispecific single-chain antibodies for antitumor therapy (66–68).
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Moreover, EpCAM×CD3 activity is dose-dependent and

increases within 24 h. This effect was consistently observed in

all five tumor types examined. The production of effector

cytokines was raised in the supernatant of cultures containing

EpCAM+ cells and pre-activated PBMC as well as EpCAM×CD3,

as demonstrated by our ELISA assay. In summary, EpCAM×CD3

potently stimulates the secretion of effector cytokines by pre-

activated lymphocytes in the presence of EpCAM-expressing

tumor cells. Activated T cells secreting TNF-a, IFN-g, and
Frontiers in Oncology 06
chemokines may increase efficacy by enhancing immune cell

attraction and stimulation. It has been proven that high levels of

IL-10 in the tumormicroenvironment facilitate tumor rejection by

potentiating the cytotoxicity of T lymphocytes (69). TGF-b
functions as a tumor cell suppressor (70), suggesting that a

bispecific antibody-mediated immunotherapeutic approach may

potentially help manage the proliferation of RB tumor cells. A

high percentage of cells in retinoblastoma express EpCAM, and

especially tumors with optic nerve/choroidal invasion
A B

FIGURE 3

Immunotherapy strategy targeting B7H3. (A) Omburtamab is a radionuclide iodine-131-labeled monoclonal antibody targeting B7H3 cells in
various solid tumors, including retinoblastoma. It binds to the FG cyclically dependent conformation, a key region of the biological function of
the B7-H3 molecule. (B) Bispecific antibody of B7H3 and CD3, redirecting T cells and accessory immune cells.
FIGURE 4

T-cell-mediated immunotherapy of EpCAM. EpCAM and CD3 bispecific antibodies redirect T lymphocytes to attack retinoblastoma cells.
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demonstrate increased EpCAM expression (63). Therefore, the

invasive retinoblastoma is an attractive tumor for therapeutic

targeting using a bispecific antibody (EpCAM × CD3). In

summary, EpCAM + RB cells behave in vitro similarly to tumor

stem cells. In the presence of EpCAM expressing RB tumor cells,

EpCAM×CD3 has potent anti-tumor activation in vitro via

induction of interleukin and cytokine secretion by pre-

activated lymphocytes.
SYK

The spleen tyrosine kinase (SYK) is one of the most

dramatically upregulated kinase genes in RB cells (71). It is

involved in signaling the inflammatory cell B-cell receptor

complex in the inflammatory response and has also been

associated with hematopoietic malignancies (72–74). There are

two SYK isoforms in tumor cells, the full-length SYK (SYK-L)

and the variable splice SYK transcript (SYK-S). Among them,

SYK-L can enter the nucleus and prevent cancer cell invasion. At

the same time, SYK-S is only found in the cytoplasm, where it

can promote tumor development and is a proto-oncogene

involved in the survival of RB cells. However, SYK is not

expressed in retinal progenitor cells or neurons, and no

function has been found in the developing visual system.

ChIP-on-chip analysis revealed increased histone activation

modifications (H3K4me3 and K3K9/14Ac) at the SYK

promoter, whereas the histone repression marker (H3k9me3)

was unchanged in human retinoblastoma in situ xenografts and

cell lines (71). There was also an increase in RNA polymerase II

bound to the SYK promoter. ChIP-on-chip results confirmed

increased expression of the SYK gene. SYK protein was found at

higher levels in human retinoblastoma in situ xenografts and cell

lines than in human fetal retina. Retinoblastoma tissue

microarrays (TMA) or whole eye sections were subjected to

immunohistochemistry. The results indicated that SYK was

heavily expressed (3+) in all tumor cells (82/82), while normal

retinas had no expression of SYK. The kinase activity of SYK is

regulated by autophosphorylation of the Tyr525/526 residues

within its catalytic domain. In retinoblastoma cells, the sites are

phosphorylated and reversed.

Although SYK was consistently immunonegative in non-

neoplastic lesions and pseudo retinoblastoma eyes,

conversely, it was histologically immunopositive in any RB

eyes (75). Strong immunostaining of SYK is found in RB eyes

- the nucleus and cytoplasm of RB cells. While SYK is silenced

in benign retinas, it is activated in RB. In differentiating

malignant tumors from benign diseases in the retina, SYK is

also a good marker. SYK, an important promoter of

tumorigenesis in RB, showed a more significant negative

correlation between its expression and tumor necrosis.

However, pseudo retinoblastoma is usually undetectable by

clinical and diagnostic imaging techniques because its
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symptoms and clinical findings are comparable to those of

RB. The above results suggest that SYK can be used in a

protein-based or genetic approach to differentiate these

disease possibilities and so is a useful clinical marker.

Since SYK expression is required for retinoblastoma growth

and survival, X Chen et al. (76) synthesized SYK shRNA and

cloned it into the lentivirus vector Lenti-SYK-9. In addition to

accelerating apoptosis of retinoblastoma cells, Lenti-SYK-9

effectively removed SYK from retinoblastoma cell lines.

Further to the previous efforts, the researchers used lentivirus

to genetically modify dendritic cells (DC) to make cytotoxic T

lymphocytes (CTL) express SYK antigens in vitro. SYK-negative

cell lines (MDA-MB-231, MCF-10A, hTERT-RPE1) and SYK-

positive cell lines (MCF-7 and RB-Y79) were used to assess the

specificity and cytotoxicity of DCs expressing CTLs. The CTL

toxicity triggered by SYK-high expression in DCs Figure 5 (SYK-

DC-CTLs) elevated the killing effect on SYK-positive cells by

more than three times compared to SYK-negative cells. SYK-

modified DCS had a CTL cytotoxic effect on SYK-positive cell

lines, but no killing effect on SYK-negative cell lines. Although

SYK-silenced RB-Y79 cells potently bypassed the cytotoxic

attack of SYK-DC-CTL, SYK-DC-CTLs were overexpressed in

hTERT-RPE 1 cells, suggesting that SYK is a specific antigen for

Rb. In addition, SYK-DC-CTL had specific cytotoxic effects on

carboplatin-resistant RB-Y79 cells in vitro.

Exposure of Y79 cells to different doses of lymphocyte-

derived microparticles (LMPs) was studied by Qian Q et al.

(77). The results revealed that SYK mRNA was significantly

diminished with 20 mg/ml of LMPs. For 24 h, treatment of

human retinoblastoma cells with 20mg/ml LMPs was carried out

and the expression of SYK protein was analyzed byWestern blot.

The results also showed that LMPs significantly inhibited the

expression of SYK protein. LMPs can downregulate SYK and

induce retinoblastoma cell death, as further supported by the

immunohistochemical results of SYK expression.

These findings suggest that this gene may contribute to RB

tumor development (71), and therefore SYK may be a potential

target for RB therapy.
Discussion

The World Health Organization (WHO) has selected

Retinoblastoma as a high-priority tumor for the Global Initiative

for Childhood Cancer. The initial cure rate is high, yet it is

potentially lethal when not treated promptly. Ocular palliative

approaches have made great strides during the last few decades,

making it the most treatable pediatric cancer for intraocular

retinoblastoma in a high-income country. There have been

developments in delivery methods locally enabling chemotherapy

to maximize exposure in the retinal, subretinal, and vitreous spaces,

i.e., improved techniques for safe ophthalmic artery chemosurgery

(OAC) and intravitreous chemotherapy (IVi) injections which have
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led to the maintenance of ocular and visual acuity at levels never

seen before. Critically, these new local therapies provide the retina

and optic nerve access to chemotherapy at very high intensities, as

seen in preclinical models, thus capable of blocking the spread of

tumors to the central nervous system. After more than a decade of

consistent access in major clinical centers worldwide and over 200

publications related to this field, the OAC and IVi have proven safe

and reliable without increasing the risk of metastatic dissemination.

By eliminating EBRT and systemic chemotherapy, long-term

survival is improved with these therapies by reducing the

incidence of treatment-related severe toxicities, the risk of

secondary malignancies, and associated mortality.

Unfortunately, children suffering from disseminated

retinoblastoma have virtually no options for treatment. New

therapeutic strategies are expected to be highly effective for both

intraocular and extraocular diseases, provided that the risk of

toxicity is lower. In addition, the availability of more new non-

chemotherapy therapies gives patients more options, such as

targeted therapies, immunotherapy, and lysing viruses.
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FIGURE 5

SYK-targeted dendritic cell-mediated CAR-T cells. Dendritic cells (DCs) which expressing and presenting the SYK peptide antigen are modified
to cytotoxic T lymphocytes (CTL). SYK-overexpressing DCs induce the cytotoxicity of CTL.
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