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Accurate preoperative
staging and HER2 status
prediction of gastric cancer
by the deep learning system
based on enhanced
computed tomography

Xiao Guan, Na Lu and Jianping Zhang*

Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University,
Nanjing, Jiangsu, China
Purpose: To construct the deep learning system (DLS) based on enhanced

computed tomography (CT) images for preoperative prediction of staging and

human epidermal growth factor receptor 2 (HER2) status in gastric cancer patients.

Methods: The raw enhanced CT image dataset consisted of CT images of 389

patients in the retrospective cohort, The Cancer Imaging Archive (TCIA) cohort,

and the prospective cohort. DLS was developed by transfer learning for tumor

detection, staging, and HER2 status prediction. The pre-trained Yolov5,

EfficientNet, EfficientNetV2, Vision Transformer (VIT), and Swin Transformer

(SWT) were studied. The tumor detection and staging dataset consisted of

4860 enhanced CT images and annotated tumor bounding boxes. The HER2

state prediction dataset consisted of 38900 enhanced CT images.

Results: The DetectionNet based on Yolov5 realized tumor detection and

staging and achieved a mean Average Precision (IoU=0.5) (mAP_0.5) of 0.909

in the external validation cohort. The VIT-based PredictionNet performed

optimally in HER2 status prediction with the area under the receiver

operating characteristics curve (AUC) of 0.9721 and 0.9995 in the TCIA

cohort and prospective cohort, respectively. DLS included DetectionNet and

PredictionNet had shown excellent performance in CT image interpretation.

Conclusion: This study developed the enhanced CT-based DLS to

preoperatively predict the stage and HER2 status of gastric cancer patients,

which will help in choosing the appropriate treatment to improve the survival of

gastric cancer patients.
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Introduction

Gastric cancer is one of the most common tumors in the

world and ranks fourth in cancer-related deaths (1). Many

individuals with gastric cancer are already in the late stages

when they are detected, due to the atypia of early symptoms (2,

3). The tumor, node, and metastasis (TNM) stage is commonly

used to assist clinicians in making treatment decisions, and for

patients with advanced disease, adjuvant chemotherapy is

recommended as the standard preoperative treatment (4, 5).

However, the use of medical imaging for preoperative staging

assessment is unsatisfactory (6, 7). Surgical resection combined

with adjuvant chemotherapy or chemoradiotherapy is still the

main treatment for advanced gastric cancer (4). However, even

with standard treatment, the prognosis of patients with

advanced gastric cancer remains poor (8, 9). HER2

overexpression is an important driver of gastric carcinogenesis

and is associated with poor prognosis in advanced gastric cancer

(10–12). Trastuzumab combined with standard chemotherapy

can significantly improve overall survival in HER2-positive

patients (4, 11, 13, 14). Accurate assessment of HER2 status is

crucial in the treatment of gastric cancer (15). Detecting HER2

status by immunohistochemistry (IHC) or fluorescence in situ

hybridization (FISH) is widespread, although they are invasive

and costly (16, 17).

Identifying imaging biomarkers is critical in oncology (18).

Studies have shown that using medical images can capture the

biology of tumors at the genetic and cellular level (19). Enhanced

CT is widely used in clinical practice and is a routine imaging

examination for preoperative evaluation of gastric cancer

patients (20). In recent years, deep learning (DL) has gained
Frontiers in Oncology 02
increasing attention in the field of oncology. Deep learning has

gained increasing attention in the field of oncology recently,

which can extract more information from input data (21–23).

Convolutional neural networks (CNNs) are the most mature

deep learning algorithms and perform well in a variety of image

classification tasks (24, 25). Transformers have also received

extensive attention in image classification and detection (26–28).

Research has confirmed that, under certain conditions, the

predictive performance of DL models is not inferior to that of

human experts (29, 30).

Therefore, this study aimed to develop the DLS for

preoperative prediction of staging and HER2 status in patients

with gastric cancer. We also built a simple web service (web) to

make this prediction more accessible to clinicians. To our

knowledge, this has not been reported in any published study.
Materials and methods

Figure 1 depicted the workflow of this study.
Patients

We collected three different cohorts. Our research team

retrospectively collected clinical data from all gastric cancer

patients from January 2017 to June 2021, and a total of 297

patients participated in this study. We also collected CT images

and clinical information of 40 patients from the TCIA database.

In addition, we prospectively and continuously collected the

clinical data of 60 gastric cancer patients from October 2021 to
FIGURE 1

The flowchart of this study.
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April 2022. The inclusion criteria included enhanced CT within

1 week before gastrectomy, postoperative pathology confirmed

as gastric cancer, post-gastrectomy HER2 status testing, clear

HER2 status, and no preoperative chemotherapy or

radiotherapy. The exclusion criteria included poorly dilated

stomach or artifacts on CT images, small gastric cancer lesions

that are difficult to identify, and the inability to determine HER2

status in patients with gastric cancer. Supplementary Material

detailed the sample size assessment process (Figure S1) and the

data collection (Figures S2A–C).
CT image acquisition

CT examinations were performed on a 64 Dual Source CT.

The patient was instructed to fast for more than 8 hours and to

inject anisodamine 20 mg intravenously to avoid gastric motility.

Besides, all patients were asked to take 1000ml of warm water

orally to dilate the stomach before the examination and hold

their breath during the examination. After the non-enhanced

abdominal CT scan, the patients were intravenously injected

with 1.5 mL/kg of iodinated contrast medium (ioversol injection

320 mg I/mL, Jiangsu Hengrui Pharmaceuticals Co.,Ltd, Jiangsu,

China) at a flow rate of 3.0 mL/s by an automatic pump syringe.

After the contrast agent injection starts, when the contrast agent

concentration reached 100 Hu, the imaging after 8 seconds is the

arterial phase, the imaging at 21 seconds after the arterial phase

imaging is the venous phase, and the imaging at 90 seconds after

the venous phase imaging is the delayed phase. The parameters

of the CT scan were as follows: tube voltage 120 kV, tube current

150 - 300 mA, field of view 30 - 50 cm, matrix 512 × 512, rotation

time 0.5 seconds, pitch 1.0, and images were reconstructed with

section thicknesses of 2 mm.
CT images collection

Studies confirmed that features extracted from the enhanced

CT arterial phase images had better predictive performance than

the portal venous phase (31, 32). Therefore, we resampled the

enhanced CT arterial phase images. The resampled voxel sizes

were set to 1×1×1 mm³ voxels to standardize the slice thickness.

Two radiologists reviewed the patient’s enhanced CT arterial

phase images and both of them had more than eight years of

medical imaging experience. The evaluation processes of the two

doctors were independent of each other, and they did not know

the patient’s pathological information. For each patient’s CT

images, they took a total of five images of the largest cross-

section of the tumor and annotated the images, using five

consecutive slices (maximum lesion). They marked the tumor

location on these images. If their opinions disagreed, the opinion
Frontiers in Oncology 03
of another chief physician with 15 years of experience in medical

imaging will be finally adopted.
Dataset construction

We screened the five consecutive axial slices with the largest

tumor area from the CT images of each patient for the

construction of the dataset (33). Specifically, one of the slices

was located in the largest section of the tumor, and then, with

this slice as the center, the upper two slices and the lower two

slices were selected, for a total of five slices.

We retrospectively collected 1100 images for automatic

tumor location detection and predicted staging, including 370

stage I images, 360 stage II images, and 370 stage III images.

Additional images were then obtained using cropping, flipping,

and rotating. This approach reduced the possibility of overfitting

when the model processes the dataset (34). A total of 4400

images were obtained. Then, we randomly divided these images

into training and test cohorts in a ratio of 8:2. The training

cohort was used for model training, and the test cohort was used

for model validation. We also collected 160 images from the

TCIA cohort and 300 images from the prospective cohort. As the

vast majority of patients in the TCIA cohort were in stage III, we

mixed the two cohorts as an external validation cohort to further

validate the performance of the model.

We retrospectively collected a total of 1485 CT images for

HER2 status prediction, including 800 HER2-negative and 685

HER2-positive images. We used image enhancement techniques to

perform 19 image transformations to expand the original dataset.

We use the “transforms” function for image enhancement, using

three methods, including Crop, Filp and Rotation, Transform. The

specific method names are as follows: RandomCrop, CenterCrop,

RandomResizedCrop, RandomRotation, RandomVerFilp,

RandomHorFilp, Normalize, RandomErasing, Pad, ColorJitter,

RandomGrayscale, Affine, RandomOrder. We randomly split

these images into a training cohort and a test cohort in a ratio of

8:2. The training cohort was used for model training, and the test

cohort was used for model validation. We also collected 160 and

300 images from the TCIA cohort and the prospective cohort,

respectively. After performing the same image enhancement

process on them, they were used as two external validation

cohort for further validation of the model. All the images

were normalized.
Model construction

We decomposed the model into two tasks. The first task was

to detect the tumor location of gastric cancer in enhanced CT

images and predict their stage (DetectionNet). The second task

predicted the HER2 status of the tumor (PredictionNet).
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Yolov5 was used to build the DetectionNet, which was pre-

trained on the Coco dataset. Data enhancement techniques such

as image translation and image scale were used in the

construction of the DetectionNet. The architecture was shown

in Figure 2A and we did not modify YOLOv5.

When building the PredictionNet, we preprocessed the

images of the training cohort and the test cohort differently
Frontiers in Oncology 04
(35). EfficientNet is one of the most powerful CNNs, which has

achieved the highest accuracy on the ImageNet top1 while

requiring fewer computing resources than other models (36).

Therefore, we chose EfficientNet (Figure S3) and EfficientNetV2

(Figure S4) to build the CNN models. Transformer-based image

structure has strong non-local feature extraction ability, VIT

(Figure 2B), and SWT show great performance and are
A

B

FIGURE 2

The overall network structure of Yolov5 (A) and VIT (B).
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considered as strong backbones (27, 28, 37). Both of them were

used to build the transformer models. They were all pre-trained

on the ImageNet dataset (38, 39). Supplementary Material

detailed the training process of the model.
Model evaluation

For DetectionNet, compute_loss was divided into three

parts: cls_loss, box_loss, and obj_loss. Cls_loss is the Classes

loss, which is used to calculate whether the anchor box and the

corresponding calibration classification are correct (BCE loss).

Box_loss is the Location loss, which is the error between the

predicted box and the calibration box (CIoU loss). Obj_loss is

the Objectness loss, used to calculate the confidence of the

network (BCE loss). The formula of the loss function is

detailed in the Supplementary Material. The calculation of loss

was performed on each layer of feature maps. Confusion matrix,

mAP, and Precision-Recall (P-R) curves were used to further

evaluate the performance of the DetectionNet.

For PredictionNet, we evaluated the classification

performance of the networks by accuracy and loss value and

selected the best network. At the same time, the receiver operator

characteristics (ROC) curves and P-R curves were also used for
Frontiers in Oncology 05
network evaluation. Gradient-weighted Class Activation

Mapping (Grad-CAM) was used to visualize the output of a

given layer in deep learning (40).
DLS construction

The DLS consisted of two parts, including tumor detection

and staging by the DetectionNet and HER2 status prediction by

the PredictionNet. We visualized the DetectionNet based on

“pyqt5”, and encapsulated the PredictionNet into an executable

file based on”pyinstaller”. To further facilitate clinicians to use

the DLS, we also built a simple web based on “flask”, which was

applied to all Internet Protocol (IP) in the hospital’s local area

network, and all hospital staff could use the service.
Results

Patient characteristics

A total of 397 patients were included in this study. Table 1

and Table 2 summarized the clinical findings of the

retrospective, TCIA, and prospective cohorts.
TABLE 1 Patient characteristics in each cohort (DetectionNet).

Clinical characteristics Retrospective cohort TCIA cohort Prospective cohort p

Age (years), (mean ± SDa) 64.28 ± 10.93 65.22 ± 10.079 63.33 ± 11.613 0.719

Sex, n (%) 0.467

Male 157 (71.4) 26 (81.3) 42 (70)

Female 63 (28.6) 6 (18.8) 18 (30)

T stage, n (%) 0.000*

T1 65 (29.5) 0 (0) 15 (25)

T2 34 (15.5) 1 (3.1) 17 (28.3)

T3 64 (29.1) 19 (59.4) 11 (18.3)

T4 57 (25.9) 12 (37.5) 17 (28.3)

N stage, n (%) 0.000*

N0 88 (40) 6 (18.8) 18 (30)

N1 30 (13.6) 5 (15.6) 15 (25)

N2 13 (5.9) 11 (34.4) 12 (20)

N3 89 (40.5) 10 (31.3) 15 (25)

M stage, n (%) –

M0 220 (100) 32 (100) 60 (100)

M1 0 (0) 0 (0) 0 (0)

TNM stage, n (%) 0.000*

Stage I 73 (33.2) 0 (0) 15 (25)

Stage II 61 (27.7) 4 (12.5) 22 (36.7)

Stage III 86 (39.1) 28 (87.5) 23 (38.3)
frontiers
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Model performance

After 150 learning epochs, the Yolov5 achieved the best-

optimized parameters, achieving a precision of 0.9717 and a

recall of 0.9579 in the test cohort (Figure S5). Confusion

matrices for the test cohort and external validation cohort

were shown in Figures 3A, B. The mAP_0.5 value of the test

cohort and external validation cohort were 0.974 and 0.909,

respectively (Figures 3C, D). The F1 scores of the model in the

test cohort and external validation cohort were 0.97 and 0.88,

respectively (Figure 3E, F).
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According to the training loss and accuracy value, after 160

learning epochs, all the networks achieved the best-optimized

parameters (Figure S6). The results showed that the VIT had the

best classification results and outperformed CNNs in the test cohort

(Figure S6). VIT was selected to build the PredictionNet and the

confusion matrix showed that the PredictionNet had good

classification performance (Figures 4A, B). Besides, Figure 4C

showed excellent performance in the TCIA cohort and prospective

cohort with the AUC of 0.9721 and 0.9995, respectively. Figure 4D

showed the P-R curve of the PredictionNet. Figure 5 showed

representative images of Grad-CAM for the VIT.
A B

D E F

C

FIGURE 3

Evaluation of DetectionNet performance in the test and external validation cohort. (A, B) The confusion matrix in the test (A) and external
validation (B) cohort. (B) The F1 curve. The model had an F1 score of 0.97 in the test cohort. (C, D) The P-R curve. The mAP_0.5 value of the
test cohort (C) and external validation cohort (D) were 0.974 and 0.909, respectively. (E, F) The F1 curve. The F1 scores of the model in the test
cohort (E) and external validation cohort (F) were 0.97 and 0.88, respectively.
TABLE 2 Patient characteristics in each cohort (PredictionNet).

Clinical characteristics Retrospective cohort TCIA cohort Prospective cohort p

Age (years), (mean ± SD) 64.52 ± 10.912 65.53 ± 10.061 63.33 ± 11.613 0.624

Sex, n (%) 0.484

Male 223 (75.1) 26 (81.3) 42 (70)

Female 74 (24.9) 6 (18.8) 18 (30)

HER2 status, n (%) 0.809

HER2_ negative 160 (53.9) 16 (50) 30 (50)

HER2_ positive 137 (46.1) 16 (50) 30 (50)
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A B

DC

FIGURE 4

Evaluation of PredictionNet performance. (A, B) The confusion matrix in the TCIA (A) and prospective (B) cohort. (C) The ROC curves. The AUC
values of TCIA cohort and prospective cohort were 0.9721 and 0.9995, respectively. (D) The P-R curves.
FIGURE 5

Enhanced CT arterial phase images and feature heatmaps generated by VIT. The importance of features is represented by color bars.
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Application of DLS

After training DetectionNet for tumor detection and staging

and PredictionNet for HER2 status prediction, we combined

these networks to implement the DLS. DLS accepted raw

enhanced CT images as input. The system automatically

detected the input images, realized tumor detection and

staging, and outputted the detection results with image blocks

(Figures S7A, B). Then, the tumor image was input into the DLS

to predict the HER2 status, and the prediction conclusion was

output for the doctor to check (Figure S7C). In addition, we

design a simple web service to be applied to the hospital’s local

area network to make the prediction process more accessible to

clinicians lacking AI knowledge (Figure S7D).
Discussion

In this study, we developed and validated the enhanced

computed tomography-based deep learning system for

preoperative prediction of stage and HER2 status in gastric

cancer patients. DLS successfully stratified gastric cancer

patients according to the stage and HER2 status, facilitating

individualized preoperative assessment of stage and HER2

status. More importantly, we built the web service for

preoperative prediction of stage and HER2 status in gastric

cancer patients.

Accurate and effective stage assessment and HER2

examination play a crucial role in the treatment and prognosis

of patients with gastric cancer (4, 5, 15). Medical imaging is a

commonly used method for preoperative staging assessment, but

the accuracy is not satisfactory (5, 6). Gastroscopic biopsy is a

common method for preoperative detection of HER2 status.

However, it can lead to serious complications such as infection,

bleeding, and perforation (41). Studies have attempted to assess

HER2 status through positron emission tomography (PET/CT)

and magnetic resonance imaging (MRI) (42, 43). Although

certain results have been achieved, they are not routine

preoperative examinations for gastric cancer patients.

Enhanced CT is more commonly used in the examination and

treatment of tumors (31, 44). To our knowledge, this is the first

study using enhanced CT images of gastric cancer and deep

learning to preoperatively predict the stage and HER2 status.

Different from other studies, most of the deep learning

research in the field of gastric cancer focuses on the

classification and prognostic analysis of endoscopic images or

pathological images (45–48). Compared with endoscopy and

tissue biopsy, enhanced CT is a non-invasive preoperative

routine test with few risks (49). Furthermore, this study

successfully established a DLS and tested the results with the
Frontiers in Oncology 08
TCIA cohort and the independent prospective cohort. Our

findings confirmed that enhanced CT, as a routine

preoperative examination in gastric cancer patients, had an

inherent feature of receptor expression and thus could reflect

the expression status of HER2. Several studies have reported

correlations between CT and genes for lung and colorectal

cancers (50, 51). The performance of DLS was excellent,

achieving the AUC of 0.9721 and 0.9995 in the external

validation cohort and prospective cohort, respectively. Due to

various reasons like deep learning ‘black box properties’ and

clinician bias, DLS is not yet sufficient to replace endoscopic

biopsy. However, it was worth noting that DLS had shown

advantages over endoscopy and tissue biopsy because it can be

assessed from the entire tumor and may be useful if the biopsy

was of poor quality. The results of this study underscored the

fact that enhanced CT of gastric cancer had inherent features to

assess the expression status of HER2 in gastric cancer. It was

quite valuable because it was nearly impossible for clinicians to

determine the status of HER2 with enhanced CT. Grad-CAM

visualized the output of the deep learning models and further

research should be carried out based on this result in the future.

Besides, DLS successfully performed tumor detection and

preoperative staging prediction on CT images of gastric cancer

patients. Previous studies generally only focused on a certain

stage such as the depth of tumor invasion or lymph node

metastasis and did not conduct an overall assessment (45, 52,

53). Clinical guidelines require clinicians to determine TNM

staging before initiating any treatment (54). The study by Huang

et al. (55) showed that integrating multiple markers into one

model facilitates individualized management of patients and is

superior to using a single marker. We were inclined to this view.

Only focusing on T staging or N staging may not be able to

comprehensively assess the patient’s condition, thus affecting

clinicians’ diagnosis, treatment, and prognosis evaluation

of patients.

After reviewing the literature, we found that many CT-based

deep learning studies use CT layers ranging from one to several

dozen layers (33, 52, 56–59). However, we did not review the

literature on how many CT layers of input were optimal for deep

learning. For clinical work, artificial intelligence needs to process

and interpret images quickly and accurately, reducing workflow

and medical errors (60). Therefore, it is essential to reduce the

workload of doctors while ensuring accuracy. The aim of this

study is to build a deep learning system to help clinicians quickly

assess patients. If too many CT layers are entered, this increases

the workload of the clinician and also increases the hardware

configuration conditions required to run the model (61). The

study by Hu et al. showed that the performance of building a

model with three consecutive CT layers centered on the largest

cross-section of the tumor was quite close to that of building a

model based on the whole tumor volume (AUC, 0.712 VS. 0.725)
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(62). This provided the basis for our study. Therefore, we

screened the five consecutive axial slices with the largest tumor

area from the CT images of each patient for the construction of

the dataset. The results of our analysis confirmed that both the

DetectionNet and the PredictionNet can achieve excellent

performance on images based on only five CT layers, which

will serve as a reference for other researchers.

Radiomics is an emerging field that has received significant

attention in the practice of oncology (31, 63). Li et al. (64) used

radiomics to predict the depth of tumor invasion, and Wang

et al. (65) predicted lymph node metastasis with an accuracy of

0.77 and 0.80, respectively. Li et al. (66)predicted HER2 status in

gastric cancer patients based on CT radiomics, with an AUC of

0.771 in the test cohort. The study by Wang et al. (67)also

showed similar results. The accuracy of the DetectionNet and

the AUC of the PredictionNet were significantly higher than

their radiomics models. The excellent performance of this study

may be attributed to the use of deep learning algorithms. The

study by Yun et al. (68) showed that integrating deep learning

features and radiomics features would reduce the classification

performance of deep learning feature models. Chalkidou et al.

(69) believed that radiomics features may contain human bias.

At the same time, there had always been a problem with

reproducibility in radiomics (70). With the advent of deep

learning, the value of traditional radiomics has been called

into question (71, 72). Deep learning allows relevant features

to be learned automatically, without prior definition by the

researcher, and these abstract representations also improve

learning capabilities, increasing generality and accuracy while

reducing potential bias (73). Human-defined radiomics had

certain limitations, and the differences between tissue types

may not be fully included in the radiomics features.

More importantly, this study also explored the clinical

application of deep learning models. Although the previous

artificial intelligence research also has excellent performance,

they have only been tested in the internal validation cohort or

external validation cohort, and have not tried to apply to clinical

practice (74, 75), which is not in line with the trend of

personalized medicine (76). Schmidt et al. (77) believed that

medical research should serve clinical applications. Therefore,

we developed the DLS for clinicians. We also built a simple web

service for clinicians to use in clinical work. When uploading

enhanced CT images of gastric cancer, no professional

annotation is required, DLS or web will display brief results of

the stage and HER2 prediction. Although there are many

difficulties in translating medical research into clinical

technology (78), and Cabitza et al. (79) pointed out that

artificial intelligence may bring unforeseen consequences in

clinical practice, we still believe that this is a worthwhile

attempt. Artificial intelligence, with its efficient learning and
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data processing capabilities, will change the way we deal with

gastric cancer and become an invaluable tool for clinicians.

This study has several limitations. First, most of the patients

in this study were from a single center, and DLS may not

perform well on contrast-enhanced CT images from other

hospitals. In our further studies, we will do our best to

conduct a multicenter study to reduce the differences between

hospitals and make the DLS more robust. In addition, the sample

size of the TCIA cohort and prospective cohort of this study was

small. Therefore, DLS needs to be validated in larger cohorts.

Besides, this study used only enhanced CT arterial phase images

for prediction. Another staging of contrast-enhanced CT is for

further study. Finally, the DLS of this study was constructed

based on the 2D model. In future studies, we will explore the

clinical value of 3D models in CT.

In conclusion, our DLS can preoperatively predict the stage

and HER2 status in gastric cancer patients based only on

enhanced CT images. To make our model more intuitive and

convenient for clinicians, we designed a web service based on the

developed algorithm. The DLS will help clinicians evaluate the

stage and HER2 status of gastric cancer patients preoperatively

and select the appropriate treatment, thereby reducing the

physical and financial burden on patients.
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