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Background: Perineural invasion (PNI), a form of local invasion defined as the

ability of cancer cells to invade in, around, and through nerves, has a negative

prognostic impact in oral cavity squamous cell carcinoma (OCSCC).

Unfortunately, the diagnosis of PNI suffers from a significant degree of intra-

and interobserver variability. The aim of this pilot study was to develop a deep

learning-based human-enhanced tool, termed domain knowledge enhanced

yield (Domain-KEY) algorithm, for identifying PNI in digital slides.

Methods: Hematoxylin and eosin (H&E)-stained whole-slide images (WSIs, n =

85) were obtained from 80 patients with OCSCC. The model structure

consisted of two parts to simulate human decision-making skills in

diagnostic pathology. To this aim, two semantic segmentation models were

constructed (i.e., identification of nerve fibers followed by the diagnosis of PNI).

The inferred results were subsequently subjected to post-processing of

generated decision rules for diagnostic labeling. Ten H&E-stained WSIs not

previously used in the study were read and labeled by the Domain-KEY

algorithm. Thereafter, labeling correctness was visually inspected by two

independent pathologists.

Results: The Domain-KEY algorithm was found to outperform the

ResnetV2_50 classifier for the detection of PNI (diagnostic accuracy: 89.01%

and 61.94%, respectively). On analyzing WSIs, the algorithm achieved a mean

diagnostic accuracy as high as 97.50% versus traditional pathology. The

observed accuracy in a validation dataset of 25 WSIs obtained from seven

patients with oropharyngeal (cancer of the tongue base, n = 1; tonsil cancer,

n = 1; soft palate cancer, n = 1) and hypopharyngeal (cancer of posterior wall,

n = 2; pyriform sinus cancer, n = 2) malignancies was 96%. Notably, the

algorithm was successfully applied in the analysis of WSIs to shorten the time
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required to reach a diagnosis. The addition of the hybrid intelligence model

decreased the mean time required to reach a diagnosis by 15.0% and 23.7% for

the first and second pathologists, respectively. On analyzing digital slides, the

tool was effective in supporting human diagnostic thinking.

Conclusions: The Domain-KEY algorithm successfully mimicked human

decision-making skills and supported expert pathologists in the routine

diagnosis of PNI.
KEYWORDS

oral cavity squamous cell carcinoma, perineural invasion, deep learning, artificial
intelligence, digital pathology
Introduction

Despite decades of intense scientific exploration, oral cavity

squamous cell carcinoma (OCSCC) remains a major public

health concern with significant costs to patients and their

families – especially in South Central Asia and Pacific Islands

where betel nut chewing is endemic (1, 2). While surgical

resection remains the mainstay of treatment, a multimodal

approach to therapy is increasingly being used to treat

advanced tumors (3–6). Therefore, there is an urgent, unmet

need to develop accurate risk stratification tools specifically

designed to identify patients who are most likely to benefit

from adjuvant therapy. A detailed analysis of pathological risk

factors (RFs) is also necessary to improve adjuvant treatment

tailoring (7) and weighted risk score systems with this aim have

been proposed (8).

Perineural invasion (PNI), a form of local invasion defined

as the ability of cancer cells to invade in, around, and through

nerves, poses an indication for adjuvant treatment and has a

negative prognostic impact (9, 10). Unfortunately, the diagnosis

of PNI suffers from a significant degree of intra- and inter-

observer variability. The use of deep learning (DL) techniques

and artificial intelligence (AI) holds promise to overcome these

limitations (11–18). In recent years, there have been several

attempts in the field of digital pathology to comprehensively

capture the histology features of OCSCC (19, 20). While current

DL-based algorithms are generally fully-automated, their

robustness is largely dependent on the availability of big data

sources. In this scenario, a human-AI interaction approach can

enhance the accuracy and efficiency of pathological readings to

render accurate diagnoses. The necessity of this alliance under

the framework of hybrid intelligence is necessary for the

reliability of tasks based on relatively limited training datasets,

as those available for pathological research. Starting from these

premises, the aim of this study was to develop a DL-based
02
human-enhanced tool for identifying PNI in digital slides

obtained from patients with OCSCC. On the one hand, such

an approach enables a more objective pathological assessment of

PNI that is suitable for clinical prognostication. On the other

hand, our tool has the potential to tailor treatment at the

individual level.
Materials and methods

Ethical statement

Pathology slides of OCSCC were obtained from the Tissue

Bank of the Chang Gung Memorial Hospital, Linkou (Taoyuan,

Taiwan). The local Institutional Review Board (identifier: 2020-00-

346B) granted ethical approval to process and analyze all data.
Study patients

The study cohort consisted of 80 patients with first primary

OCSCC (76 men and 4 women; mean age: 56 years; age range: 36

−82 years; Table 1) enrolled from 2011 to 2017. The occurrence

of PNI increased in a stepwise fashion according to the pT status,

as follows: pT1, 6.2%; pT2, 22.7%; pT3, 34.2%; and pT4, 47.3%.
Validation cohort

The predictive accuracy of the Domain-KEY algorithm was

validated by taking into account a total of 25 whole-slide images

(WSIs) obtained from seven patients with oropharyngeal (cancer

of the tongue base, n = 1; tonsil cancer, n = 1; soft palate cancer,

n = 1) and hypopharyngeal (cancer of posterior wall, n = 2;

pyriform sinus cancer, n = 2) malignancies.
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Image acquisition and ground
truth annotation

Figure 1 provides a workflow diagram for ground truth

image annotation. Hematoxylin and eosin (H&E)-stained tissue

slides (n = 85) without pen marks were obtained from all study

participants. A NanoZoomer S360 scanner (Hamamatsu

Photonics; Hamamatsu City, Japan) was used to acquire (400×

magnification) and export (NDPI file format; size: 0.23 × 0.23

micron per pixel) WSIs (n = 85). A total of 540 regions of

interest (ROIs) were manually selected from 65WSIs (mean size:

5000 × 5000 pixels) and the resulting images were stored (Tag

Image File Format [TIFF]) using the scanner’s built-in software.

The remaining 20 WSIs were used to develop the decision rule

(n = 10) and validation of the prediction (n = 20). On analyzing

the 540 TIFF images with the MetaLite software, we identified

1145 nerves, of which 814 were normal and 331 had evidence of

PNI. A total of 127 TIFF images were selected as background

through the exclusion of the region used for ground truth

labeling. Ground truth annotation was performed in MetaLite
Frontiers in Oncology 03
by adding specific labeling layers. All procedures were

independently performed by three trained technicians

supervised by an experienced pathologist. Since the analysis

was undertaken by independent assessors, overlaps of structures

labeled as PNI or normal nerve within the same patch were

possible. TIFF files (n = 540) containing ROIs were split into

training (n = 389) and testing (n = 151) sets. The latter was

dichotomized and used to test the presence of PNI (n = 94)

versus normal nerve (n = 57). Table 2 and Figure 1 provide a

summary of data preparation.
MetaLite annotation software

TIFF files were annotated using the MetaLite open-source

software tool. Differently from similar open-source image

analysis programs for digital pathology, MetaLite provides a

simple install wizard and has a user-friendly interface.

Furthermore, it supports, reads, and writes the common image

formats used in digital pathology and the Digital Imaging and

Communications in Medicine (DICOM) standard. MetaLite

offers several tools (e.g., brushes, erasers, and polygons) that

can be used to annotate images using keyboard shortcuts. It also

offers an AI plug-in that enables the training of machine learning

models. The source code is available for use, modification, and

distribution with its original rights (https://github.com/

JelloXBiotechInc/MetaLite).
Model architecture and algorithm
development

For the purpose of this study, PNI was defined as tumor cell

invasion in, around, and through the nerves (21, 22). A domain

knowledge-enhanced yield (Domain-KEY) algorithm for the

detection of PNI was developed as a DL-based human-

enhanced tool. A schematic flowchart of the algorithm is

depicted in Figure 2A. The model structure consists of two

parts to simulate human decision-making skills in diagnostic

pathology. The first part comprised two semantic segmentation

models – one aimed at recognizing the presence of nerve fibers

and the other one at identifying PNI. The inferred results were

subsequently subjected to post-processing of generated decision

rules to make a diagnostic decision. The DL architecture was

applied to recognize the presence of nerve fibers and subsequently

identify PNI. Using a benchmark model for segmentation (High-

Resolution Network, version 2) (23), four multi-resolution group

convolutions were designed by connecting high-to-low

resolutions to recover a high-resolution representation. Multiple

representations were also mixed in the final stage of the process to

achieve the target resolution. This approach allowed extracting

feature information at micro and macro levels from different

resolutions and achieved qualified accuracy in a pilot training set.
TABLE 1 General characteristics of patients with oral cavity
squamous cell carcinoma included in the study.

Characteristic (n, %; before PS matching) n %

Sex

Men 76 95.0

Women 4 5.0

Age (years)

Range: 36−82

Mean: 56

Tumor subsite

Tongue 40 50.1

Buccal 20 25.0

Gum 9 11.3

Floor of mouth 5 6.3

Retromolar trigone 4 5.0

Lip 2 2.5

Pathologic T status

T1 2 2.5

T2 33 41.3

T3 3 3.8

T4 42 52.6

Pathologic N status

pN0 26 32.5

pN1 5 6.3

pN2 28 35.0

pN3b 21 26.3

Pathologic stage

I 2 2.5

II 19 23.8

III 5 6.3

IV 54 67.5
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FIGURE 1

Workflow used for image acquisition and ground truth annotation. Image acquisition was undertaken by selecting and extracting ROI patches
(black rectangle) from whole slide images. Subsequently, trained technicians supervised by an expert pathologist annotated areas of perineural
invasion (marked in green) and normal nerve structures (marked in blue). Finally, labeled patches were processed to binary training data sets
with appropriate masks; alternatively, they were used for building a testing data set for the recognition of nerve structures.
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The network ranged from 256 (H) × 256 (W) × 3 to 256 (H) × 256

(W) × 1. The basement channel (C) was equal to 32. The

resolution in the function decreased using the convolution with

stride 2 and increased using bilinear up-sampling. The

architecture of the model is shown in Figure 2B. The network

structure consists of three parts termed A, B, and C (Figure 2C).

Part A comprised a convolutional block (i.e., the basic network

unit composed of a convolutional layer), a batch normalization

layer, and a rectified linear unit (ReLU) activation function. Part B

consisted of a bottleneck block to maintain spatial resolution and

enlarge the receptive field. Finally, part C was a basic block aimed

at maintaining low-level features.

The network model was developed on an NVIDIA GTX 2080

Ti Graphics Card using the TensorFlow architecture and

subsequently trained with the Adam algorithm for optimization

(initial learning rate: 0.001). During data augmentation to increase

the dataset size by a magnitude of 2048, training pairs (image and

target mask) were randomly cropped, sliced, and rescaled (size: 256

× 256). Training data were also augmented by flipping each image

along the horizontal and vertical axes. Stain variations and noise

were minimized to improve the stability of the model. With this

aim, we randomly adjusted brightness [-30%, +30%], saturation

[0.7, 1.3], and contrast [0.7, 1.3] of each image. The training process

converged when the mean square error loss for recognizing the

presence of nerve fibers and PNI fell to 0.0082 and 0.0077,

respectively. The value range of RGB channels was then

normalized to [0, 1] to speed up learning and improve performance.

The diagnostic workflow for the presence of PNI is

summarized in Figure 2D. The inference results for the

identification of nerve fibers were initially processed with a

Gaussian pyramid. A threshold filter and a smoothing

construction algorithm were applied to reduce noise and the

unusual right angle observed for nerve fibers. The inference

results for the diagnosis of PNI were processed by combining

constant thresholding and the Ostu’s thresholding technique to

filter signals undetectable to the human eye. A size filter was also

applied to remove irregular components that increased noise. The

optimal cutoff for this filter was identified by inferring the
Frontiers in Oncology 05
presence of nerve fibers and the perineurium on ten H&E-

stained digital slides. A derived signal to identify PNI was then

calculated based on 1) the inferred presence of nerve fibers and the

perineurium and 2) the presence of irregular components. We

then examined the size of irregular components to rule out their

origin from noisy image segmentation (Figure 2E). On analyzing

five WSIs, we identified 30 cells responsible of PNI with a mean

size of 13.5 µm; this finding is in line with the diameter of

malignant squamous cell carcinoma cells (mean: 13 ± 2 µm)

(24, 25). The analysis of size distribution revealed that part of the

irregular components had a size > 40,000 pixel^2 (i.e., 14−15

cells). Filtering of all irregular components was deemed to render

the algorithm less sensitive as a result of an erroneous exclusion of

certain PNI foci. At 10% and 5% levels of significance (26), the

cutoff values were 21,632 pixel^2 and 36,864 pixel^2, respectively.

As the latter cutoff was close to 40,000 pixel^2, we decided to

apply a 10% level of significance and use a value of 21,632 pixel^2

to filter out 90% of the irregular components. Therefore, the

detection limit of the algorithm was equal to ~8 cells.

We next examined the performance of the Domain-KEY

algorithm for the diagnosis of PNI. With this aim, a workflow

based on DL technology was implemented without post-

processing and decision thinking. The ResNet_v2_50 model

was used to train and test the same dataset for reference

purposes (27). The process of model training and testing is

summarized in Figure 3. In the data preprocessing phase, a total

of 389 ROIs were split into smaller patches (1024 ×1024 pixels,

n = 6281) for training. Furthermore, 94 ROIs were split into

1729 patches for testing. The ResNet_v2_50 classification model

was applied as a feature extractor and fully connected to an

output dense layer 2. The kernel method was used for feature

extraction from the existing pre-trained model (http://www.

tfhub.dev/google/imagenet/resnet_v2_50/feature_vector/5). The

output layer was initialized with a random normal distribution.

During the training progress, the weight kernels were updated by

the Adam Optimizer with an initial learning rate of 0.001 and an

exponential decay function was applied every 50000 steps. The

model was trained with a batch size of 10. Each image was
TABLE 2 Summary of image acquisition and data preparation.

Dataset name Whole slide images, n (NDPI
format)

Image patches, n (TIFF format) Ground truth
annotation, n

Background* 39 127 127

Nerve identification
feature*

53 148 (perineural invasion)† 331 (perineural
invasion)

398† (normal nerve)† 814 (normal nerve)

Size filter 10 – –

Clinical validation 10 – –

Total number, n 85 540 (389 used for training and 151 for testing [57 for nerve fibers and 94 for
perineural invasion])

1272
NDPI, NanoZoomer Digital Pathology Image; TIFF, Tagged Image File Format.
*A portion of the whole-slide image was used for creating both the background and nerve identification datasets.
†Since the analysis was undertaken by independent assessors, overlaps of structures labeled as perineural invasion or normal nerve within the same patch were possible.
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FIGURE 2

Schematic representation of the domain knowledge enhanced yield (Domain-KEY) algorithm applied to identify perineural invasion.
(A) Workflow for algorithm development. (B) Architecture of the deep learning image segmentation model used to identify normal nerve
structures and perineural invasion. (C) Detailed description of the function block architecture. (D) Creation of a rule flow for identifying
perineural invasion. Inferred results from the identification of normal nerve structures and perineural invasion underwent post-processing and
irregular components were filtered out. Each nerve structure was subsequently inspected for the presence or absence of perineural invasion.
(E) Distribution of the invasive component outside the nerve structure. These findings were considered as noisy signals and used to choose
filters of appropriate sizes.
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resized to 224 × 224 and randomly flipped along the horizontal

and vertical axes. When the mean Softmax cross entropy loss fell

to 0.001, the training process converged. During testing, splits

from ROI images were inferred by the trained model to assign a

diagnosis of PNI (presence versus absence).
Validation of the hybrid intelligence
model: Diagnostic time analysis

A total of 10 H&E-stained WSIs used for the development of

the decision rule were employed to validate the hybrid

intelligence model by taking into account the time required to

reach a diagnosis. Label-free WSIs underwent visual inspection

by two independent pathologists (LYL and CHY) to assess the

PNI status; in parallel, the diagnostic time for each slide was

carefully annotated. After a washout interval of at least 8 weeks,

the same WSIs were re-inspected after the addition of labels

provided by the hybrid intelligence model. The time required to

reach a diagnosis was then recorded for comparison purposes.
Results

Identification of nerve fibers

The sensitivity, specificity, and accuracy of the DL-based

Domain-KEY algorithm for detecting nerve fibers were 92.98%,

83.33%, and 91.67%, respectively (Table 3). Specificity was lower
Frontiers in Oncology 07
than sensitivity, thereby suggesting that the algorithm would

produce more false positives than false negatives. A graphic

depiction of true positives, true negatives, false positives, and

false negatives is shown in Figures 4A−D. Images with

misclassification errors were reviewed by two pathologists

(LYL and CHY). The results revealed that the presence of

fibroblasts and inflammatory cells surrounding adjacent nerves

sporadically resulted in classification errors.
Diagnosis of perineural invasion

Table 4 summarizes the performance of the DL-based

Domain-KEY algorithm for the diagnosis of PNI. Our

algorithm (191 testing levels) markedly outperformed the

reference ResnetV2_50 model (1729 small patches). The

sensitivity, specificity, and accuracy for the detection of PNI

were 94.31% versus 35.03%, 79.41% versus 69.37%, and 89.01%

versus 61.94%, respectively. The most marked improvement

occurred in terms of sensitivity, as a result of the pixel-wise

resolution of semantic segmentation. A graphic depiction of true

positives, true negatives, false positives, and false negatives is

shown in Figures 4E–H. The algorithm easily identified even

small areas of PNI. However, the pixel-wise resolution resulted

in noisy signals originating from small-sized objects. In addition,

certain nerves were sporadically separated into different

components. Since this lowered the specificity of the algorithm

to some extent, various size filters were applied. Figure 5 shows

how sensitivity and specificity varied according to the filter size.
FIGURE 3

Workflow used for training and testing the ResnetV2_50 reference model. Images in the training set (green background) were split into smaller
patches for data augmentation (yellow background) and subsequently trained with the ResnetV2 model (blue background). When the model
converged to a good training accuracy, test results were calculated (orange background). The trained model was finally applied to analyze
patches and assign a probability of normal nerve fibers (blue bar) and perineural invasion (green bar). When the probability of normal nerve
fibers was higher than that of perineural invasion, the image was labeled as normal nerve (and vice versa).
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The accuracy for the detection of PNI improved when the cutoff

increased from 0 to 10,000 pixel^2, with an optimal diagnostic

performance in the 20,000−30,000 pixel^2 range. When the

cutoff was restricted to a 21,000−23,000 pixel^2 range, an

accuracy >89% was achieved. When cutoff values >30,000

pixel^2 were tested, the accuracy decreased and subsequently

fell to values similar to those observed when a cutoff of 0 pixel^2

was used. Collectively, these results indicate that the inclusion of

a size filter into the algorithm is appropriate.
Frontiers in Oncology 08
Integration of the domain-KEY algorithm
in digital pathology

Clinical digital pathology is generally based on the

assessment of WSIs rather than ROI patches. To accelerate the

integration of the Domain-KEY algorithm into routine practice,

the tool was plugged into the MetaLite software and run on

WSIs. Pathologists were therefore able to open digital WSIs and

execute the plug-in to add AI-annotated masks for detecting
FIGURE 4

Domain knowledge enhanced yield (Domain-KEY)-based classifier for the presence of perineural invasion. Correct (A, B) and incorrect
(C, D) identification of nerve fibers. Incorrect classification resulted from the presence of similar patterns (C) or noisy signals (D). Correct
(E, F) and incorrect (G, H) identification of perineural invasion. Incorrect classification resulted from the presence of fibroblasts surrounding
the nerve and inappropriate separation of nerve fibers (G) or noisy signals (H). The purple color denotes the recognition of nerve structures,
whereas normal nerves are marked in red. Areas of perineural invasion are highlighted in green with a black/blue background. The yellow
rectangle denotes an area of incorrect classification.
TABLE 3 Confusion Matrix and Testing Performance of the Model for Nerve Identification (Number of Nerve Structures, n = 132).

Actual: positive (n) Actual: negative (n)

Predicted: positive TP (106) FP (3)

Predicted: negative FN (8) TN (15)

Sensitivity: 92.98% Specificity: 83.33% Accuracy: 91.67%
TP, true positive; FP, false positive; FN, false negative; TN, true negative.
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nerve fibers and identifying PNI (Figure 6). The hybrid

intelligence diagnostic framework was implemented as follows.

First, ten H&E-stained WSIs not previously used in the study

were read and labeled by the Domain-KEY algorithm.

Thereafter, the labeling correctness was visually inspected by

two independent pathologists (LYL and CHY). They initially

checked whether the area included in the rectangle consisted of

nerve fibers. Subsequently, a quality control of the AI-based

prediction model for the presence of PNI (green rectangle area)

versus normal nerve fibers (blue rectangle area; Figure 6B)

was undertaken.
Accuracy of the hybrid intelligence
model for detecting nerve fibers

After quality control of >400 labels, the mean accuracy of the

model for the presence of nerve fibers was 87.90% and 87.09%

for the first and second pathologists, respectively (mean

accuracy: 87.50%, Table 5). These values were lower than the

accuracy found in the testing set of ROI images; this was caused

by differences in sensitivity values (75.00% versus 91.66% for the

first and second pathologists, respectively) related to the

different number of false negatives.
Accuracy of the hybrid intelligence
model for detecting perineural invasion

The mean accuracy for the diagnosis of PNI increased from

89.01% to 97.53% after pathology assessment. This was caused

by the presence of invasive features (identified in 8 out of 12

cases) that were easily identified by the pathologists. This value

was in line with the accuracy found in the testing set of

ROI images.
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Accuracy in a validation dataset
of oropharyngeal and
hypopharyngeal tumors

All of the 25 images obtained for patients with either

oropharyngeal and hypopharyngeal tumors contained PNI,

which was successfully identified by the Domain-KEY

algorithm in 24 cases (accuracy = 96%; Figures 7A, B).

Therefore, the observed accuracy in the validation dataset was

similar to that originally observed for OCSCC (97.5%).
Added diagnostic value of the hybrid
intelligence model: Diagnostic time
reduction

On analyzing ten WSIs, the addition of the hybrid

intelligence model decreased the mean time required to reach a

diagnosis by 15.0% and 23.7% for the first and second

pathologist, respectively (Table 6). In one case, the algorithm

was also able to detect previously unidentified PNI features.
Discussion

In this pilot study, we described a robust DL-based human-

enhanced tool for identifying PNI in digital slides obtained from

patients with OCSCC. Our results indicated that pathologists

can reach an accurate diagnosis of PNI with the aid of the

Domain-KEY algorithm (accuracy values for ROI patches and

WSIs: 89.01% and 97.53%, respectively). Notably, the

classification accuracy provided by our model is not only

higher than those of current algorithms used to perform object

detection but it is also in line with the values reported by recent

AI-based technologies in diagnostic pathology. (20, 24) An
TABLE 4 Confusion matrix and testing performance of the model for identifying perineural invasion (Regions of Interest), Domain-KEY AI model
versus ResnetV2_50 model.

(A) CGMH method (Domain-KEY AI) (number of nerve structures, n = 191)

Actual: positive (n) Actual: negative (n)

Predicted: positive TP (116) FP (14)

Predicted: negative FN (7) TN (54)

Sensitivity: 94.31% Specificity: 79.41% Accuracy: 89.01%

(B) ResnetV2_50 (number of patches, n = 1729)

Actual: positive (n) Actual: negative (n)

Predicted: positive TP (64) FP (246)

Predicted: negative FN (310) TN (1109)

Sensitivity: 35.03% Specificity: 69.37% Accuracy: 61.94%
CGMH, Chang Gung Memorial Hospital; AI, artificial intelligence; TP, true positive; FP, false positive; FN, false negative; TN, true negative.
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inherent advantage of our algorithm is that it can be integrated

as a plug-in into the MetaLite open-source software to meet the

growing need for user-friendly tools in digital pathology.

While the pixel-wise resolution of the Domain KEY

algorithm allowed detecting the presence of PNI at a fine

level of detail, noisy signals originating from small-sized

objects were a potential source of confounding. This issue

was addressed with the application of a size filter (cutoff: 21,632

pixel^2) during the post-processing phase. Under these

circumstances, the limit of detection of our algorithm was of

approximately 8 cells.
Frontiers in Oncology 10
It can be argued that this approach can lead to

misclassification when small clusters of tumor cells are

invading the nerve. However, on assessing the presence of

PNI, the pathologist’s attention is chiefly focused on the

presence of tumor cell nests rather than isolated malignant

cells. In addition, an analysis of diagnostic accuracy carried

out on ROI patches and WSIs revealed that a satisfactory

performance for our algorithm. The Domain-KEY algorithm

described in our study outperformed the ResnetV2_50 classifier

for the detection of PNI (diagnostic accuracy: 89.01% and

61.94%, respectively). In addition, we implemented a
B

C

A

FIGURE 5

Performance of the Domain-KEY algorithm following the application of various size filters with different cutoffs. Curves depicting the diagnostic
performance (A) as well as sensitivity, specificity, and accuracy (B, C) of the Domain-KEY algorithm following the application of various size
filters with different cutoffs. The cutoff values started from 0 pixel^2 and were increased in stepwise fashion using an interval of 10,000. The
accuracy for the detection of PNI improved by 9.95% when the cutoff increased from 0 to 10,000 pixel^2, with an optimal diagnostic
performance (>87%) in the 20,000−30,000 pixel^2 range. When the cutoff was restricted to a 21,000−23,000 pixel^2 range, an accuracy >89%
was achieved. When cutoff values >30,000 pixel^2 were tested, the accuracy decreased and subsequently fell to values similar to those
observed when a cutoff of 0 pixel^2 was used.
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comparison between the Domain-KEY algorithm and the

HRNet_v2 model, which relied on a similar architecture

(semantic segmentation) for the detection of PNI in the

absence of neural recognition. Despite a slight improvement

compared with the ResnetV2_50 classifier, the diagnostic

accuracy of the HRNet_v2 model was still lower (63.87%) than
Frontiers in Oncology 11
that of the Domain-KEY algorithm (Supplementary Table 1).

Collectively, these results indicate that the Domain-KEY

algorithm markedly outperforms the direct use of DL

technologies. This is attributable to the two-step recognition

workflow implemented in the Domain-KEY model. Specifically,

our algorithm initially detects the presence of nerve structures
B

A

FIGURE 6

A hybrid intelligence model was developed to integrate human decision-making in clinical pathology with data extracted by the Domain-KEY
algorithm. Two pathologists checked the correctness (orange background) of all Domain-KEY-labeled (blue background) whole-slide images
(A). The review was implemented after the integration of the Domain-KEY AI algorithm into an open-source software (MetaLite). Green and blue
rectangles denote Domain-KEY-labeled areas of perineural invasion and normal nerve fibers, respectively (B).
TABLE 5 Confusion matrix and performance of the model used for pathological validation of perineural invasion (whole slide images).

First pathologist (LYL)*

Actual: positive (n) Actual: negative (n)

Predicted: positive TP (12) FP (7)

Predicted: negative FN (4) TN (384)

Sensitivity: 75.00% Specificity: 98.20% Accuracy: 97.29%

Second pathologist (CHY)*

Actual: positive (n) Actual: negative (n)

Predicted: positive TP (11) FP (8)

Predicted: negative FN (1) TN (385)

Sensitivity: 91.66% Specificity: 97.96% Accuracy: 97.77%
TP, true positive; FP, false positive; FN, false negative; TN, true negative.
*Accuracy for recognition of nerve structures: First pathologist, 87.90% (407/463); Second pathologist, 87.09% (405/460).
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(first step) followed by the specific identification of PNI (second

step). This stepwise approach was found to outperform in terms

of diagnostic accuracy other predictive models that rely on 1)

high-resolution semantic segmentation for identifying PNI at a

fine level of detail and 2) the use of size filters to reproduce the
Frontiers in Oncology 12
pathologist’s thinking (which is chiefly focused on the presence

of tumor cell nests rather than isolated malignant cells). On

analyzing WSIs obtained from patients with OCSCC, our

algorithm was able to achieve a mean diagnostic accuracy as

high as 97.5% after image review carried out by two pathologists.
BA

FIGURE 7

Validation of the Domain-KEY algorithm for identifying PNI in oropharyngeal and hypopharyngeal malignancies. (A) Identification of PNI in
oropharyngeal carcinoma (green box). The arrowhead indicates the tumor surrounding the entire nerve (B). Identification of PNI in
hypopharyngeal carcinoma (green boxes). The arrowhead indicates the tumor that focally touched the perineurium.
TABLE 6 Impact of the model in decreasing the time required to reach a diagnosis: analysis of whole-slide images.

First pathologist (LYL)

Whole-slide
image
identifier

Diagnostic time without the
application of Domain-KEY

AI, sec

Diagnostic time with the
application of Domain-

KEY AI, sec

Percentage
change in

diagnostic time

Notes

S2012-xxx201 37 126 -240.5%

S2018-xxx884 50 89 -78.0%

S2018-xxx153 32 22 31.3%

S2018-xxx810 54 19 64.8%

S2019-xxx702 70 131 -87.1%

S2019-xxx637 160 75 53.1%

S2020-xxx911 90 44 51.1%

S2020-xxx163 30 26 13.3%

S2021-xxx140 77 49 36.4%

S2021-xxx542 108 21 80.6%

Total time, sec 708 602 15.0%

Second pathologist (CHY)

S2012-xxx201 20 72 -260.0%

S2018-xxx884 45 32 28.9%

S2018-xxx153 55 14 74.5%

S2018-xxx810 175 12 93.1% Initially, the pathologist did not identify PNI;
however, the decision was reversed based on the
algorithm’s results

S2019-xxx702 55 131 -138.2%

S2019-xxx637 101 110 -8.9%

S2020-xxx911 51 98 -92.2%

S2020-xxx163 36 12 66.7%

S2021-xxx140 42 57 -35.7%

S2021-xxx542 138 10 92.8%

Total time, sec 718 548 23.7%
AI, artificial intelligence; PNI, perineural invasion.
frontiersin.org

https://doi.org/10.3389/fonc.2022.951560
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lee et al. 10.3389/fonc.2022.951560
Notably, the Domain-KEY algorithm showed a similar accuracy

(96%) in detecting PNI in a validation data set of 25 WSIs

obtained from seven patients with oropharyngeal and

hypopharyngeal malignancies.

A significant added value of the Domain-KEY algorithm was

the reduction in the time required to reach a diagnosis when

WSIs were analyzed. Moreover, our tool allowed detecting

previously unidentified PNI in digital slides. Collectively, these

preliminary results indicate that the Domain-KEY algorithm has

the potential to improve routine pathology practice in the

assessment of PNI. However, the presence of noisy signals that

may lead to diagnostic artefacts should be acknowledged as a

significant shortcoming. Additional optimization is therefore

necessary before routine application of the proposed technique.

Notably, our validation experiments were designed to mimic

the PNI rates observed in clinical practice. In this scenario, WSIs

contained both normal nerves and areas of PNI, although

infiltration of nerves by cancer cells occurred rarely. Since true

positive and false positive rates were similar, the precision rate of

the algorithm decreased in parallel. Although OCSCC offers a

unique opportunity to develop and validate novel DL algorithms

for digital pathology, AI-assisted approaches have been so far

rarely applied to this malignancy. Published studies in the field

have been limited to the detection of primary tumor cells using

conventional support vector machine learning algorithms or

convolutional neural network-based DL techniques (Table 7).
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This is, to our knowledge, the first attempt to identify PNI in

OCSCC slides through an AI-based classifier. A correct

diagnosis of PNI is more challenging than the identification of

primary tumor cells. For this reason, our algorithm was designed

to mimic human decision-making skills through a stepwise

approach (i.e., identification of nerve fibers followed by the

diagnosis of PNI). Since PNI has adverse prognostic

implications in different solid malignancies (e.g., pancreatic

cancer, colorectal cancer, gastric cancer, prostate cancer, and

other head and neck tumors) (28), our approach may have

broader clinical applications.

Apart from PNI, both lymphatic invasion and vascular

invasion have been associated with an increased risk of local

recurrence, lymph node metastasis, distant metastasis, and less

favorable survival figures in patients with OCSCC (8). On

analyzing a large cohort of 1570 patients with first primary

OCSCC diagnosed between 1996 and 2011, the prevalence

rates of PNI, lymphatic invasion, and vascular invasion were

29.2%, 5.2%, and 1.9%, respectively (29). Therefore, the

prevalence of PNI appears markedly higher compared with

both lymphatic invasion and vascular invasion. The question as

to whether the Domain-KEY algorithm could be useful in

distinguishing PNI from lymphatic invasion and vascular

invasion on the same pathological specimen remains

unanswered. Future ad hoc investigations should work to

address this research question.
TABLE 7 Published studies focusing on computer-assisted pathological diagnosis for oral cavity squamous cell carcinoma.

Authors
[reference]
(year of
publication)

Cancer
site

Endpoint Dataset Methods Accuracy Accuracy (patho-
logical validation
based on slide
examination)

Lee et al.
[Current study]

Oral
cavity

Identification of nerve
structures and diagnosis
of perineural invasion in
oral cavity SCC

65 WSIs, 540
patches (331
annotation for
perineural
invasion,
814 for normal
nerve), 10 WSIs
for pathological
validation

Domain knowledge enhanced yield (Domain-
KEY) algorithm as a form of hybrid intelligence to
identify nerve structures and diagnose perineural
invasion in oral cavity SCC.

89% 97.5%

Das et al.
(20)

Oral
cavity

Benign lesions; SCC with
different tumor
differentiation levels
(well, moderately, and
poorly differentiated)

156 WSIs, 8321
patches

CNN based multiclass grading classifier for
automated classification of differentiation levels in
oral cavity SCC.

97.5% –

Halicek et al.
(24)

Head and
neck

Benign lesions; SCC 228 WSIs (head
and neck)
124 WSIs (oral
cavity)

Two-dimensional CNN classifier based on the
Inception V4 architecture for predicting the
probability of cancer on analyzing segmented
patches from WSIs.

85%*
(AUC:
0.916)

-
(AUC: 0.944)

Rahman et al.
(19)

Oral
cavity

Benign lesions; SCC 42 WSIs, 476
patches (237
benign lesions,
483 SCC)

SVM classifier for automated binary classification
of oral cavity SCC based on texture features.

100% –
SCC, squamous cell carcinoma; WSI, whole-slide image; CNN, convolutional neural network; SVM, support vector machine; AUC, area under curve.
*Data from head and neck squamous cell carcinoma.
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There are limitations to this study. First, our findings should

be considered as hypothesis-generating data due to the small

sample size. Independent validation of the Domain-KEY

algorithm in large clinical cohorts, including additional

analyses of variability and accuracy, will be paramount to

confirm and expand our pilot findings. In this scenario, a

higher number of training data is expected to improve the

accuracy of the model for identifying PNI. Second, noisy

signals from vascular, muscle, and lymphatic structures

resulted in a decreased specificity; additional refinement steps

are needed to address this issue. Third, the presence of

fibroblasts and inflammatory cells surrounding adjacent nerves

sporadically led to classification errors. However, inflammatory

cells are generally smaller than tumor cells and fibroblasts are

characterized by a typical fusiform shape with an elongated

nucleus. This issue might be addressed in future studies through

the use of specific size and shape filters. Finally, it can be argued

that the role of immunohistochemistry for the detection of PNI

remains unclear. While numerous immunohistochemical

markers can be a valuable diagnostic aid in the field of

OCSCC pathology, none of them has entered routine practice

(30, 31). Currently, diagnostic assessment of OCSCC continues

to rely on traditional histopathology.
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