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Sterol regulatory element binding protein-1 (SREBP-1), a transcription factor with a basic
helix–loop–helix leucine zipper, has two isoforms, SREBP-1a and SREBP-1c, derived
from the same gene for regulating the genes of lipogenesis, including acetyl-CoA
carboxylase, fatty acid synthase, and stearoyl-CoA desaturase. Importantly, SREBP-1
participates in metabolic reprogramming of various cancers and has been a biomarker for
the prognosis or drug efficacy for the patients with cancer. In this review, we first
introduced the structure, activation, and key upstream signaling pathway of SREBP-1.
Then, the potential targets and molecular mechanisms of SREBP-1-regulated lipogenesis
in various types of cancer, such as colorectal, prostate, breast, and hepatocellular cancer,
were summarized. We also discussed potential therapies targeting the SREBP-1-
regulated pathway by small molecules, natural products, or the extracts of herbs
against tumor progression. This review could provide new insights in understanding
advanced findings about SREBP-1-mediated lipogenesis in cancer and its potential as a
target for cancer therapeutics.

Keywords: SREBP-1, fatty acid synthase, fatty acids, lipogenesis, cancer therapy
INTRODUCTION

Sterol regulatory element-binding proteins (SREBPs) are identified as a family of transcription
factors with the domain of a basic helix–loop–helix leucine zipper (bHLH-LZ), which regulate genes
involved in the pathways of lipid synthesis and uptake (1–3). In mammalian cells, three SREBP
isoforms, SREBP-1a, SREBP-1c, and SREBP-2, from two genes, SREBF1 and SREBF2, have been
identified, which have overlapping transcriptional programs for the synthesis of fatty acids and
cholesterol (4, 5). SREBP-1a and SREBP-1c are derived from the same gene through alternative
splicing at transcription start sites (6), but they have different regulations for downstream target
genes (4, 7). A study conducted for about 30 years has confirmed that SREBP-1c is involved in
regulating fatty acid synthesis and lipogenesis and SREBP-1a can be implicated in two pathways of
SREBP-1c and SREBP-2 (specific to cholesterol metabolism) (8). Under pathological conditions,
SREBP-1 activation can cause lipid dysfunction to contribute to various metabolic diseases, such as
obesity, diabetes mellitus, non-alcoholic fatty liver disease, and cancer (9–12). Recently, more and
more evidence has demonstrated that SREBP-1 participates in metabolic reprogramming in
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different cancer, such as prostate cancer (13), breast cancer (14),
and glioblastoma (GBM) (15), which has been a potential target
for cancer therapy. Moreover, several essential pathways, such as
epidermal growth factor receptor (EGFR), phosphatidylinositol
3-kinase (PI3K)/protein kinase B (PKB, Akt)/mammalian target
of rapamycin (mTOR), and Ras, can regulate SREBP-1 activation
to mediate tumor growth and metastasis (15, 16). Importantly,
multiple treatment strategies targeting the SREBP-1 signaling
pathway, including small molecules or genetic inhibition, have
been extensively studied and developed (17, 18). The preparation
of the publications in this review was conducted as follows: 1) the
articles in English were electronically searched from October
1993 to May 2022 in the databases of PubMed and the Web of
Science. 2) “SREBP-1” or “sterol regulatory-element binding
protein-1” and “cancer” were used as the search terms. 3) A
secondary search was performed by checking the title and the
abstract to collect published papers with the inclusion criteria. In
this review, we summarized the key upstream signaling pathway
and the function of SREBP-1-regulated lipogenesis in different
cancer. We also discussed potential therapies targeting the
SREBP-1-regulated pathway against tumor progression. This
review could provide new insights in understanding advanced
findings about SREBP-1-mediated lipid dysfunction in cancer
and its potential as a target for cancer therapeutics.
SREBP-1 ACTIVATION AND ITS
DOWNSTREAM TARGETS IN CANCER

Human gene SREBF1 (26 kb, 22 exons, and 20 introns) at a
chromosomal location of 17p11.2 was cloned and characterized
in 1995, as a result of alternative splicing at both the 5′ and 3′
ends (19, 20). SREBP-1a and SREBP-1c differ in the extreme N-
terminal acidic amino acids, which share a similar structure
containing an NH2-terminal transcription factor domain (480
amino acids), a middle hydrophobic region (80 amino acids),
and a COOH-terminal regulatory domain (590 amino acids) (3).
SREBP-1a and SREBP-1c include 42 amino acids (12 acidic
acids) and 24 amino acids (six acidic acids) in the acidic NH2-
terminal domain, respectively. SREBP-1c has a much weaker
effect in transcription activation than that of SREBP-1a, due to its
shortened acidic domain (21). SREBP-1 is conserved from fission
yeast to humans (22), and its two isoforms are found in the liver,
adipose, and skeletal muscle tissues (20, 23, 24). SREBP-1c is
more abundant than SREBP-1a in the liver (21, 25), and SREBP-
1a is abundantly expressed in some tissues and cells, such as
heart, macrophages, and dendritic cells from bone marrow (26).
Recently, it has been revealed that SREBP-1 is obviously
activated in different cancers, which is higher than that of non-
tumor tissues (13, 27) and has been a biomarker for the
prognosis or drug efficacy for patients with cancer (14, 28).

SREBP-1a and SREBP-1c are synthesized as 125-kDa
precursors in endoplasmic reticulum membrane and cleaved
into an NH2-terminal fragment (68 kDa) by site 1 and site 2
proteases to translocate into the nucleus for lipogenesis gene
transcription, when kept in the environment from sterol
Frontiers in Oncology | www.frontiersin.org 2
depletion (29–31). SREBP-1 can form a complex with SREBP
cleavage-activating protein (SCAP) to mediate its cleavage in
sterol depletion or in the nutritional environment (10, 25).
Insulin increase by carbohydrate ingestion can cause the
decrease of Insig-2a, which leads to the release of the SREBP-
1c/SCAP complex to stimulate SREBP-1c cleavage in the Golgi
for the activation of lipogenic/glycolytic genes (25, 32).
Moreover, insulin can increase SREBP-1c expression by
activating the promoters containing the binding sites for the
liver X receptor, Sp1, nuclear factor-Y, and SREBP-1c (33). In
addition, the cleavage of SREBP-1c is regulated by
polyunsaturated fatty acids, not as SREBP-2 by SCAP or Insig-
1 (34). After the cleavage of SREBP-1, the nuclear form of
SREBP-1 binds to sterol regulatory elements (SREs) to
stimulate the transcriptions of lipogenic genes (25, 29). As
reported, SREBP-1 can activate a series of genes for fatty acid
synthesis, including ATP citrate lyase (ACLY), acetyl-CoA
carboxylase (ACC), fatty acid synthase (FASN), and stearoyl-
CoA desaturase 1 and 2 (rodent)/5 (human) (SCD-1 and -2/5),
and for lipid uptake, such as low-density lipoprotein receptor
(LDLR) (4, 30–34). Furthermore, it has been reported that
SREBP-1 activation can be involved in various cellular
functions, such as cell proliferation, cell cycle, muscle cell
differentiation, foam cell formation, and somatic cell
reprogramming (35–39). Critically, the activation of SREBP-1
obviously stimulates de novo lipogenesis to regulate cell growth,
cell cycle progression, and metastatic characteristics for cancer
progression (12, 13, 40–42). Meanwhile, these genes regulated by
SREBP-1, including ACLY, ACC, FASN, and SCD, are highly
expressed in cancer tissues compared to adjacent non-tumor
tissues, which play essential roles in the growth, metastasis, and
survival of various cancers (43–46). Taken together, SREBP-1
and its target genes are essential in cancer progression, which
have been potential targets for pharmacological or genetic
therapy (Figures 1A, B).
SREBP-1-REGULATED LIPOGENESIS
IN CANCERS

Currently, multiple signaling pathways control SREBP-1
activation to regulate the downstream genes for lipogenesis,
including the EGFR, PI3K/Akt/mTOR, and p53 mutation
pathways. EGFR signaling promotes N-glycosylation of SCAP
to reduce the association with Insig-1, which consequently
induces the proteolytic activation of SREBP-1 (47).
Importantly, the hyperactive mutation of PI3K/Akt/mTOR
signaling can inhibit oxidative stress and ferroptotic death by
regulating SREBP-1/SCD-1-mediated lipogenesis (48). Akt
activation can induce the synthesis of full-length SREBP-1 and
cause the accumulation of nuclear SREBP-1 to increase the
accumulation of intracellular lipids, such as fatty acids and
phosphoglycerides, which is sterol sensitive for activating the
FASN promoter (16). The mammalian/mechanistic target of
rapamycin complex 1 (mTORC1) regulates the transcription
and translation of SREBP-1 and SREBP-2 to promote de novo
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lipid biosynthesis in response to nutrients or insulin, which
regulate cell proliferation, mitochondrial metabolism, or
glycolytic capacity in cancer (49, 50). Similarly, insulin/
glutamine deprivation activates SREBP-1 to bind to the
promoter of glutamine synthetase (GS) for its transcription. GS
results in the O-linked N-acetylglucosaminylation (O-
GlcNAcylation) of specificity protein 1 (Sp1) for the induction
of the SREBP-1/ACC1 pathway, which increases lipogenesis and
lipid droplet accumulation in liver and breast cancer (51). Based
on the key role of O-GlcNAcylation, it has been found that O-
GlcNAc transferase (OGT) regulates SREBP-1 expression and its
targets in a proteasomal and AMP-activated protein kinase
(AMPK)-dependent manner (52). Meanwhile, OGT increases
the O-GlcNAcylation of liver X receptors to induce the
expression of secretory clusterin (sCLU), which is closely
associated with SREBP-1c and its mediated activation of the
CLU promoter for the contribution of cisplatin resistance (53).
In addition, insulin can activate c-Myc to promote the
transactivation of thymine DNA glycosylase (TDG), which
decreases the abundance of 5-carboxylcytosine in the SREBP-1
promoter for the upregulation of SREBP-1 and ACC1. On the
other hand, AMPK can inhibit DNA demethylation of the
SREBP-1 promoter mediated by TDG, suggesting that TDG
regulated by insulin or metformin is a potential therapeutic
Frontiers in Oncology | www.frontiersin.org 3
target for T2DM-related cancers (54). In the tumor immune
microenvironment, Treg cells maintain the metabolic fitness and
mitochondrial integrity of M2-like tumor-associated
macrophages indirectly by repressing IFNg production derived
from CD8+ T cells, which is dependent on SREBP-1 and its
mediated fatty acid synthesis (55). Under the conditions of
serum starvation and hypoxia, cholesterol or O2 deficiency
mediates the expression of the FVII gene encoding coagulation
factor VII via the SREBP-1/glucocorticoid-induced leucine
zipper, which leads to the production and shedding of
procoagulant extracellular vesicles (56). A tumor gene, H-ras
can upregulate mitogen-activated protein (MAP) kinase and
PI3K signaling, which increases SREBP-1 and FASN levels to
drive mammary epithelial cell malignant transformation and
tumor virulence (57). A proto-oncogenic transcription factor,
FBI-1 can directly interact with SREBP-1 via DNA-binding
domains to synergistically activate FASN transcription for
maintaining rapid cancer cell proliferation (58). An RNA-
binding protein, Lin28 enhances SREBP-1 translation and
maturation to promote cancer progression by directly binding
to the mRNAs of both SREBP-1 and SCAP (59). Taken together,
EGFR, PI3K/Akt, and mTOR signal pathways can control
SREBP-1 expression and activation to regulate its downstream
pathways in cancers (Figure 1C, Table 1).
A

B

C

FIGURE 1 | SREBP-1 structure, activation, and signaling pathways. (A) SREBP-1 structure and activation. SREBP-1 contains the NH2-terminal domain (the bHLH-
Zip motif and an acidic motif), a middle hydrophilic region, and the COOH-terminal domain. (B) After INSIG dissociation from SCAP, SREBP-1 translocates to the
Golgi apparatus and is cleaved by site 1 protease (S1P) and site 2 protease (S2P) to form a nuclear form (nSREBP-1) for activating the transcription of its
downstream targets, such as FASN, ACC, SCD-1/5, ACLY, and LDLR. (C) Multiple signaling pathways regulate SREBP-1 expression, translocation, and maturation,
including EGFR, PI3K/Akt/mTORC1, and others. OGT: O-GlcNAc transferase, GS: glutamate synthetase, TDG: thymine DNA glycosylase.
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COLORECTAL CANCER

The SREBP-1 expression in colorectal cancer (CRC) tissues is
significantly higher than that in non-cancerous or normal tissues
(60, 61). The colocalization of SREBP-1 and FASN is found in
CRC tissues, and the transcriptional regulation of SREBP-1 on
the FASN promoter can respond to the deficiency in endogenous
fatty acid synthesis in colorectal neoplasia (62). Moreover, the
combination of SREBP-1 and ACLY can significantly promote
CRC cell proliferation, migration, and invasion, which is
mediated by lipid synthesis modulation (63). In addition, the
overexpression of SREBP-1 promotes the angiogenesis and
invasion of CRC cells by promoting MMP-7 expression related
to NF-kB p65 phosphorylation (61). SREBP-1 silencing
decreases the levels of fatty acid and SREBP-1 targets genes to
inhibit the initiation and tumor progression of CRC, which
might be associated with the alternation of cellular metabolism,
including mitochondrial respiration, glycolysis, and fatty acid
oxidation (64). SREBP-1 also can interact with c-MYC to
enhance its binding ability to the snail family transcriptional
repressor 1 (SNAIL) promoter to regulate its expression and
promote epithelial–mesenchymal transition in CRC (65). For the
resistance of chemotherapy in CRC, SREBP-1 is overexpressed in
chemoresistant CRC samples and is correlated with poor
survival. SREBP-1 can increase the chemosensitivity to
gemcitabine through downregulation of caspase-7, which
might be a new prognostic biomarker of CRC (66). Meanwhile,
the overexpression of SREBP-1 enhances the resistance of 5-FU
through regulation of caspase-7-dependent PARP1 cleavage in
CRC (60). On the other hand, radiation stimuli can rapidly
increase SREBP-1/FASN signaling to cause cholesterol
Frontiers in Oncology | www.frontiersin.org 4
accumulation, cell proliferation, and cell death, suggesting that
targeting the SREBP-1/FASN/cholesterol axis is a potential
strategy for CRC patients undergoing radiotherapy (67).
Recently, results from colon cancer cells and xenograft tumor
models have demonstrated that RAS protein activator-like 1
inhibits colon cancer cell proliferation by regulating LXRa/
SREBP1c-mediated SCD1 activity (68). An lncRNA ZFAS1 can
bind polyadenylate-binding protein 2 to stabilize and increase
the levels of SREBP-1 and its targets, FASN and SCD1, for the
promotion of lipid accumulation in CRC (69). In rapamycin-
resistant colon cancer cells, diacylglycerol kinase zeta can
promote mTORC1 activation and cell-cycle progression, which
are essential for SREBP-1 expression (70). Together, these
findings demonstrate that SREBP-1 participates in colon
cancer growth, invasion, and the resistance of chemotherapy or
radiation, which have been potential therapeutic targets for
CRC treatment.
PROSTATE CANCER

During the castrated progression of a prostate cancer xenograft
model, SREBP-1a and SREBP-1c are significantly greater than
precastrated levels. The staining for the clinical specimens
shows a high level of SREBP-1 compared with non-
cancerous prostate tissue and SREBP-1 is decreased after
hormone withdrawal therapy for 6 weeks (71). SREBP-1 and
its downstream effectors, FASN and ACC, are upregulated in a
TCGA cohort of prostate cancer and late-stage transgenic
adenocarcinoma of mouse prostate tumor (72). Furthermore,
TABLE 1 | Main key pathways regulate SREBP-1 activation for lipogenesis.

Key upstream
signal pathways

Molecular mechanism Refs

EGFR Promotes SCAP N-glycosylation to reduce the interaction of Insig-1 for SREBP-1 activation (47)
Mutation of PI3K/
Akt/mTOR

Inhibits oxidative stress and ferroptotic death by regulating the SREBP-1/SCD-1 pathway (48)

Akt Induces full-length SREBP-1 synthesis and causes nuclear SREBP-1 accumulation for increased intracellular lipid (16)
mTORC1 Activates SREBP-1 transcription to regulate lipid synthesis in vitro (49)
mTORC1 Regulates the translation and transcription of PGC-1a, SREBP-1/2, and HIF-1a and the translation of nucleus-encoded mitochondrial

mRNAs
(50)

Glutamine synthetase Causes the O-linked N-acetylglucosaminylation of the specificity protein 1 to induce the SREBP-1/ACC1 pathway for increased
lipogenesis under the conditions of insulin/glutamine deprivation-induced SREBP-1 activation

(51)

O-GlcNAc
transferase

Regulates SREBP-1 expression and its transcriptional targets, FASN, ACLY, ACC, and lipoprotein lipase via AMPK (52)

O-GlcNAc
transferase

Enhances secretory clusterin expression via liver X receptors and SREBP-1 for regulating cell cycle, apoptosis, and cisplatin resistance (53)

Insulin Upregulates c-Myc, SREBP-1, and ACC1 expression to transactivate thymine DNA glycosylase for the decrease of 5-carboxylcytosine
abundance in the SREBP-1 promoter

(54)

Treg cells Promotes SREBP-1-mediated lipid metabolism of M2-like tumor-associated macrophages by suppressing interferon-g secretion from CD8

+ T cells
(55)

Cholesterol starvation
and hypoxia

Mediates coagulation factor VII expression by regulating the SREBP-1/glucocorticoid-induced leucine zipper pathway (56)

H-ras Upregulates MAPK and PI3K signaling to increase the levels of SREBP-1 and FASN for driving malignant transformation and tumor
virulence

(57)

FBI-1 Directly interacts with the DNA-binding domains of SREBP-1 to activate FASN transcription for rapid cancer cell proliferation (58)
Lin28 Enhances the translation and maturation of SREBP-1 by directly binding the mRNAs of both SREBP-1 and SCAP for cancer progression (59)
July 2022 | Volume 12 | Article 95
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SREBP-1 expression is positively associated with the clinical
Gleason grades and promotes prostate cancer cell growth,
migration, and castration-resistant progression, which may
be mediated by the alterations of metabolic signaling
networks, including androgen receptor (AR), lipogenesis, and
NAPDH oxidase 5-induced oxidative stress (13). More
importantly, the results from overexpression or RNA
interference of SREBP-1c demonstrate that SREBP-1c
specifically inhibits AR transactivation by binding to the
endogenous AR target promoter, which may be associated
with the recruitment of histone deacetylase 1, suggesting that
SREBP-1 plays an important role in regulating AR-dependent
prostate cancer growth (73). On the other hand, AR and
mTOR bind to the regulatory region of SREBP-1 to promote
its cleavage and translocation to the nucleus. The synthetic
androgen R1881 can induce SREBP-1 recruitment to
regulatory regions of its targets, which is abrogated by the
inhibition of the mTOR signaling pathway. These data suggest
that the AR/mTOR complex can promote SREBP-1 expression
and activity to activate its downstreams for reprogramming
lipid metabolism (74). Additionally, phospholipase Cϵ,
Kruppel-like factor 5 (KLF5), and protein kinase D3 can
directly or indirectly interact with SREBP-1 to control lipid
metabolism in the occurrence and progression of prostate
cancer (75–77). Considering the key roles of miRNAs or
lncRNAs, miRNA-21 transcriptionally regulates insulin
receptor substrate 1/SREBP-1 signaling pathway to promote
prostate cancer cell proliferation and tumorigenesis (18). Two
other miRNAs, miRNA-185 and miRNA-342, can block
SREBP-1/2 and its downregulated targets, FASN and
hydroxy-3-methylglutaryl CoA reductase (HMGCR), to
inhibit prostate cancer tumorigenicity (78). A long non-
coding RNA molecule, PCA3 is inversely correlated with
miRNA-132-3p to regulate the antimony-induced lipid
metabolic imbalance, which is closely related to the SREBP-1
protein level, not influencing the SREBP-2 expression in
mRNA and protein levels (79). Collectively, these data from
cell and animal models or clinical specimens demonstrate that
SREBP-1 plays a very important role in prostate cancer
progression and that multiple signaling pathways, such as
AR and miRNAs, can regulate SREBP-1 activation to
med ia t e the dys func t i on o f l i p id me tabo l i sm in
prostate cancer.
BREAST CANCER

As the pattern in other cancers, the mRNA and protein levels of
SREBP-1 are higher in tissues of breast cancer, compared with
paracancerous tissues. A higher expression of SREBP-1 is
positively correlated with tumor differentiation, metastatic
stage, and metastasis in lymph nodes. Moreover, in vitro
studies reveal that SREBP-1 inhibition can inhibit the cell
migration and invasion of breast cancer cells, such as MDA-
MB-231 and MCF-7 (14). In aromatase inhibitor-resistant breast
cancer cells, SREBP-1 can drive Keratin-80 upregulation to
Frontiers in Oncology | www.frontiersin.org 5
directly promote cytoskeletal rearrangements, cellular
stiffening, and cell invasion (80). In MCF-10a breast epithelial
cells with H-ras transformation and inhibition of MAP kinase,
SREBP-1c and FASN are upregulated and SREBP-1a shows less
change. In a panel of samples with primary human breast cancer,
SREBP-1c and FASN are increased and correlated with each
other (81). miRNA expression profiling shows that miRNA-18a-
5p is most evidently decreased in breast cancer cells, which can
target SREBP-1 to repress E-cadherin expression. This suggests
that the miR-18a-5p/SREBP-1 axis plays a crucial role in the
epithelial–mesenchymal transition and metastasis of advanced
breast cancer (82). A hormone derived from adipose tissue,
leptin can induce ATP production from fatty acid oxidation
and intracellular lipid accumulation in MCF-7 cells and tumor
xenograft models, which is mediated by SREBP-1 induction and
autophagy in breast cancer (83). Additionally, two key molecules,
glucose-regulated protein 94 (GRP94) and nuclear protein p54
(nrb)/Nono, can regulate the SREBP-1 signaling pathway in in
vitro and in vivo models, which have been potential targets for
breast cancer treatment (84, 85). GRP94 can upregulate genes for
fatty acid synthesis and degradation, including SREBP-1, LXRa,
and acyl-CoA thioesterase 7, to favor the progression of breast
cancer metastasis (84). As shown in immunohistological staining
for human breast cancer tissues, the level of p54(nrb) is positively
correlated with SREBP-1a, and its conserved Y267 residue is
required for the interaction with nuclear SREBP-1a. It suggests
that p54(nrb) is a key regulator for the nuclear form of SREBP-
1a, which might be a potential target for treating breast cancer
(85). Taken together, SREBP-1 can favor breast cancer
progression, which can be regulated by multiple signal
molecules, such as miRNA-18a-5p, GRP94, and p54(nrb).
GLIOBLASTOMA

In clinic, the therapeutic efficacy of drugs on GBM might be
closely related to EGFR amplification, its mutations, or PI3K
hyperactivation (86). EGFR induces the SREBP-1 cleavage and
nuclear translocation, which is mediated by Akt but is
independent on mTORC1 (40). EGFR-activating mutation
(EGFRvIII) can promote SREBP-1 cleavage and cause a higher
expression of nuclear SREBP-1 to elevate LDLR expression in
GBM patient samples, tumors cells, and mouse models, which is
dependent on the PI3K/Akt pathway (15, 87). Moreover, EGFR
signaling binds to specific sites of the enhanced miRNA-29
promoter to increase its expression in GBM cells by
upregulating SCAP/SREBP-1 whereas miRNA-29 can suppress
SCAP and SREBP-1 expression to inhibit lipid synthesis in GBM
(88, 89). Additionally, it is found that SREBP-1 depletion can
induce apoptosis and endoplasmic reticulum stress in U87 GBM
cells and tumor xenograft models, which is the result of Akt/
mTORC1 signaling-mediated cancer growth and survival (90).
Except EGFR and Akt/mTORC1 signaling, sterol O-
acyltransferase highly expressed in GBM can control the
cholesterol esterification and storage as a key player via
upregulation of SREBP-1 (91). Collectively, the oncogenic
July 2022 | Volume 12 | Article 952371
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EGFR/PI3K/Akt pathway upregulates SREBP-1 activation to
control lipid metabolism in GBM.
HEPATOCELLULAR CARCINOMA

Lipogenesis participates in the initiation and progression of
HCC, one of the leading causes of cancer-related deaths
worldwide. Multiple pathways can control SREBP-1 to regulate
lipogenesis in HCC, such as hepatoma-derived growth factor
(HDGF), apoptosis-antagonizing transcription factors (AATF),
or acyl-CoA synthetases. HDGF is found to be closely associated
with HCC prognosis, which is coexpressed with SREBP-1. The
changes of the first amino acid or the type of PWWP domain are
crucial for HDGF-mediated SREBP-1 activation for the
lipogenesis promotion in HCC (92). In human non-alcoholic
steatohepatitis, HCC tissues, and various human HCC cell lines,
AATF expression is higher, which can be induced by TNF-a.
Promoter analysis reveals that AATF can bind SREBP-1c to
regulate HCC cell proliferation, migration, colony formation,
and xenograft tumor growth and metastasis (93). As an HCC-
associated tumor suppressor, zinc fingers and homeoboxes 2
(ZHX2) is negatively associated with SREBP-1c in HCC cell lines
and human specimens. ZHX2 can increase miRNA-24-3p at the
transcription level to induce SREBP-1c degradation for the
suppression of HCC progression (94). A member of the acyl-
CoA synthetase (ACS) family, acyl CoA synthetase 4 (ACSL4)
has been identified as an oncogene and a novel marker of alpha-
fetoprotein-high subtype HCC. ACSL4 upregulates SREBP-1 and
its downstream lipogenic enzymes via c-Myc to modulate de
novo lipogenesis during the progression of HCC (95). A tissue
microarray analysis shows that 60 of 80 HCC tissues have a
positive staining and high expression of spindlin 1 (SPIN1),
which are positively associated with malignancy of HCC. SPIN1
coactivates and interacts with SREBP-1c to increase the levels of
intracellular triglycerides, cholesterols, and lipid droplets, which
can enhance HCC growth (96). Hepatitis B virus (HBV)-
encoded X protein (HBx) significantly promotes HepG2 cell
proliferation and lipid accumulation through increased protein
levels of C/EBPa, SREBP-1, FASN, and ACC1 (97). Histone
deacetylase 8 (HDAC8) is directly upregulated by SREBP-1
where it is coexpressed in dietary obesity models of HCC.
HDAC8 can inhibit cell death mediated by p53/p21 and cell-
cycle arrest at the G2/M phase and promote b-catenin-dependent
cell proliferation by the interaction with chromatin modifier
EZH2 to repress the Wnt antagonist in HCC (98). The deficiency
of signal transducers and activators of transcription 5 (STAT5)
causes the upregulation of SREBP-1 and peroxisome
proliferator-activated receptor g signaling. The combined loss
of STAT5/glucocorticoid receptor can cause approximately 60%
HCC at 12 months, which is associated with enhanced TNF-a
and ROS and the activation of c-Jun N-terminal kinase 1 and
STAT3 (99). Additionally, neddylation by UBC12 can prolong
SREBP-1 stability with decreased ubiquitination. In human
specimens of HCC and the Gene Expression Omnibus (GEO)
database, the SREBP-1 level is positively correlated with UBC12
Frontiers in Oncology | www.frontiersin.org 6
and contributes to HCC aggressiveness, which can be blocked by
an inhibitor of NEDD8-activating enzyme E1, MLN4924 (100).
Importantly, both mTOR signaling and SREBP-1 can increase
fatty acid desaturase 2 expression to activate sapienate
metabolism in the HCC cells and xenograft models (101).
Certainly, SREBP-1 expression in HCC tissues is significantly
higher than that in adjacent tissues, especially in large tumor
sizes, high histological grade, and stage of tumor node metastasis
(TNM). The level of SREBP-1 is correlated with a worse 3-year
overall and disease-free survival of HCC patients, which is not
dependent on the prediction for the prognosis. Moreover,
SREBP-1 overexpression or knockdown can regulate cell
proliferation, invasion, and migration of HCC cells (42).
Especially, SREBP-1c, rather than SREBP-1a, is elevated and
activated in HCC (102). Collectively, multiple upstream
molecules, such as HDGF, AATF, ZHX2, ACSL4, SPIN, HBx,
HDAC8, and STAT5, can regulate SREBP-1 expression,
activation, and stability to promote HCC proliferation,
invasion, and migration for tumor growth and metastasis.
LUNG CANCER

The phosphorylation of Akt-mediated phosphoenolpyruvate
carboxykinase 1 (PCK1) at S90 can reduce its gluconeogenic
activity and use GTP as a phosphate donor to phosphorylate
Insig1/2 in the endoplasmic reticulum, which activates SREBP
signaling for lipid synthesis in cancer (103). In non-small cell
lung cancer (NSCLC), PCK1 can promote nuclear SREBP-1
activation by phosphorylating Insig1/2, which is associated
with TNM stage and progression of NSCLC (104). The mature
form of SREBP-1 is overexpressed and correlated with Akt
phosphorylation at Ser473 for lipid synthesis, which may be
reversed by protein arginine methyltransferase 5 (PTMI5)
knockdown in lung adenocarcinoma (105). B7-H3, a
glycoprotein, results in aberrant lipid metabolism in lung
cancer, which is mediated by the SREBP-1/FASN signaling
pathway (106). In mutant KRAS-expressing NSCLC, KRAS
increases SREBP1 expression in part by MEK1/2 signaling and
SREBP-1 knockdown significantly inhibits cell proliferation
through regulating mitochondrial metabolism (107). In EGFR-
mutant NSCLC cells, SREBP-1 is a key feature of the resistance to
gefitinib, which might be a promising target for the treatment of
EGFR mutation in lung cancer (108). As that in other cancers,
miRNA-29 reduces lung cancer proliferation and migration
through inhibition of SREBP-1 expression by interacting with
the 3′-UTR of SREBP-1 (109). Taken together, Akt activation
and its mediated PCK1, B7-H3, and KRAS can regulate SREBP-1
expression and activation in lung cancer progression.
SKIN CANCER

In melanomas, SREBP-1 predominantly binds to the
transcription start sites of genes of de novo fatty acid
biosynthesis (DNFA). The inhibition of DNFA or SREBP-1 by
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enzyme inhibitors or antisense oligonucleotides exerts obvious
anticancer effects on both BRAFi-sensitive and -resistant
melanoma cells (27). BRAF inhibition can induce SREBP-1
downregulation to inhibit lipogenesis, and SREBP-1 inhibition
can overcome the acquired resistance to BRAF-targeted therapy
in both in vitro and in vivo models (110). In addition, the PI3K/
Akt/mTORC1 pathway, not by BRAF mutation, can regulate
SREBP-1 activity and subsequent cholesterogenesis in melanoma
(111). In another type of skin cancer, squamous cell carcinomas
(SCCs), SREBP-1 can link tumor protein 63 (TP63)/KLF5 to
regulate fatty acid metabolism, including fatty acid, sphingolipid,
and glycerophospholipid biosynthesis, by binding to hundreds of
cis-regulatory elements, which is associated with SCC viability,
migration, and poor survival of patients (112). Thus, multiple
signal pathways, such as BRAF, PI3K, and TP63/KLF5, can
control SREBP-1 for the regulation of skin cancer progression.
OTHER CANCERS

In esophageal tumors, SREBP1 is overexpressed and associated
with worse overall survival rate of patients. Overexpressing
SREBP1 in OE33 cells leads to increased biological phenotypes,
including colony formation, migration, and invasion, which is
mediated by reduced mesenchymal markers (vimentin, zinc
finger E-box binding homeobox 1 (ZEB1), N-cadherin) and
increased epithelial markers (E-cadherin). Mechanistically,
SREBP-1 can regulate T-cell factor 1/lymphoid enhancer factor
1 and their target proteins, such as CD44 and cyclin D1, and
increase the levels of SCD-1, phosphorylated GSK-3b, and
nuclear b-catenin for the proliferation and metastasis of
esophageal carcinoma (113, 114). SREBP-1 and ZEB1 are
potential targets of miRNA-142-5p, a tumor suppressor, and
they are associated with tumor progression and poor prognosis
(114). Moreover, the levels of PCK1 pS90, Insig1 pS207/Insig2
pS151, and SREBP-1 are associated with the tumor, metastasis
stage, and progression of esophageal squamous cell carcinoma,
suggesting PCK1 activity-regulated SREBP-1 as a potential target
for the diagnosis and treatment of esophageal cancer (115). In
gastric cancer tissues and cells, SREBP-1c is activated and
promotes the expressions of FASN and SCD-1 to mediate
malignant phenotypes, which has been identified as a potential
target for the treatment of gastric cancer (116). In the poorest
cancer of the digestive system, pancreatic cancer, the lipogenic
liver X receptor (LXR)–SREBP-1 axis controls polynucleotide
kinase/phosphatase (PNKP) transcription for regulating cancer
cell DNA repair and apoptosis. Compared with the adjacent
tissues, the levels of LXRs and SREBP-1 are significantly reduced
in the tumor tissues, which are inhibited by a small molecule,
triptonide, by activating p53 and DNA strand break for cell death
(117). Insulin induces transgelin-2 via SREBP-1-mediated
transcription, which has been a novel therapeutic target for
diabetes-associated pancreatic ductal adenocarcinoma (118).
High glucose can enhance the SREBP-1 level to promote
tumor proliferation and suppress apoptosis and autophagy
(119). A high expression of TNF-a is associated with
Frontiers in Oncology | www.frontiersin.org 7
significant reductions of SREBP-1, FASN, and ACC at the
mRNA level in pancreatic ductal adenocarcinoma (120).
Importantly, SREBP-1 is overexpressed in both pancreatic
cancer tissues and cell lines, which is critical for cancer
proliferation, apoptosis, tumor growth, and overall survival
(41). Therefore, the SREBP-1 signaling axis has been a
promising target for the prevention and treatment of
pancreatic cancer.

Compared with controls, SREBP-1 is significantly increased and
positively correlated with serum triglyceride in endometrial cancer
(121). Ten single-nucleotide polymorphisms (SNPs) of SREBP-1 are
associated with endometrial cancer, and rs2297508 SNP with the C
allele accounts for 14%, which may serve as a genetic marker for
early detection (122). In a progestin-resistant Ishikawa cell line,
sirtuin 1 (SIRT1) and SREBP-1 at the mRNA and protein levels are
upregulated, while progesterone receptor and forkhead
transcription factor 1 (FoxO1) are downregulated, suggesting that
the SIRT1/FoxO1/SREBP-1 pathway is involved in the progestin
resistance of endometrial cancer (123). It is also found that FoxO1
can inhibit proliferative and invasive capacities by directly inhibiting
SREBP-1 in this cancer (124). Salt-inducible kinase 2 can upregulate
SREBP-1c to enhance fatty acid synthesis and SREBP-2 to promote
cholesterol synthesis in in vitro and in vivo ovarian cancer models
(125). In the obesity host, increased SREBP-1 is linked to ovarian
cancer progression and metastasis (126) and meditates malignant
characteristics, such as cell proliferation, migration, invasion, and
tumor growth (127). In clear cell renal cell carcinoma (ccRCC)
patients, high levels of E2F transcription factor 1 (E2F1) and
SREBP-1 are associated with poor prognosis. E2F1 can increase
ccRCC cell proliferation and epithelial–mesenchymal transition
(EMT) and promote tumor progression of a mouse xenograft
model by inhibiting SREBP-1-mediated aberrant lipid metabolism
(128). In bladder cancer, PKM2 interacts with SREBP-1c through
the regulation of the Akt/mTOR signaling pathway, which in turn
activates FASN transcription for tumor growth (129). Collectively,
SREBP-1-regulated lipid metabolism is essential for the cancer
progression of the urinogenital system, including endometrial,
ovarian, and bladder cancer and renal cell carcinomas. The results
from cell lines and clinical tissues demonstrate that long intergenic
non-protein-coding RNA 02570 can adsorb miRNA-4649-3p to
upregulate SREBP-1 and FASN, which promotes the progression of
nasopharyngeal carcinoma (NPC) (130). Epstein–Barr virus-
encoded latent membrane protein 1 is expressed in NPC and
increases the maturation and activation of SREBP-1 to induce de
novo lipid synthesis in the tumor growth and metastasis, which can
be inhibited by two inhibitors, luteolin and fatostatin (131). In oral
squamous cell carcinoma, glutathione peroxidase 4 (GPX4) can
reduce the ferroptosis-mediated cell number via downregulation of
SREBP-1 (132). Compared with normal thyroid tissue or benign
thyroid nodules, SREBP1 expression is significantly higher in
invasive thyroid cancer, which is associated with extrathyroidal
extension, advanced stage, and shorter survival of patients (28, 133).
The in vitro results demonstrate that SREBP-1 can obviously
increase the rate of oxygen consumption and the capacities of
invasion andmigration in thyroid cancer cells, which is mediated by
the upregulation of the Hippo-YAP/CYR61/CTGF pathway (133).
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In addition, the nuclear form of SREBP-1 (nSREBP-1) can bind to
the promoter of protein kinase RNA-like endoplasmic reticulum
kinase (PERK) to augment its expression and phosphorylation,
which might be the main reason that nSREBP-1 regulates cell
proliferation, cell cycle arrest, apoptosis, and autophagy under
endoplasmic reticulum (ER) stress in sarcomas (chondrosarcoma
and osteosarcoma) (134). Together, SREBP-1 is upregulated and
participates in the progression of NPC, oral squamous cell
carcinoma, thyroid cancer, and sarcomas. Collectively, these
findings indicate that the various key pathways that control
SREBP-1 activation and SREBP-1-regulated lipogenesis
significantly participate in tumor growth and progression and
may be a promising target in multiple malignancies
(Table 2, Figure 2).
TARGETING THE SREBP-1 SIGNALING
PATHWAY FOR CANCER THERAPY

As reported, SREBP-1 has been a potential target and its
inhibition by small molecules or natural products has been
potential therapeutics for preventing and treating cancer (12).
A specific inhibitor of SREBP activation, fatostatin is a
diarylthiazole derivative and binds to SCAP to inhibit the
translocations of SREBP-1 and SREBP-2 from the ER to Golgi
(135, 136). In prostate cancer, fatostatin suppresses cell
proliferation and colony formation in both androgen-
responsive or -insensitive cancer cells and causes G2/M cell
cycle arrest and cell death, which is mediated by the blockade
of the SREBP-regulated metabolic pathway and AR signaling
network (136). Fatostatin can inhibit SREBP activity to influence
the assembly of mitotic microtubule spindle and cell division in
various cancer cells (137). In breast cancer, fatostatin is more
sensitive to estrogen receptor-positive cells in response with cell
cycle arrest and apoptosis through accumulation of lipids under
ER stress, such as polyunsaturated fatty acids (PUFAs), not the
inhibition of SREBP activity (138). Moreover, fatostatin can
reverse progesterone resistance through inhibition of the
SREBP-1/NF-kB pathway in endometrial cancer (139). In
pancreatic cancer, both fatostatin and PF429242 inhibit cell
proliferation and the growth of xenograft tumor by reducing
SREBP-1 and its downstream signaling cascades, such as FASN
and SCD-1 (17). Additionally, the combination of fatostatin with
tamoxifen has a synergistic effect on the inhibition of PI3K/Akt/
mTOR signaling in ER-positive breast cancer (140). Together,
fatostatin mainly regulates the activation of SREBP-1/2 to block
different cancer progressions, while it also regulates the
accumulations of PUFAs and the PI3K/Akt/mTOR pathway.
Nelfinavir, a HIV protease inhibitor, induces ER stress and
caspase-dependent apoptosis and increases SREBP-1 protein
half-life by blocking intracellular trafficking of SREBP-1 and
activating transcription factor 6 (ATF6) from site-2 protease
(S2P) inhibition in liposarcoma cells and xenograft mouse
models (141). In prostate cancer, nelfinavir inhibits AR
Frontiers in Oncology | www.frontiersin.org 8
activation and nuclear translocation of SREBP-1 and ATF6 by
regulating S2P-mediated intramembrane proteolysis, which is
associated with ER stress, inhibition of unfolded protein
response, apoptosis, and autophagy for treating castration-
resistant prostate cancer (142). In addition, nelfinavir and its
analogs, #6, #7, and #8, have more potent effects on S2P cleavage
than 1,10-phenanthroline, a metalloprotease-specific inhibitor.
These molecules can block S2P cleavage activity to lead to the
accumulations of precursor SREBP-1 and ATF6 against
castration-resistant prostate cancer (143). These findings
indicate that nelfinavir is a potential agent targeting S2P
cleavage for cancer therapy. Currently, several targeted drugs
targeting tyrosine kinase can regulate the SREBP-1 pathway to
play anticancer effects. Osimertinib, the first-approved third-
generation EGFR inhibitor, facilitates SREBP1 degradation and
reduces the levels of its targets and lipogenesis in EGFR-mutant
NSCLC cells and tumors, which suggests an effective strategy for
overcoming acquired resistance of EGFR inhibitors by targeting
SREBP-1 (144). Sorafenib, a multikinase inhibitor targeting RAS/
MEK/ERK, VEGFR, and PDGFR, significantly affects SCD-1
expression to decrease the synthesis of monounsaturated fatty
acids and suppresses ATP production to activate AMPK, which
can reduce the levels of SREBP-1 and phosphorylate mTOR for
the inhibition of liver cancer (145).

Furthermore, several small molecules or new dosage forms
are reported as the regulators for SREBP-1-regulated lipogenesis.
An AR degradation enhancer, ASC-J9 suppresses PCa cell
growth and invasion by the AR/SREBP-1/FASN pathway in
AR-positive cells and PI3K/Akt/SREBP-1/FASN signaling in
AR-negative cells, which indicates that it mainly suppresses
FASN-mediated PCa progression in both AR-dependent/
independent manners (146). A newly developed AR antagonist,
proxalutamide, significantly inhibits proliferation and migration,
induces the caspase-dependent apoptosis, and diminishes the
level of lipid droplets in PCa cells by regulating the levels of ACL,
ACC, FASN, and SREBP-1. Moreover, proxalutamide can
decrease AR expression in PCa cells, which may overcome the
resistance of AR-targeted therapy (147). Leelamine, a pyruvate
dehydrogenase kinase inhibitor, can downregulate the
expressions of SREBP-1 and key fatty acid synthesis enzymes
(ACLY, ACC1, FASN) at the mRNA and protein levels to
suppress fatty acid synthesis against PCa progression (148). An
HDAC inhibitor, valproic acid can inhibit prostate cancer cell
viability and induce apoptosis by regulating the C/EBPa/SREBP-
1 pathway based on the results of in vitro and in vivo experiments
(149). A novel anti-beta2-microglobulin monoclonal antibody
decreases cell proliferation, induces massive cell death, and
decreases AR expression via inhibition of SREBP-1-mediated
fatty acid synthesis in the models of multiple PCa cell lines and
xenograft tumor (150). N-Arachidonoyl dopamine, a typical
representative of N-acyl dopamines, can inhibit breast cancer
cell migration, EMT, and stemness and cause decreased
cholesterol biosynthesis by inhibiting SREBP-1, its key targets,
and endoplasmic reticulum kinase 1/2 (ERK1/2) pathways (151).
A novel small-molecule, SI-1, 1-(4-bromophenyl)-3-(pyridin-3-
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TABLE 2 | SREBP-1-regulated lipogenesis in different cancers.

Cancer type Targets Molecular mechanism Refs

Colorectal cancer SREBP-1/FASN Is higher than that in non-cancerous tissues and regulates the binding on FASN promoters for
cancer proliferation, invasion, and migration

(60,
62)

Colorectal cancer SREBP-1/MMP-7/NF-kB p65
phosphorylation

Promotes angiogenesis, invasion, and metastasis (61)

Colorectal cancer SREBP-1/ACLY Enhances biological behaviors, including cell proliferation, DNA reproductions, apoptosis, invasion,
and migration and regulates lipid production and related metabolic pathways

(63)

Colorectal cancer SREBP-1-mediated the alternation
of cellular metabolism

Decreases fatty acid levels to inhibit the initiation and tumor progression (64)

Colorectal cancer SREBP-1/c-MYC/SNAIL Enhances the binding to the SNAIL promoter to increase its expression and promote epithelial–
mesenchymal transition

(65)

Colorectal cancer SREBP-1/caspase-7 Regulates the chemosensitivity to gemcitabine or the resistance of 5-FU (60,
66)

Colorectal cancer SREBP-1/FASN Is increased by radiation stimuli and causes cholesterol accumulation, cell proliferation, and
apoptosis

(67)

Colorectal cancer RAS protein activator like 1/SREBP-
1c/LXRa/SCD-1

Inhibits cell proliferation and tumor growth by directly binding SREBP-1c, LXRa, and SCD-1
promoter

(68)

Colorectal cancer LncRNA ZFAS1/PABP-2/SREBP-1 Binds polyadenylate-binding protein 2 (PABP-2) to stabilize SREBP-1 at the mRNA level to regulate
lipid accumulation for malignant phenotype

(69)

Colorectal cancer Diacylglycerol kinase zeta/mTORC1/
SREBP-1

Promotes mTORC1 activation to regulate diacylglycerol and phosphatidic acid metabolism for
maintaining tumor cell growth and survival

(70)

Prostate cancer SREBP-1a/SREBP-1c Are significantly greater than non-cancerous tissues and precastration and is decreased after
hormone withdrawal therapy

(71)

Prostate cancer SREBP-1/FASN/ACC Are upregulated and associated with clinical Gleason grades, and castration-resistant progression (13,
72)

Prostate cancer SREBP-1/AR Promotes cell growth, migration, and progression by regulating metabolic and signaling networks,
including AR, lipogenesis, and oxidative stress

(13)

Prostate cancer SREBP-1c/AR/HDAC1 Inhibits AR transactivation and is associated with the recruitment of histone deacetylase 1 for AR-
dependent cancer growth

(73)

Prostate cancer AR/mTOR/SREBP-1 Binds the regulatory region of SREBP-1 to promote the cleavage and nuclear translocation for lipid
metabolism reprogramming

(74)

Prostate cancer PLCϵ/AMPKa/SREBP-1 Is elevated and induce SREBP-1 nuclear translocation through the inhibition of AMPKa
phosphorylation for cancer lipid metabolism and malignant progression

(75)

Prostate cancer KLF5/SREBP-1/FASN Binds to SREBP-1 to enhance the promoter activity of FASN for androgen-dependent induction (76)
Prostate cancer Protein kinase D3/SREBP-1/FASN/

ACLY
Interacts with SREBP-1 to regulate the levels of lipogenic genes, such as FASN and ACLY for de
novo lipogenesis and cancer progression

(77)

Prostate cancer miRNA-21/IRS1/SREBP-1/FASN/
ACC

Downregulates insulin receptor substrate 1 (IRS1)-medicated transcription to decrease the levels of
SREBP-1, FASN, and ACC for tumorigenesis

(18)

Prostate cancer miRNA-185/-342/SREBP-1/2 Blocks SREBP-1/2 and its downstream targets to inhibit tumorigenicity (78)
Prostate cancer lncRNA PCA3/miRNA-132-3p/

SREBP-1
Is inversely correlated with the microRNA-132-3p level to interact SREBP-1 for antimony-induced
lipid metabolic disorder

(79)

Breast cancer SREBP-1 Is higher than paracancerous tissues and positively correlated with tumor differentiation, metastatic
stage, and lymph node metastasis

(14)

Breast cancer SREBP-1/keration-80 Drives keration-80 upregulation to promote cytoskeletal arrangement and invasive characteristic for
aromatase inhibitor resistance

(80)

Breast cancer MAPK/PI3K/SREBP-1c/FASN Are upregulated and correlated with each other, and participate in the H-ras transformation and
MAP kinase inhibition

(81)

Breast cancer miRNA-18a-5p/SREBP-1/Snail/
HDAC1/2

Modulates epithelial–mesenchymal transition and metastasis by regulating a complex formation of
Snail and HDAC1/2

(82)

Breast cancer SREBP-1/autophagy Contributes to leptin-mediated fatty acid metabolic reprogramming (83)
Breast cancer GRP94/SREBP-1/LXRa/ACOT7 Regulates the protein levels of genes encoding fatty acid synthesis and degradation, such as

SREBP-1, LXRa and ACOT7 for brain metastasis
(84)

Breast cancer Nuclear protein p54(nrb)/Nono/
SREBP-1

Is positively corelated with SREBP-1, and conserved Y267 residue is required for nuclear SREBP-
1a binding and protein stability for increased lipid demand of cancer growth

(85)

Glioblastoma EGFR/SREBP-1/Akt Induces SREBP-1 cleavage and nuclear translocation by Akt activation, which is independent in
mTORC1 for fatty acid synthesis and rapamycin’s poor efficacy

(40)

Glioblastoma EGFR activating mutation/SREBP-1/
LDLR

Promotes the cleavage of SREBP-1 to increase the expression of the nuclear form for increased
LDLR by activating the PI3K/Akt pathway

(15)

Glioblastoma EGFR/SCAP/SREBP-1/miRNA-29 Binds specific sites of microRNA-29 for its increased expression by upregulating SCAP/SREBP-1 (88)
Glioblastoma miRNA-29/SCAP/SREBP-1 Represses the levels of SCAP and SREBP-1 for the inhibition of de novo lipid metabolism (89)
Glioblastoma SREBP-1/Akt/mTORC1 Regulates endoplasmic reticulum stress and apoptosis by Akt/mTORC1 signaling (90)
Glioblastoma Sterol O-acyltransferase/SREBP-1 Controls cholesterol esterification and storage by upregulating SREBP-1 (91)
Hepatocellular
carcinoma

Hepatoma-derived growth factor/
SREBP-1

Is coexpressed with and activates SREBP-1 by changing first amino acid or the type of PWWP
domain for cancer development and prognosis

(92)

(Continued)
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TABLE 2 | Continued

Cancer type Targets Molecular mechanism Refs

Hepatocellular
carcinoma

Apoptosis-antagonizing transcription
factor/SREBP-1

Interacts with the SREBP-1c binding site to regulate cell proliferation and survival for driving
hepatocarcinogenesis

(93)

Hepatocellular
carcinoma

Zinc fingers and homeoboxes 2/
miRNA-24-3p/SREBP-1c

Increases the microRNA-24-3p mRNA level to induce SREBP-1c degradation for suppressing
cancer progression

(94)

Hepatocellular
carcinoma

Acyl CoA synthetase 4/c-Myc/
SREBP-1

Upregulates SREBP-1 and its downstreams by c-Myc for the regulation of de novo lipogenesis (95)

Hepatocellular
carcinoma

Spindlin 1/SREBP-1c Coactivates and interacts SREBP-1c to increase the contents of intracellular triglycerides,
cholesterols, and lipid droplets for cancer growth

(96)

Hepatocellular
carcinoma

Hepatitis B virus-encoded X protein/
C/EBPa/SREBP-1/FASN/ACC1

Promotes cell proliferation and lipid accumulation by increasing C/EBPa, SREBP-1, FASN, and
ACC1

(97)

Hepatocellular
carcinoma

SREBP-1/HDAC8 Directly upregulates histone deacetylase 8 and are coexpressed in tumor models induced dietary
obesity

(98)

Hepatocellular
carcinoma

Signal transducers and activators of
transcription 5 (STAT5)/PPARg/
JNK1/STAT3

Regulates SREBP-1 and PPARg signaling in 60% HCC by enhancing TNF-a, ROS, c-Jun N-
terminal kinase 1, and STAT3

(99)

Hepatocellular
carcinoma

UBC12 neddylation/SREBP-1 Prolong SREBP-1 stability with decreased ubiquitination for the contribution of cancer
aggressiveness

(100)

Hepatocellular
carcinoma

mTOR/SREBP-1/FADS2 Increase fatty acid desaturase 2 expression to upregulate sapienate metabolism in the cell and
xenograft models

(101)

Hepatocellular
carcinoma

SREBP-1c Is higher in large tumor size, high histological grade, and stage of tumor-node metastasis, correlates
with overall and disease-free survival, and regulates cell proliferation, migration, and invasion

(42,
102)

Lung cancer Phosphoenolpyruvate carboxykinase
1/Insig1/2/SREBP-1

Phosphorylates Insig1/2 to activate SREBP-1 signaling for lipid biosynthesis, which contributes to
the stage of tumor-node metastasis and progression

(103,
104)

Lung cancer Protein arginine methyltransferase 5/
SREBP-1/Akt

Catalyzes the symmetric dimethyl arginine modification of mature form of SREBP-1 to induce its
activation, which is correlated with Akt phosphorylation at Ser473 for de novo lipogenesis and
cancer growth

(105)

Lung cancer B7-H3/SREBP-1/FASN Modulates the SREBP-1/FASN pathway to mediate abnormal lipid metabolism (106)
Lung cancer KRAS/MEK1/2/SREBP-1 Increases SREBP-1 expression partly by regulating MEK1/2 signaling for cell proliferation and

mitochondrial metabolism
(107)

Lung cancer SREBP-1 Is an essential characteristic for acquired gefitinib resistance in EGFR-mutant cancer (108)
Lung cancer miRNA-29 Interacts with the 3′-UTR of SREBP-1 to reduce SREBP-1 expression for the inhibitions of cell

proliferation, migration, and tumor growth
(109)

Melanomas SREBP-1/ACLY/FASN/SCD Binds to the transcription start sites of genes encoding de novo fatty acid biosynthesis in both
BRAFi-sensitive and -resistant cells

(27)

Melanomas SREBP-1 Mediates the acquired resistance to BRAF-targeted therapy in the in vitro and in vivo models (110)
Melanomas PI3K/Akt/mTORC1/SREBP-1 Regulates SREBP-1 activity and subsequent cholesterogenesis for reactive oxygen species-induced

damage and lipid peroxidation
(111)

Squamous cell
carcinomas

SREBP-1/tumor protein 63/KLF5 Links tumor protein 63/KLF5 to regulate fatty acid metabolism by binding hundreds of cis-
regulatory elements for cancer cell viability, migration, and poor survival of patients

(112)

Esophageal cancer SREBP-1/SCD/Wnt/b-catenin Is overexpressed and correlated with worse overall survival of patients and regulates cell
proliferation and metastasis by inducing epithelial–mesenchymal transition via SCD1-induced
activation of the Wnt/b-catenin pathway

(113)

Esophageal cancer SREBP-1/miR-142-5p/ZEB1 Are targeted by miR-142-5p for the migration and sphere formation via the reduction of epithelial–
mesenchymal transition markers

(114)

Esophageal cancer Akt/PCK1/Insig1/2 and nuclear
SREBP-1

Are higher in cancer specimens and positively correlated with tumor, node and metastasis stage
and progression, and poor prognosis

(115)

Gastric cancer SREBP-1c/FASN/SCD-1 Is activated and promotes the expression of genes encoding fatty acid synthesis, such as SCD-1
and FASN for malignant phenotypes

(116)

Pancreatic cancer Liver X receptors/SREBP-1 Are significantly reduced in tumor tissues and control the transcription of polynucleotide kinase/
phosphatase for regulating DNA repair and cell death

(117)

Pancreatic cancer Transgelin-2/SREBP-1 Is expressed in cancer tissues and indicates poor survival of patients, which induces SREBP-1-
mediated transcription under the stimulation of insulin

(118)

Pancreatic cancer High glucose microenvironment/
SREBP-1

Is associated with poor prognosis and regulates cancer proliferation, apoptosis, and autophagy by
enhancing SREBP-1 expression

(119)

Pancreatic cancer TNF-a/SREBP-1/FASN/ACC Reduces cell migration and is associated with reduced SREBP-1, FASN, and ACC involved in
lipogenesis, inflammation, and metastasis

(120)

Pancreatic cancer SREBP-1/FASN/ACC/SCD-1 Is significantly higher in cancer tissues and predicts poor prognosis and regulates lipid metabolism
and tumor growth by regulating its downstream targets, FASN, ACC, SCD-1

(41)

Endometrial cancer SREBP-1 Is significantly increased in cancer tissues and positively correlates with serum triglyceride (121)
Endometrial cancer SREBP-1 Ten single-nucleotide polymorphisms are associated with increased risk and rs2297508 SNP with

the C allele serves as a genetic factor for early detection
(122)

Endometrial cancer SIRT1/FoxO1/SREBP-1 Are changed in progestin-resistant cells and are involved in the development of progestin resistance (123)

(Continued)
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yl) urea inhibits aerobic glycolysis and enhances the antitumor
effect of radiofrequency ablation in the HCC cells and xenograft
tumors via inhibition of SREBP-1 activation (152). The
treatment of docosahexaenoic acid, but neither n-6 PUFA
Frontiers in Oncology | www.frontiersin.org 11
arachidonic acid nor oleic acid, can inhibit the levels of the
precursor of SREBP-1 and its mature form, and FASN is induced
by estradiol and insulin to mediate breast cancer proliferation,
which is the result from reduced phosphorylated Akt, not from
TABLE 2 | Continued

Cancer type Targets Molecular mechanism Refs

Endometrial cancer FoxO1/SREBP-1 Inhibits cell migration and invasion abilities and tumorigenesis in vitro and in vivo by directly targeting
SREBP-1

(124)

Ovarian cancer Salt-inducible kinase-2/SREBP-1c/
FASN

Promotes fatty acid synthesis by upregulating SREBP-1c expression and FASN, which is mediated
by the PI3K/Akt pathway

(125)

Ovarian cancer SREBP-1 Is higher in cancer tissues compared to benign and borderline tumors and regulates cell growth,
invasion, migration, and apoptosis in the cell and mouse xenograft models

(126,
127)

Clear cell renal cell
carcinoma

E2F transcription factor 1/SREBP-1 Is associated with poor prognosis and increases cell proliferation, epithelial–mesenchymal transition,
and tumor progression by activating SREBP-1-mediated fatty acid biosynthesis

(128)

Bladder cancer Pyruvate kinase 2/Akt/mTOR/
SREBP-1c/FASN

Physically interacts with SREBP-1c to regulate FASN transcription for tumor growth by regulating
Akt/mTOR signaling

(129)

Nasopharyngeal
carcinoma

Long intergenic non-protein coding
RNA 02570/miRNA-4649-3p/
SREBP-1/FASN

Is upregulated in the late clinical stage and adsorbs microRNA-4649-3p to upregulate SREBP-1
and FASN for cancer progression

(130)

Nasopharyngeal
carcinoma

Epstein–Barr virus-encoded latent
membrane protein 1/SREBP-1

Is overexpressed in cancer tissues and increases the expression, maturation, and activation of
SREBP-1 for inducing de novo lipid synthesis and is involved in cancer pathogenesis driven by
Epstein–Barr virus E

(131)

Oral squamous cell
carcinoma

Glutathione peroxidase 4/SREBP-1/
ferroptosis

Is higher in cancer cells, regulates cell proliferation and ferroptosis, and is correlated with p53
immunoreactivity

(132)

Thyroid cancer SREBP-1 Is significantly higher in invasive cancer tissues and associated with advanced disease stage and
short survival

(28)

Thyroid cancer SREBP-1/Hippo-YAP/CYR61/CTGF Obviously increases oxygen consumption rate, invasion, and migration by upregulating the Hippo-
YAP/CYR61/CTGF pathway

(133)

Sarcomas Nuclear form of SREBP-1/PKR/
PERK

Binds the promoter of protein kinase RNA(PKR)-like endoplasmic reticular kinase (PERK) to
augment its expression and phosphorylation for malignant phenotypes

(134)
July 2022 | Volume 12 | Article 9
GRP94, glucose-regulated protein 94; ACTO7, acyl-CoA thioesterase 7; SOAT, sterol O-acyltransferase.
FIGURE 2 | SREBP-1-mediated lipogenesis in the five types of cancers. Multiple pathways can regulate SREBP-1 and its downstream targets to mediate
aggressive characteristics, including proliferation, invasion, migration, EMT, tumorigenesis, metastasis, angiogenesis, and drug resistance in colorectal, prostate,
breast, hepatocellular cancer, and glioblastoma. Meanwhile, in these cancers, SREBP-1 activation can increase de novo lipogenesis and regulate fatty acid metabolic
programming, lipid droplets, and sapienate metabolism. EMT: epithelial–mesenchymal transition, ER: endoplasmic reticulum, TGs: triglycerides.
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ERK1/2 phosphorylation (153). In different GBM cells, phytol
and retinol show cytotoxic effects at dose dependence, which
might be mediated by the levels of SREBP-1, FASN, and farnesyl-
diphosphate farnesyltransferase (FDFT1) to downregulate
cholesterol and/or fatty acid biosynthetic pathways (154). In
addition, it is reported that platinum complexes or micelles can
regulate the SREBP-1 pathway to play a more effective function
against cancer growth and progression. The pyridine co-ligand-
functionalized cationic complexes, including C2, C6, and C8, can
suppress cancer invasion, migration, and tumor spheroid
formation through inhibition of SREBP-1-mediated lipid
biogenesis (155). PB@LC/D/siR is synthesized by cross-linking
for docetaxel and siSREBP1 delivery fused with PCa cell
membranes and bone marrow mesenchymal stem cells, which
show the enhanced antitumor effects in bone metastatic
castration-resistant PCa, with the characteristics of deep tumor
penetration, high safety, and bone protection via downregulation
of SREBP-1 and SCD-1 at the mRNA level (156).

Importantly, natural products can regulate SREBP-1-
regulated lipogenesis for the prevention and treatment of
different cancers, including CRC, PCa, HCC, and breast
cancer. In CRC, there are four compounds for regulating
multiple signaling pathway-medicated SREBP-1 activation.
One of ginger derivatives, 6-shogaol, can attenuate the
adipocyte-conditioned medium effect by controlling the
SREBP-1 level mediated by Akt, p70S6K, and AMPK signaling
pathways in 5-FU-treated CRC (157). Ilexgenin A, the main
bioactive compound from Ilex hainanensis Merr., significantly
inhibits inflammatory colitis of mice induced by azoxymethane/
dextran sulfate sodium and reverses the metabolites associated
with colorectal cancer, which might be mediated by reprogramed
lipid metabolism of the HIF-1a/SREBP-1 pathway (158). RA-
XII, a natural cyclopeptide isolated from Rubia yunnanensis,
decreases the motility of HCT 116 cells via inhibition of the b-
catenin pathway and inhibits CRC growth and metastasis by
downregulating the levels of SREBP-1, FASN, and SCD for
restraining lipogenesis (159). Berberine inhibits colon cancer
cell proliferation and induces cell cycle arrest of the G0/G1 phase
via the Wnt/b-catenin pathway. Importantly, berberine blocks
SREBP-1 activation and SCAP expression to downregulate the
levels of lipogenic enzymes against tumor growth (160). The
studies report that three compounds have effective anti-HCC
effects by inhibiting SREBP-1 and its downstream targets.
Cinobufotalin is extracted from the skin secretion of the giant
toad and can effectively promote cell apoptosis, induce cell cycle
G2/M arrest, and inhibit cell proliferation by downregulating
SREBP-1 expression and the interaction with sterol regulatory
elements for the inhibition of de novo lipid synthesis in HCC
(161). Moreover, emodin, a main active component from
Reynoutria multiflora (Thunb.) Moldenke, triggers apoptosis
and reduces mitochondrial membrane potential by regulating
intrinsic apoptosis signaling pathway in HCC cells. SREBP-1 and
its downstream targets, such as ACLY, ACCa, FASN, and SCD-
1, are inhibited to mediate the anticancer effect of emodin against
HCC (162). Additionally, In HCC cells and xenograft tumors,
betulin treatment inhibits cellular glucose metabolism to prevent
Frontiers in Oncology | www.frontiersin.org 12
metastatic potential and also facilitates the inhibitory effect of
sorafenib on HCC through inhibition of SREBP-1 (163). In
breast cancer cells, theanaphthoquinone, a member of the
thearubigins generated by the oxidation of theaflavin, can
block the EGF-induced nuclear translocation of SREBP-1 and
also modulate the phosphorylation of ERK1/2, Akt, and EGFR/
ErbB-2 induced by EGF, which can cause the blockade of FASN
for the inhibition of cell viability and induction of cell death
(164). Furthermore, in HER2-overexpressing breast cancer cells,
piperineis strongly inhibits proliferation, induces apoptosis, and
enhances paclitaxel sensitization through inhibition of SREBP-1/
FASN signaling, which might be mediated by HER2 expression,
ERK1/2, p38, and Akt signaling pathways (165). Additionally,
vitexin and syringic acid from foxtail millet bran can inhibit
breast cancer proliferation and block the conversion of saturated
fatty acids to monounsaturated fatty acids, which is mediated by
the decreases of glucose regulated protein 78 and SREBP-1, and
its target, SCD-1 (166).

In NSCLC, ginsenoside Rh2 suppresses SREBP-1 expression
and its nuclear translocation to disturb the interaction of SREBP-
1 and FASN, which can enhance the immune effect and have a
synergistic antitumor effect with cyclophosphamide (167). In
gallbladder cancer, a-mangostin, a dietary xanthone, represses
the proliferation, clone formation ability, and de novo
lipogenesis; induces cell cycle arrest and apoptosis; and
enhances gemcitabine sensitivity of gallbladder cancer cells,
which might be mediated by AMPK activation and the
inhibition of nuclear SREBP-1 translocation in cancer cells and
tumor xenograft models (168). In cervical carcinoma, quercetin,
a naturally occurring dietary flavonoid, decreases cell
proliferation and induces cell death in Hela cells by reducing
the O-GlcNAcylation of AMPK and the interaction of OGT and
SREBP-1 (169). In both in vitro and in vivo models of pancreatic
cancer, resveratrol induces gemcitabine chemosensitivity and
suppresses sphere formation and markers of cancer stem cells
by targeting SREBP-1, which indicates that resveratrol can be an
effective sensitizer for chemotherapy (170). Timosaponin A3 can
inhibit SREBP-1 and its targets, FASN and ACC, to reduce cell
viability and increase cell cycle arrest and apoptosis of BxPC-3
cells and pancreatic cancer xenograft growth, which is
independent in the Akt/GSK-3b pathway (171).

Besides these natural compounds, the extract, polysaccharides,
or decoction from various herbs can also regulate the SREBP-1-
mediated lipogenesis against PCa and pancreatic cancer growth and
progression. In PCa, the ethanol extract of Ganoderma tsugae, a
Chinese natural and herbal product, significantly inhibits the
expressions of SREBP-1 and its downstream genes associated with
lipogenesis and downregulates the levels of AR and PSA to block
cancer growth and progression with androgen response and
castration resistance (172). The results from the in vitro and in
vivo experiments demonstrated that the ethanol extract of Davallia
formosana can suppress proliferation, migration, and invasion in
PCa cells by inhibiting the levels of SREBP-1, FASN, AR, and PSA,
suggesting that SREBP-1/FASN/lipogenesis and the AR axis could
be potential targets for the treatment of PCa (173). The cell
suspension culture extract from Eriobotrya japonica significantly
July 2022 | Volume 12 | Article 952371

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Zhao et al. Targeting SREBP-1 in Cancer
inhibits PCa cell growth, migration, and invasion by decreasing the
SREBP-1/FASN-mediated lipid metabolism and AR signaling
pathway in the cell and mouse models (174). Moreover, the
polysaccharides from Astragalus membranaceus (APS) greatly
inhibit the proliferation and invasion of PCa cells in a dose-
dependent and time-dependent manner. Mechanistic studies
demonstrate that APS treatment reduces the expressions of miR-
138-5p, SIRT1, and SREBP-1 to block tumorigenesis and lipid
metabolism in PCa (175). In addition, a traditional herbal decoction
TJ001 has significant cytotoxicity, induces cell cycle arrest at the G1/
S stage, and inhibits lipid accumulation in D145 and PCa cells with
p53 mutation by regulating the ACC expression, SREBP-1
proteolytic cleavage, and the inhibition of AMPK/mTOR, which
suggest that the combination of mutant p53 targeting and TJ001 can
be considered as the potential strategy for PCa treatment (176). In
pancreatic cancer, the CO2 supercritical extract of Yarrow (Achillea
millefolium) can downregulate the levels of SREBP-1, FASN, and
SCD to induce cytotoxicity in cancer cells and diminish tumor
growth of xenograft mouse models, which can be developed as a
complementary adjuvant or nutritional supplement (177). Taken
together, the current findings of targeting SREBP-1-mediated
Frontiers in Oncology | www.frontiersin.org 13
lipogenesis by small molecules, natural products, or herb extracts
are summarized in Table 3 and Figure 3.
CONCLUSIONS

This review mainly summarized the recent findings of SREBP-1-
mediated lipogenesis in different cancer and as potential targets by
small molecules, natural products, or the extracts of herbs against
cancer growth and progression. Multiple signaling pathways, such as
EGFR and PI3K/Akt/mTOR, control SREBP-1 expression and
activation to regulate the transcription of multiple genes for fatty
acid synthesis (ACLY, ACC, FASN, SCD-1/5) and lipid uptake
(LDLR) in human cancer. Multiple signaling molecules can regulate
SREBP-1 expression, activation, stability, and binding. Furthermore,
SREBP-1 can regulate downstream signaling pathways to mediate
cancer proliferation, apoptosis, endoplasmic reticulum stress, and
epithelial–mesenchymal transition for tumor growth and metastasis
of different cancers, including colon, prostate, breast, lung, and
hepatocellular cancer. Additionally, many studies have
demonstrated that fatostatin, nelfinavir, AR antagonist, natural
TABLE 3 | Targeting SREBP-1-mediated lipogenesis in different cancers.

Treatment Targets Cancer type Molecular mechanism Refs

Fatostatin SREBP-regulated metabolic
pathway and AR signaling

Prostate cancer Suppresses cell proliferation and colony formation and causes G2/M cell cycle arrest
and cell death in both androgen-responsive or insensitive cancer cells

(136)

Fatostatin SREBP activity Various cancers Possesses antitumor anti-mitotic properties by inhibiting tubulin polymerization and
activating spindle assembly checkpoints

(137)

Fatostatin Accumulation of
polyunsaturated fatty acids

Breast cancer Induces cell cycle arrest and apoptosis through the accumulation of lipids in response
to ER stress, not by SREBP activity in estrogen receptor-positive cancer cells

(138)

Fatostatin SREBP-1/NF-kB pathway Endometrial
cancer

Reverses progesterone resistance to inhibit proliferation and induces apoptosis both
in vitro and in vivo models

(139)

Fatostatin and
PF429242

SREBP-1 and its downstream
targets, FASN, SCD-1

Pancreatic
cancer

Inhibits cell viability and proliferation in a time- and dose-dependent manner (17)

Fatostatin combined
with tamoxifen

PI3K/Akt/mTOR pathway Breast cancer Significantly suppresses cell viability and invasion and regulates apoptosis and
autophagy in the cell and mouse xenograft models

(140)

Nelfinavir Intramembrane proteolysis of
SREBP-1 and ATF6

Liposarcoma Induces the increases of SREBP-1 and ATF6 resulted from S2P inhibition against ER
stress and caspase-mediated apoptosis

(141)

Nelfinavir Intramembrane proteolysis of
SREBP-1 and ATF6

Prostate cancer Inhibits androgen receptor activation and nuclear translocation of SREBP-1 to cause
unprocessed SREBP-1 and ATF6 accumulations for the inhibition of proliferation and
unfolded protein response

(142)

Nelfinavir and its
analogs, #6, #7,
and #8

Intramembrane proteolysis of
SREBP-1 and ATF6

Prostate cancer Induces the increases of SREBP-1 and ATF6 resulted from S2P inhibition against ER
stress and apoptosis

(143)

Osimertinib SREBP-1 Non-small cell
lung cancer

Facilitates SREBP-1 degradation, reduces the levels of its targets and lipogenesis to
overcome the acquired resistance of EGFR inhibitors

(144)

Sorafenib ATP/AMPK/mTOR/
SREBP-1

Hepatocellular
carcinoma

Suppresses ATP production to activate AMPK and reduce SREBP-1 and
phosphorated mTOR levels to disrupt SCD-1-mediated synthesis of
monounsaturated fatty acids

(145)

ASC-J9 AR/SREBP-1/FASN and
PI3K/Akt/SREBP-1/FASN

Prostate cancer Suppresses cell growth and invasion in both AR-dependent and AR-independent
manner

(146)

Proxalutamide SREBP-1/ACL/ACC/FASN Prostate cancer Inhibits the proliferation and migration, induces the caspase-dependent apoptosis,
and diminishes the level of lipid droplets, which also overcome the resistance of AR-
targeted therapy by decreasing AR expression

(147)

Leelamine SREBP-1, ACLY, FASN, and
SCD

Prostate cancer Suppresses fatty acid synthesis in the cancer cells and tumor xenograft, not affected
by AR status

(148)

Valproic acid C/EBPa/SREBP-1 pathway
(FASN, ACC1)

Prostate cancer Inhibits cell viability and lipogenesis and induce apoptosis in the cancer cells (149)

(Continued)
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TABLE 3 | Continued

Treatment Targets Cancer type Molecular mechanism Refs

Beta2-microglobulin
antibody

MAPK, SREBP-1 and AR Prostate cancer Decreases cell proliferation, induces apoptosis, and reduces AR expression to
suppress tumor growth and progression

(150)

N-Arachidonoyl
dopamine

SREBP-1/ERK1/2 pathways Breast cancer Inhibits cell migration, EMT, and stemness and causes decreased cholesterol
biosynthesis

(151)

SI-1 SREBP-1 activation Hepatocellular
carcinoma

Enhances the sensitivity to radiofrequency ablation in cancer cells, xenograft tumors,
and the patients

(152)

Docosahexaenoic
acid

Precursor and mature
SREBP-1, FASN

Breast cancer Inhibits cancer cell proliferation induced by estradiol and insulin, which is dependent
on Akt phosphorylation, not ERK1/2 phosphorylations

(153)

Phytol and retinol SREBP-1, FASN, and
farnesyl-diphosphate
farnesyltransferase

Glioblastoma Have cytotoxic effects in a dose-dependent manner and inhibit cholesterol and/or
fatty acid biosynthetic pathways

(154)

Platinum complexes,
C2, C6, C8

SREBP-1-regulated metabolic
pathway (LDLR, FASN,
HMGCR)

Breast, liver,
and lung cancer

Inhibits invasion, migration, and cancer stem cell formation and induce apoptosis in
vitro

(155)

PB@LC/D/siR SREBP-1 and SCD-1 Bone metastatic
castration-
resistant PCa

Shows the enhanced antitumor effects with the characteristics of deep tumor
penetration, high safety, and bone protection

(156)

6-Shogaol Akt, p70S6K, and AMPK-
mediated SREBP-1 levels

Colorectal
cancer

Attenuates the effect of adipocyte-conditioned medium on 5-FU resistance (157)

Ilexgenin A HIF-1a/SREBP-1 pathway Colorectal
cancer

Inhibits azoxymethane/dextran sulfate sodium-induced inflammatory colitis and
reverses colorectal cancer-associated metabolites by reprogramed lipid metabolism

(158)

RA-XII SREBP-1, FASN, and SCD Colorectal
cancer

Decreases cell motility, tumor growth, and metastasis by restraining lipogenesis (159)

Berberine SCAP/SREBP-1 pathway Colon cancer Inhibits cell proliferation and induces G0/G1 cell cycle arrest and regulates the levels of
lipogenic enzymes in the in vitro and in vivo studies

(160)

Cinobufotalin SREBP-1 expression and the
interaction with sterol
regulatory elements

Hepatocellular
carcinoma

Induces cell cycle G2-M arrest and apoptosis and inhibits cell proliferation via the
inhibition of de novo lipid synthesis

(161)

Emodin SREBP-1 and its downstream
targets, ACLY, ACCa, FASN,
and SCD-1

Hepatocellular
carcinoma

Triggers apoptosis and reduces mitochondrial membrane potential to play an
anticancer effect

(162)

Betulin SREBP-1 Hepatocellular
carcinoma

Inhibits cellular glucose metabolism to prevent metastatic potential and facilitates the
inhibitory effect of sorafenib

(163)

Theanaphthoquinone EGF-induced nuclear
translocation of SREBP-1 and
FASN expression

Breast cancer Decreases cell viability and induces cell death by regulating ERK1/2 and Akt
phosphorylation and EGFR/ErbB-2 pathways

(164)

Piperine SREBP-1 and FASN
expression

HER2-
overexpressing
breast cancer

Inhibits proliferation, induces apoptosis, and enhances sensitization to paclitaxel by
regulating ERK1/2, p38 MAPK, and Akt signaling pathways

(165)

Vitexin and syringic
acid

GRP78/SREBP-1/SCD-1 Breast cancer Inhibits cell proliferation and impairs tumor growth by regulating cellular membrane
and lipid droplet

(166)

Ginsenoside Rh2 SREBP-1 nuclear
translocation and FASN

Non-small cell
lung cancer

Enhances the immune effect and has a synergistic antitumor effect with
cyclophosphamide

(167)

a-Mangostin AMPK activation and nuclear
SREBP-1 translocation

Gallbladder
cancer

represses cell proliferation, clone formation ability, and de novo lipogenesis; induces
cell cycle arrest and apoptosis; and enhances gemcitabine sensitivity

(168)

Quercetin SREBP-1 and the interaction
with O-linked N-
acetylglucosamine transferase

Cervical cancer In cervical carcinoma, quercetin, a naturally occurring dietary flavonoid, decreases cell
proliferation and induces cell death in Hela cells by reducing the O-GlcNAcylation of
AMPK

(169)

Resveratrol SREBP-1 Pancreatic
cancer

Induces gemcitabine chemosensitivity and suppresses sphere formation and the
markers of cancer stem cells in both in vitro and in vivo models

(170)

Timosaponin A3 SREBP-1 and its downstream
targets, FASN, ACC

Pancreatic
cancer

Inhibits cell viability and induces cell cycle arrest, apoptosis in the cancer cells and
xenograft model, which is independent in the Akt/GSK-3b pathway

(171)

Ethanol extract of
Ganoderma tsugae

SREBP-1 and its downstream
genes, AR, PSA

Prostate cancer Inhibits cancer growth and activates apoptosis by blocking the SREBP-1/AR axis (172)

Ethanol extract of
Davallia formosana

SREBP-1/FASN/lipogenesis
and AR axis

Prostate cancer Suppresses cancer proliferation, migration, and invasion by inhibiting the levels of
SREBP-1, FASN, AR, and PSA in in vitro and in vivo experiments

(173)

Cell suspension
culture extract from
Eriobotrya japonica

SREBP-1/FASN and AR
signaling pathways

Prostate cancer Inhibits cell growth, migration, and invasion by decreasing the SREBP-1/FASN-
mediated lipid metabolism and AR signaling pathway in the cell and mouse models

(174)

Astragalus
polysaccharides

miR-138-5p/SIRT1/SREBP-1
pathway

Prostate cancer Inhibits proliferation and invasion in a dose- and time-dependent manner and blocks
tumorigenesis and lipid metabolism by the miR-138-5p/SIRT1/SREBP-1 pathway

(175)

TJ001 ACC expression, SREBP-1
proteolytic cleavage,

Prostate cancer Has significant cytotoxicity, induces cell cycle arrest at the G1/S stage, and inhibits
lipid accumulation in D145 cells by regulating the AMPK/mTOR pathway

(176)

CO2 supercritical
extract of Yarrow

SREBP-1, FASN, and SCD Pancreatic
cancer

Induces cytotoxicity in cancer cells and diminishes tumor growth of the xenograft
mouse model

(177)
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compounds, or herbal extracts can target SREBP-1 and its
downstream targets for the inhibition of lipid biosynthesis in
tumor growth and progression of various cancers. This review
could provide new insights into the critical function of the
SREBP-1-regulated lipogenesis in different cancers and its
potential for cancer therapy for targeting SREBP-1.

Critically, several issues and future perspectives are concerned, as
in the following: 1) Targeting SREBP-1 can inhibit multiple
enzymes in lipogenesis to significantly block cancer growth and
aggressive progression, which is a promising strategy of multitarget
therapeutics. 2) Current studies of targeting the SREBP-1 pathway
against cancer are preclinical studies for investigating their effects
and molecular mechanisms. It is necessary to conduct a clinical
evaluation of SREBP-1-targeted therapy against cancer in future. 3)
Except its role in cancer, SREBP-1 also plays a critical role in lipid
metabolism of metabolic-related diseases. At present, no research is
reported showing that those treatments targeting SREBP-1 have side
Frontiers in Oncology | www.frontiersin.org 15
effects, which might be related with the lower level of SREBP-1 in
normal tissues, compared to that in cancer. The development of
new and specific drugs targeting SREBP-1 with less or no toxic
should be potential research directions.
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FIGURE 3 | The interaction of the treatment by small molecules, natural products, or the extract of herbs, the targets (SREBP-1 expression/cleavage/stability), effects, and
cancer types. The pink/purple circles represent upstream and downstream targets of SREBP-1. The blue diamonds represent the effects from the inhibition of the SREBP-1
pathway. The orange rectangles represent cancer types. The number of edges connected between the nodes in the network represents the count of their connections.
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GLOSSARY
SREBPs sterol regulatory element-binding proteins
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bHLH-LZ basic helix–loop–helix leucine zipper
GBM glioblastoma
EGFR epidermal growth factor receptor
PI3K phosphatidylinositol 3-kinase
PKB protein kinase B
mTOR mammalian target of rapamycin
SCAP SREBP cleavage-activating protein
SREs sterol regulatory elements
ACLY ATP citrate lyase
ACC acetyl-CoA carboxylase
FASN fatty acid synthase
SCD-1/5 stearoyl-CoA desaturase 1 and 5
LDLR low-density lipoprotein receptor
mTORC1 mammalian/mechanistic target of rapamycin

complex 1
GS glutamine synthetase
O-GlcNAcylation O-linked N-acetylglucosaminylation
Sp1 specificity protein 1
OGT O-GlcNAc transferase
AMPK AMP-activated protein kinase
sCLU secretory clusterin
TDG thymine DNA glycosylase
MAP mitogen-activated protein
CRC colorectal cancer
SNAIL snail family transcriptional repressor 1
AR androgen receptor
KLF5 Kruppel-like factor 5
HMGCR hydroxy-3-methylglutaryl CoA reductase
GRP94 glucose-regulated protein 94
EGFRvIII EGFR-activating mutation
HDGF hepatoma-derived growth factor
AATF apoptosis-antagonizing transcription factors
ZHX2 zinc fingers and homeoboxes 2
ACS acyl-CoA synthetases
www.frontiersin.org 22
ACSL4 acyl CoA synthetase 4
SPIN1 spindlin 1
HBV hepatitis B virus
HBx hepatitis B virus-encoded X protein
STAT5 signal transducers and activators of

transcription 5
GEO Gene Expression Omnibus
TNM tumor-node metastasis
PCK1 phosphoenolpyruvate carboxykinase 1
NSCLC non-small cell lung cancer
PTMI5 protein arginine methyltransferase 5
DNFA de novo fatty acid biosynthesis
SCCs squamous cell carcinomas
TP63 tumor protein 63
ZEB1 zinc finger E-box-binding homeobox 1
LXRs liver X receptors
PNKP polynucleotide kinase/phosphatase
SNPs single-nucleotide polymorphisms
SIRT1 sirtuin 1
FoxO1 forkhead transcription factor 1
ccRCC clear cell renal cell carcinoma
E2F1 E2F transcription factor 1
EMT epithelial–mesenchymal transition
NPC nasopharyngeal carcinoma
GPX4 glutathione peroxidase 4
nSREBP-1 nuclear form of SREBP-1
PERK protein kinase RNA-like endoplasmic

reticulum kinase
ER endoplasmic reticulum
PUFAs polyunsaturated fatty acids
ATF6 activating transcription factor 6
S2P site-2 protease
ERK1/2 endoplasmic reticulum kinase 1/2
FDFT1 farnesyl-diphosphate farnesyltransferase
APS polysaccharides from

Astragalus membranaceus.
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