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Breast cancer is the most common cause of cancer death in women. Early

screening and treatment can effectively improve the success rate of treatment.

Ultrasound imaging technology, as the preferred modality for breast cancer

screening, provides an essential reference for early diagnosis. Existing

computer-aided ultrasound imaging diagnostic techniques mainly rely on the

selected key frames for breast cancer lesion diagnosis. In this paper, we first

collected and annotated a dataset of ultrasound video sequences of 268 cases

of breast lesions. Moreover, we propose a contrastive learning–guided multi-

meta attention network (CLMAN) by combining a deformed feature extraction

module and a multi-meta attention module to address breast lesion diagnosis

in ultrasound sequence. The proposed feature extraction module can

autonomously acquire key information of the feature map in the spatial

dimension, whereas the designed multi-meta attention module is dedicated

to effective information aggregation in the temporal dimension. In addition, we

utilize a contrast learning strategy to alleviate the problem of high imaging

variability within ultrasound lesion videos. The experimental results on our

collected dataset show that our CLMAN significantly outperforms existing

advanced methods for video classification.

KEYWORDS

ultrasound sequence, video classification, breast lesion, contrastive learning, multi-
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1 Introduction

According to the World Cancer Report (1), the number of

new cases of breast cancer has reached 2.26 million worldwide in

2020, and breast cancer accounts for about 6.9% of all deaths

from cancer worldwide, ranking fifth. Early detection and timely

treatment can effectively improve the survival prognosis of

breast cancer patients, prolong their survival years, and

improve the people’s living standards. Because it is non-

invasive, inexpensive, safe, and free of ionizing radiation,

ultrasound imaging is currently the most commonly used

technique for the early detection of breast lesions. However,

ultrasound imaging provides low-quality imaging, mainly

because interference from the ultrasound reflective wavefront

causes speckle noise on imaging. During the acquisition or

examination of a breast sequence, the operator usually needs

to apply processing such as filtering, adjusting brightness levels,

and scaling the image to improve the quality of ultrasound

imaging, whereas interpreting ultrasound imaging usually

requires an experienced and well-trained radiologist. However,

in some cases, the breast lesion in the ultrasound imaging is

ambiguous, and even experienced radiologists are unable to

accurately determine its benignity or malignancy [in medical

practice, BI-RADS 1–3 are usually considered benign, BI-RADS

4 for suspicious malignant, and BI-RADS 5–6 for malignant (2)].

Computer-assisted technology has provided new ideas for

the diagnosis of breast lesions by ultrasound imaging. With the

help of computer-aided diagnosis, the operation-dependent

impact of ultrasound imaging can be minimized. At the same

time, computer-aided diagnosis can also reduce the workload of

radiologists. Most of the existing computer-aided diagnostic

techniques analyze a single frame (key frames) in the video

sequence of pathology acquisition. Although it helps to reduce

the computer diagnostic time, it also reveals two significant

problems: first, it is challenging to select typical key frames

representing pathology samples; second, too much pathology

diagnostic information is lost in the video sequence. The field of

benign and malignant classification for breast lesions by

ultrasound video sequences is in urgent need of research.

Therefore, we propose an automatic diagnosis model for

ultrasound sequences, which uses deep learning methods to

achieve high accuracy in classification recognition to assist

medical diagnosis tasks. The designed diagnostic model weighs

spatial dimensional information through the non-local module,

on the one hand, and adaptive and fine-grained attention weight

scoring for each feature dimension of each frame through the

multi-meta attention module, on the other hand, focusing on the

key information in the samples in a self-learning manner. This

approach can accept samples of different sequence lengths and

make full use of the potential connections between frames in the

sample by weighting and aggregating the features of each frame

through the aggregation module to improve the accuracy

of diagnosis.
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The contributions of this work can be summarized as

follows: a) We develop a new network for learning video-level

classification of breast lesions. b) We collected an ultrasound

video dataset (268 sequences) for breast lesion classification. c) A

deformed feature extraction module is proposed to facilitate

high-quality deep feature representation, whereas a multi-meta

attention module is developed to acquire key feature

information at the video level adaptively. d) The experimental

results show that our network achieves a new state-of-the-art

performance in the breast ultrasound lesion classification task on

our collected dataset.
2 Related work

2.1 Breast ultrasound classification

Classification of breast lesion pathology is a primary task in

computer-aided diagnosis projects. Researchers working on

breast ultrasound-related topics have proposed a number of

effective deep learning schemes. Han et al. (3) used deep

convolutional networks pre-trained on grayscale nature images

to discriminate between benign and malignant. Although the

lesion regions of interest used in this scheme were all provided

by radiologists, this study demonstrated that breast lesion

features extracted by deep learning–based networks can

achieve comparable classification performance to hand-

designed feature methods. To further avoid the potential

missing effects that result from manual intervention in the

region of interest selection, Cheng et al. (4) proposed the

utilization of an unsupervised stacked denoising auto-encoder

to extract high-level feature representations for breast lesion

imaging with supervised fine-tuning training. Diagnosis models

constructed in a deep learning manner usually require a large

amount of training data to achieve significant classification

results. However, because most cases are benign, the

imbalance of medical data makes it particularly difficult to

collect sufficient training samples. To alleviate the problem of

model underfitting due to data scarcity, Fujioka et al. (5) and Pan

et al. (6) started to use generative adversarial networks to

simulate and enhance breast ultrasound sample data. The

synthesized images will be further used for the training of

convolutional neural networks. The semi-automatic

classification model proposed by Bocchi et al. (7) is an

outstanding early work to study breast lesion classification

based on ultrasound video sequence data. In their proposed

method, each imaging frame of the video is independently

classified as benign or malignant after semi-automatic

segmentation and morphological feature extraction.

Subsequently, the classification results of all frames of the

video are integrated to obtain reliable video-level results. This

scheme results in a substantial improvement in the correct

classification rate compared with the results of a single-image
frontiersin.org
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frame. At the same time, the uncertainty of classification

judgments for certain frames reflects the clinical situation that

lesions may present different characteristic manifestations when

viewed from different viewpoints.
2.2 Contrastive learning

Traditional supervised learning methods rely heavily on a

large amount of labeled training data available. In addition to the

expensive labeling cost, this approach is also vulnerable to

generalization error, spurious correlations, adversarial attaches,

etc. (8). More and more studies start to find new ways out and

start to learn feature representation by self-supervised learning.

Contrastive learning is a discriminative approach, which aims to

group similar samples closer together and dissimilar samples as

far away from each other as possible. For computer vision tasks,

methods such as MoCo (9), SwAV (10), and SimCLR (11) have

produced comparable results to the state-of-the-art supervised

methods in ImageNet (12) dataset. He et al. (9) proposed the

momentum contrast method for unsupervised visual

representation learning, which trains visual representation by

constructing dynamic dictionaries with queueing and moving

average encoders to match with encoded queries encoder.

Compared with the direct comparison of features in general

contrast learning, Caron et al. (10) save computational overhead

by clustering data and computing online for different

enhancements of the same image. Chen et al. (11) save

computational overhead by incremental image augmentation

and by feature representation and introducing a learnable linear

transformation between the feature representation and contrast

loss, further substantially improving the quality of the

learned feature.
2.3 Attention mechanism

In the field of image classification, the attention mechanism

is used to extract key regions and recognize images by spatial
Frontiers in Oncology 03
invariance. The STN (Spatial Transformer Networks) proposed

by Jaderberg et al. (13) effectively addresses the insensitivity of

convolutional networks to different viewpoints of the same thing

through the attention mechanism. Wang et al. (14) proposed the

non-local model to apply the self-attention mechanism to the

computer vision tasks. For an input feature image, each pixel

value is derived from the weighted average of other pixel

features. SENet (15) proposed the squeeze-and-excitation

module, which enhances important channels and suppresses

invalid channels by automatically learning the importance of

different channel features, thus improving model accuracy and

reducing computational effort and complexity. Woo et al. (16)

propose CBAM (Convolutional Block Attention Module) based

on SENet. It extends the attentional dimension from focusing on

the channel dimension to the spatial dimension.
3 Method

Figure 1 shows the schematic illustration of the designed

contrastive learning–guided multi-meta attention network

(CLMAN). The network determines the input breast

ultrasound sequence as benign or malignant, as well as the

predicted score given to that. CLMAN consists of two main

modules: a feature extraction module and a multi-meta attention

module. The feature extraction module performs self-

supervision training on the breast ultrasound video dataset by

the contrast learning method before the formal training to the

learn high-quality feature extraction patterns. For a given breast

ultrasound sequence containing T frames, CLMAN first

performs feature extraction on each frame by a pretrained

feature extraction module to obtain independently encoded

high-level feature vectors. Subsequently, the high-level feature

vectors are aggregated for each frame in the multi-meta attention

module. The module performs adaptive and fine-grained weight

scoring along each feature dimension of each frame to form a

compact and differentiated representation of breast lesions.

Finally, the aggregated video-level feature vectors are used to

determine the pathology of breast lesions by a linear classifier.
FIGURE 1

Schematic illustration of the developed Contrastive Learning guided Multi-meta Attention Network (CLMAN) for breast lesion classification in
ultrasound sequence.
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3.1 Deformed feature extraction module

As shown in Figure 2, the feature extraction module is

designed to extract features in a sequence and obtain a high-

quality feature encoding vector for each frame, which is used for

downstream tasks. The module is based on ResNet-18 (17)

because the residual structure adopted effectively solves the

problem of model degradation due to its depth, and the

constant mapping also enhances the information transfer

between the upper and lower layers. Because of the inherent

multi-frame nature of a sequence, video classification tasks often

take smaller batch sizes. Although the amount of training data

per batch is sufficient in terms of the number of images, the

general batch normalization approach may not be applicable

when the model goes normalization because of the high

similarity of pixel feature distribution across frames within the

same video. In view of this, the group normalization (18) is used

in each bottleneck structure in the basic feature extraction

module to guarantee the stability of the distribution of the

input features. For the problems of low quality and poor

contrast of ultrasound imaging, it is especially important to

focus on critical regions and suppress invalid regions effectively.

The non-local (14) module is introduced and placed in the third

and fourth stages of the feature extraction module for capturing

spatially distant relationships. It focuses on the correlation

between larger objects when the model level is shallow and

pays more attention to the correlation between smaller objects

when the model level is deep.

Suppose a breast ultrasound sequenceV = {vt|t∈[0,T]} , where
vt denotes the tth frame and T denotes the index of frames in the

sequence. The feature extraction module Q(·) extracts features

from each frame to obtain the high-quality feature coding vector

F = {ft|t∈[0,T]} for the whole sequence, which is given by

ft = Q vtð Þ,   t ∈ 0,T½ � (1)
3.2 Contrast learning strategy

Breast ultrasound tumors tend to be characterized by large

intraclass disparities and small interclass disparities in visual
Frontiers in Oncology 04
presentation. Moreover, the cross-sectional visualization of

lesions presented at different stages within the same sequence

often varies greatly. How to identify the diversity of different

cross-sections of the same lesion is the basis for the correct

classification of multi-frame sequences. Inspired by SimCLR

(11), we borrowed this method of learning different data

augmentation of the same image as positive samples together

with negative samples composed of other images to train to

determine the proximity of two features and applied it to video

data, as shown in Figure 3.

For any N sequence clips,M frames are selected randomly as

training samples, and then, the augmented training samples

are extracted by the feature extraction network to obtain the

high-level feature vectors. The extracted features are cascaded

through MLP layers to obtain a tighter feature representation for

the model to learn a better similarity representation. Assuming

that the training samples provided for learning are fvnmj ∀ n∈
½0,N�,   ∀m∈ ½0,M�g, the final feature representation can be

obtained by the following:

f
−n

m = MLP Q t vnmð Þð Þð Þ (2)

where t denotes data augmentation. In the data

augmentat ion stage , we mainly adopt the random

combination of flip, crop, scale, modulation of brightness,

contrast, and elastic transformation to increase the diversity of

sample data.
3.3 Multi-meta attention module

The multi-meta attention module is applied to aggregate

high-level feature vectors across frames of video to provide a

compact and differentiated representation of mammary nodules.

The module adaptively weighs all frames at a fine-grained level

along each feature dimension, leveraging the valuable or

discriminatory parts of each frame to facilitate commonality

recognition without easily discarding or trivializing low-quality

frames as the previous approaches have done. The feature

extraction module trained by the contrast learning strategy is
FIGURE 2

Schematic illustration of the deformed feature extraction module.
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used to extract feature representations for each frame of the

original sequence, denoted as follows:

Ft = f t1 f t2 ⋯ f tm
� �T

m�1 (3)

where Ft denotes the tth frame feature vector with

m dimensions.

As shown in Figure 1, a cascading attention module is

applied to each frame feature to capture the attention

representation better. Each attention module consists of a filter

and an activation layer, which are cascaded to perform nonlinear

feature learning:

Et
l = s WlE

t
l−1 + bl

� �
(4)

where the fully connected layer is used as the filter and the

Tanh function is used as the activation layer s(·) for nonlinearly
transformation. When l = 1, Et

l−1 is defined as Ft. For the

obtained attention vectors of each frame, the attention linear

weights corresponding to each of the Ft channels are obtained by

Softmax operation:
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At =

exp et1ð Þ
oT

j=1
exp ej1ð Þ

exp et2ð Þ
oT

j=1
exp ej2ð Þ
⋮

exp etmð Þ
oT

j=1
exp ejmð Þ

2
6666666664

3
7777777775
m�1

(5)

The final aggregated feature is computed by multiplying the

attention weights by the cumulative sum of the feature vectors,

as shown in Figure 4. The specific aggregation operation can be

expressed as follows:

F
−
=oT

t=1A
t o ̇ Ft (6)

where ȯ denotes the matrix bitwise product. This

aggregation module can weigh the importance of features at

the dimensional level. Theoretically, it can achieve the best

aggregation with good training. CLMAN uses a fair treatment

of each frame of information to maximize the use of any of its

valuable local features to facilitate the recognition of lesion

sequence. Meanwhile, it is worth noting that the formula F
−

FIGURE 4

Schematic illustration of multi-meta attention operation .
FIGURE 3

Schematic illustration of the predecessor task for the contrast learning strategy.
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degrades to average pooling when each item in the attention

matrix A is equal, and of course, the same formula also applies to

maximum pooling in extreme cases.

In addition, using this module of mid-term aggregation of

features allows the linear classifier to process sequence clips of

arbitrary length, whereas the aggregation results F
−
have the

same vector dimension as the individual features Ft and the

order remain constant, i.e., this aggregation module is

insensitive to sequence order and temporal information and

is generalizable to ultrasound sequence clips of arbitrary start

and end points. The module’s parameters can be obtained by

the standard backpropagation and gradient descent for

supervised learning.
4 Experiments

4.1 Dataset

To evaluate the effectiveness of the developed network, we

collected a dynamic breast ultrasound video sequences dataset

with 268 videos, of which 152 sequences are malignant and 116

sequences are benign. All sequences are acquired by GE

Healthcare equipment (Chicago, IL, USA), with L12-5

ultrasound probe and sampling frequency of 12 MHz,

supported by the Xiamen University Xiang’an Hospital. A

total of 107 of these sequences are randomly selected as the

test set (about 40% of the total data volume), and the rest of the

sequences are used as the training set. Data for both the training

and test sets are obtained from cases of patients aged 20 years

and older with definite benign or malignant pathological

findings (BI-RADS categories 3 to 5) of breast lesions as

determined by ultrasound.
4.2 Evaluation metrics

The six widely used metrics are utilized for quantitatively

comparing different breast lesion ultrasound sequence
Frontiers in Oncology 06
classification methods. These are accuracy, average precision

(AP), sensitivity, specificity, F1 score, and area under curve (AUC).
4.3 Implementation details

Our network is implemented on PyTorch (19) and trained

using a SGD (Stochastic Gradient Descent) (20) with 320

epochs, an initial learning rate of 1 × 10−4, a momentum of

0.9, and a weight decay of 5 × 10−4. The sample length T is set to

16, whereas cross-entropy loss is set as the loss function. The

whole architecture is trained on one GeForce RTX 2080 Ti GPU,

and each GPU has a batch size of 8. In the contrast learning

phase, NT-Xent (11) is used as the loss function, and the LARS

(21) optimizer is used to train the model in the pre-task with

8,192 epochs, an initial learning rate of 9 × 10−3, and a weight

decay of 1 × 10−6. The batch size here is set to 64. The learning

rate is adjusted using the Cosine Annealing (22).
4.4 Ablation study

4.4.1 Effectiveness of deformed
extraction modules

We establish separate control groups based on ResNet-18

and compare the use of different components on the

classification performance. As shown in Table 1, “ResNet18

(vanilla)” indicates the most primitive ResNet-18 architecture,

“GN” denotes Group Norm, and “NL” denotes non-local

module. To avoid the effect of the contrast learning strategy,

none of the four settings in Table 1 use that strategy. Compared

with the plain ResNet-18 architecture, the feature extraction

module with group norm has 4.68%, 6.33%, 1.92% and 3.18%

improvement in accuracy, specificity, F1, and AUC, respectively.

Meanwhile, the feature extraction module with the non-local

module shows a steady increase in all six metrics, with 10.28%

increase in accuracy, 6.4% increase in AP, 3.05% increase in

sensitivity, 13.15% increase in specificity, 5.64% increase in F1,

and 11.26% increase in AUC. The feature extraction module

with the group norm and non-local module achieves the average
TABLE 1 Quantitative comparisons for the effectiveness of deformed extraction modules.

Methods Acc AP Sens Spec F1 AUC

ResNet18 (vanilla) 70.09 77.68 75.00 68.67 78.08 71.75

ResNet18 + GN 74.77 77.01 74.29 75.00 80.00 74.93

ResNet18 + NL 80.37 84.08 78.05 81.82 83.72 83.01

ResNet18 + GN + NL (ours) 82.24 81.16 82.05 82.35 85.50 84.85
frontiers
“GN” denotes Group Norm, and “NL” denotes Non-local module.
The bold values/numbers means that it is the largest among all the values at the column.
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best performance, with accuracy of 82.24%, AP of 81.16%,

sensitivity of 82.08%, specificity of 82.35%, F1 of 85.50%, and

AUC of 84.85%. It indicates that using the group norm and non-

local module for the feature extraction module to obtain high-

quality deep features has a certain facilitation effect.

4.4.2 Effectiveness of contrast
learning strategy

The feature extraction module used by our network is pre-

trained by a contrast learning strategy to effectively identify

different geometric patterns of the same lesion under the same

sequence imaging before formally training. Table 2 verifies the

impact of the contrast learning strategy, which is denoted as “CL”,

on the model performance. The experiments show that the

performance of the CLMAN decreases when the contrast

learning strategy is removed. Specifically, accuracy, AP,

sensitivity, specificity, F1, and AUC decreased by 6.55%,

11.62%, 12.39%, 3.57%, 5.54%, and 7.79%, respectively. It

suggests that the contrast learning strategy can effectively

alleviate the problem of large intraclass differences in the visual

presentation of ultrasound lesions.

4.4.3 Effectiveness of multi-meta
attention module

We conduct ablation experiments of multi-meta attention

modules on the CLMAN model. First, the experiment considers

the degenerate version of our multi-attention module, i.e.,

average pooling, as well as the extreme case of the maximum

pooling and then compares them. Second, the LSTM (Long
Frontiers in Oncology 07
Short TermMemory) methods for long sequence feature capture

are also compared in this experiment. In addition, we also

compared attention modules proposed by other studies to

demonstrate the advantage of the multi-meta attention module

in video tasks. As shown in Table 3, “Multi-meta Att” denotes

the multi-meta attention module, and “Average” and “Max-

pooling” represent the degenerate average pooling and the

extreme maximum pooling, respectively. According to Table 3

the long sequence feature capture capability of LSTM is not fully

applicable to ultrasound video imaging aggregation. The

proposed classic attention modules that have often been

effective in the past do not seem to be up to our video task.

Meanwhile, the simple average pooling and maximum pooling

methods achieved the best in terms of sensitivity or specificity,

but the other metrics were not satisfactory. The proposed multi-

meta attention scheme shows a 1.87% improvement in accuracy,

4.66% improvement in AP, 3.94% improvement in F1, and 5.12%

improvement in AUC, with a stronger comprehensive capability.

It indicates that the model has different fine-grained trade-offs

for each part of the features, whereas such weights are learnable,

and the simple and crude average pooling and maximum

pooling approaches limit this adaptive capability.
4.5 Comparisons with state of the arts

To demonstrate the effectiveness and feasibility of the

designed CLMAN model, Table 4 selects from five papers

nine existing methods commonly used to handle video
TABLE 3 Quantitative comparisons for the effectiveness of multi-meta attention module.

Methods Acc AP Sens Spec F1 AUC

With External Attention (23) 79.44 81.39 76.19 81.54 82.81 79.98

With Self-attention (24) 80.37 77.85 79.49 80.88 83.97 78.50

With Efficient Multi-head Self-attention (25) 80.37 78.51 81.08 80.00 84.21 77.49

With LSTM 83.18 77.91 96.43 78.48 87.32 79.47

With Average 86.92 85.26 96.88 82.67 89.86 87.48

With Max-pooling 85.05 88.12 80.43 88.52 87.10 87.52

With Multi-meta Attn (ours) 88.79 92.78 94.44 85.92 91.04 92.64
frontiers
“Multi-meta Att” denotes the multi-meta attention module, and “Average” and “Max-pooling” represent the average pooling and the maximum pooling, respectively.
The bold values/numbers means that it is the largest among all the values at the column.
TABLE 2 Quantitative comparisons for the effectiveness of contrast learning strategy.

Methods Acc AP Sens Spec F1 AUC

Without CL Guided 82.24 81.16 82.05 82.35 85.50 84.85

With CL (ours) 88.79 92.78 94.44 85.92 91.04 92.64
“CL” denotes the contrast learning strategy.
The bold values/numbers means that it is the largest among all the values at the column.
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classification task for comparison, including R3D (23), Times

Former (27), MC3 (23), P3D (24), R(2 + 1)D (23), TIN(Res18,

Res34, Res50)(29), and TSM (25). For providing a fair

comparison, we obtain the classification results of all

compared methods by exploiting their public implementations

or by implementing them. We train these networks on our

dataset and only set the batch size and epoch number to the

same as ours.

CLMAN performs on par with the best of the methods

compared and even better suited for video-level classification tasks

of breast ultrasound sequence, with accuracy improved by 1.87%,

AP improved by 3.06%, sensitivity improved by 2.77%, specificity by

1.44%, F1 improved by 1.49%, and AUC improved by 2.42%.
Frontiers in Oncology 08
More visually, Figure 5 shows the ROC curves of CLMAN

with the above five of the nine methods. The performance of

R3D, MC3, P3D, and R(2 + 1)D is similar, and the AUC remains

around 80%, whereas the area of TSM and CLMAN is

comparable, both exceeding 90%.
5 Conclusion

In this paper, we first collected 268 video sequences

constituting a video dataset for breast ultrasound classification.

Moreover, we propose a CLMAN for lesion diagnosis of

ultrasound breast sequences in arbitrary length. Our approach
FIGURE 5

ROC curves of our network and compared methods.
TABLE 4 Quantitative comparisons of our network and compared methods on the collected ultrasound sequence dataset.

Methods Acc AP Sens Spec F1 AUC

R3D (26) 75.70 80.03 82.14 73.42 81.69 77.56

Times Former (27) 77.57 71.34 77.78 77.46 82.09 72.08

MC3 (26) 77.57 80.83 81.25 76.00 82.61 78.86

P3D (28) 80.37 81.33 89.66 76.92 85.11 81.28

R(2+1)D (26) 82.24 87.36 90.32 78.95 86.33 84.85

TIN Res34 (29) 84.48 86.85 82.33 86.35 86.87 86.79

TIN Res50 (29) 85.05 85.53 88.94 83.10 88.06 86.66

TIN Res18 (29) 85.24 89.52 82.50 87.11 87.52 87.30

TSM (30) 86.92 89.72 91.67 84.51 89.55 90.22

CLMA-Net (ours) 88.79 92.78 94.44 85.92 91.04 92.64
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is able to learn the attention weights of each feature dimension

adaptively and autonomously in both spatial and temporal

dimensions while using a contrast learning predecessor task to

effectively address several challenges of the ultrasound video

sequence classification problem. Experimental results on the

collected dataset show that our network achieves superior

diagnostic performance for breast lesions than the state-of-the-

art video classification methods.
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