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Background: Differentiating multiple pulmonary lesions as multiple primary

lung cancer (MLC) or intra-pulmonary metastasis (IPM) is critical. Lung cancer

also has a high genetic heterogeneity, which influenced the treatment strategy.

Genetic information may aid in tracing lineage information on multiple lung

lesions. This study applied comprehensive genomic profiling to decipher the

intrinsic genetics of multiple lung lesions.

Methods: Sixty-six lung adenocarcinomas (LUAD) tumor lesions (FFEP)

archived from 30 patients were included in this study. The 508 cancer-

related genes were evaluated by targeted next-generation sequencing (MGI-

seq 2000).

Results: The study included a total of 30 LUADs (66 samples). The majority of

tumors demonstrated intra-tumoral heterogeneity. Two hundred twenty-four

mutations were detected by sequencing the 66 samples. We investigated the

driver gene mutations of NSCLC patients with multiple lesions. EGFR was the

most frequently (48/198) mutated driver gene. The codons in EGFR mainly

affected by mutations were p.L858R (18/66 [27.3%]) and exon 19del (8/66

[12.1%]). In addition, additional driver genes were found, including TP53, BRAF,

ERBB2, MET, and PIK3CA. We also found that the inter-component

heterogeneity of different lesions and more than two different mutation types

of EGFR were detected in seven patients with two lesions (P3, P10, P24, P25,

P28, P29, and P30). The TMB values of different lesions in each patient were

different in 26 patients (except P4, P5, P14, and P30).
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Conclusions: Comprehensive genomic profiling should be applied to

distinguishing the nature of multiple lung lesions irrespective of radiologic

and histologic diagnoses.
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Introduction

The focus of lung cancer treatment shifted significantly with

the identification of specific targetable driver mutations.

Epidermal growth factor receptor (EGFR) driver mutation

cancers represent a distinct subset of non-small-cell lung

cancer (NSCLC) with broad molecular and clinical

heterogeneity (1). For NSCLCs harboring EGFR driver

mutations, the current standard of treatment in the first-line

setting is an EGFR tyrosine kinase inhibitor (TKI), either a first-

(gefitinib or erlotinib) or second-generation TKI (afatinib).

Besides EGFR, ALK, KRAS, ROS1, c-MET, and PIK3CA have

been implicated as a driver of NSCLCs, such as crizotinib for

ALK‐positive lung cancer patients (1, 2). The TP53 gene

mutation has also been identified as a driver mutation in

NSCLC. These driver mutations are highly heterogeneous,

including inter-patient, and intra- and inter-tumor variability.

In particular, differentiating multiple pulmonary lesions as

multiple primary lung cancer (MLC) or intra-pulmonary

metastasis (IPM) is critical (3). Furthermore, a high degree of

genetic diversity between the primary lung tumor and

corresponding metastatic lesions could play a pivotal role in

the therapeutic context of lung cancer patients. Beyond

heterogeneity of druggable driver mutations, previous studies

have analyzed the presence of mutational signatures across

human cancer types, proving that specific mutational

signatures correlate with defined tumors (3, 4). The genomics

from NSCLC to SCLC have been reported, and molecular

characterization of SCLC has revealed an extremely high

mutational rate in TP53 and RB1 genes (5).

In contrast, the tumor mutation burden (TMB) reveals the

total number of mutations occurring in a tumor specimen and

indicates the status of genomic mutations (6). Previous studies

have shown that PD-L expression is highly heterogeneous at

different locations in the lung. The PD-L1 positive agreement

rate between lung primary and metastatic tumors is 63-100%. In

12%-35% of lung cancer patients, PD-L1 expression changes

during treatment (7). From driver genes to TMB, what are the

genetic characteristics of patients with multiple primary lesions

of lung adenocarcinoma?
02
Multiple somatic alterations lie at the root of cancer

development and tumor heterogeneity. This tumor

heterogeneity further complicates the design of strategies for

effective treatment. Thus, knowledge about the distribution of

driver mutations in NSCLCs, particularly in early-stage NSCLCs

with multiple lesions, is an area of interest. This study applied

comprehensive genomic profiling deciphering intrinsic genetics

of multiple lung lesions.
Methods

Patients and samples

Between May 2019 and September 2019, 30 patients (many

patients with multiple lesions, and only samples meeting the

criteria were eventually processed for sequencing) with at least 2

lesions (30) undergoing concurrent surgery were enrolled and

sequenced using a targeted exome capture sequencing (568-gene

panel) on an MGI-500 platform. Of note, for a patient with

multiple lesions, each lesion was evaluated separately, and the

outcome of each lesion was reported.
Comprehensive genomic profiling

Genomic DNA was extracted from FFPE and peripheral

blood samples using the Qiagen DNeasy Blood & Tissue Kit

(Qiagen, Hilden, Germany) according to the manufacturer’s

recommendations. First, raw data generated by the BGISEQ-

500 sequencer were filtered by SOAPnuke to exclude reads with

low quality. Clean reads were then mapped to the reference

human genome (GRCh37/hg19) from a UCSC genome browser.

Calling of single nucleotide variants (SNVs) and small

insertions/deletions (Ins/Del) was performed with the Genome

Analysis Tool kit (GATK) using parameters adapted to

HaloPlex-generated sequences. The copy number variants

(CNVs) were called using the CNVnator read-depth

algorithm. TMB assessed via targeted sequencing of ~1.25Mb

broadly recapitulated previous results of the whole exome TMB
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analysis. Tumor mutation burden was the number of all the non-

synonymous mutations/0.7 Mb targeted coding region.
Statistical analysis

A correlation graph was made using the R Package (version

3.3.0; http://www.r-project.org). A chi‐squared test was used for

comparisons of categorical variables across multiple factors. A

P< 0.05 was considered significant.
Results

Patient characteristics

All 30 LUAD patients had multifocal lesions, which added

up to a total of 66 lesions. The clinical features of patients are

summarized in Tables 1, 2. The age distribution was between 30

and 69 years. Twenty-two (73.3%) patients were female.

Approximately 73.3% (n=22) of the study group were female

compared to 26.7% (n=8) male (Table 1). Twenty-seven (90.0%)

patients had stage IA and three individuals had stage IB and IIB

(Table 1). Twenty-nine patients (96.7%) had > 2 lung primary

lesions, and 1 patient (3.3%) had a metastatic lung lesion. Except

for P1, P10, P24, and P28, the pathologic subtypes of all lesions

were the same in every patient (Table 2 and Figure 1).
Genomic alterations in early-stage
NSCLC with multiple lesions

The genomic alterations of each lesion also were reported

and the mutations are summarized in Figure 1. Altogether, 224
Frontiers in Oncology 03
mutations were detected using a 508 gene panel by sequencing

the 66 samples. The most common mutations in our study

included mutations in EGFR (76.7%) and TP53 (26.7%).

Interestingly, we did not find EML4-ALK fusion and MET

mutations. The codons in EGFR mainly affected by mutations

were p.L858R (18/66 [27.3%]) and exon 19del (8/66 [12.1%]). To

explore the genomic origin, we further investigated the shared

driver mutations of 30 cases (Figure 1).

Four patients (P5, P6, P16, and P26) had shared variations,

which occurred in EGFR (n=2), TP53 (n=1), 1HSP90AA1 (n=1),

and 1 KRAS (n=1), and the pathologic outcomes of all lesions

were the same in every patient (Figure 1). It is worth noting that

one of the lesions in P26 was primary, and the other was a

metastatic lesion to the lungs (Figure 1). In 12 patients (P1, P2,

P3, P4, p7, P8, P9, P12, P13, P21, P22, and P27), the pathologic

results of the lesion were the same in each patient, but the driver

genes were different (Figure 1). We also found that the inter-

component heterogeneity of different lesions and more than two

different mutations type of EGFR was detected in seven patients

with two lesions (P3, P10, P24, P25, P28, P29, and P30)

(Figure 1). In P10, P24, and P28, the micro-invasive lesions

were found synchronously and the other lesions were subdivided

as follows: invasive, Atypical adenomatous hyperplasia (AAH);

and in situ. Among the 4 lesions in P14 patients, driver

mutations (EGFR L747_P753delins) were detected in two

lesions with different pathologic subtypes, and CHD1 and

PIK3R1 mutations occurred in two other lesions. In addition,

additional driver genes were found, including ALK, BRAF,

ERBB2, MET, and PIK3CA. We also observed that MED12,

TP53, and TSC1 gene mutations were detected in patients P4, P8,

and P1.

Based on the above results, we analyzed known high-

frequency driver mutations and evaluated the maximum and

minimum detection rates in different situations (Table 2). The

results clearly showed that increasing the lesions in one patient

increased the mutation rate.
The distribution of TMB in early-stage
NSCLC with multiple lesions

To investigate the intratumor heterogeneity of TMB, we

analyzed the TMB status of 30 patients. The clinical features of

patients are summarized in Table 3.

We found that the TMB values of different lesions in each

patient were different in 26 (except P4, P5, P14, and P30;

Table 3). Among the 26 patients, 4 (P1, P10, P24, and P28;

Table 3) with 2 lesions, and all lesions in each patient had a

different pathologic subtype. It is worth noting that the sampling

locations of each lesion in P1 and P28 were also different

(Table 3). In P5 and P14 with 3 lesions, the distribution of

TMB is also more diverse. Two lesions in N5 patients (P5-1 and

P5-3) had the same TMB value, stage, and pathologic
TABLE 1 Clinical characteristics of the patients at baseline.

Characteristic Overall (N=30) P value

Gender p>0.05

Female 22 (73.3%)

Male 8 (26.7%)

Age p>0.05

<60 14 (46.7%)

>=60 16 (53.3%)

Location p>0.05

left 11 (36.7%)

right 19 (63.3%)

Stage p<0.05

IA 27 (93.3%)

IB 2 (6.7%)

Lesion p<0.05

Metastases 1 (3.3%)

Primary 29 (96.7%)
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classification. In the remaining lesion (P5-2), a different TMB

value and sampling location were observed (Table 3). A similar

phenomenon had also been found in P14. The lesions with

different pathologies (P14-1 and P14-2) had the same TMB

value, and the lesions with different TMB values (P14-1 and P14-

3) had different TMB values. The clinical features and TMB

values of all lesions in each patient (P4 and P30) were the same.

Among two metastatic lesions from one patient (P1), highly

heterogeneous TMB values were found in two lesions with the

same driver gene height (Figure 1 and Table 3).
Discussion

Tumor heterogeneity is frequently cited as a confounding

factor and limitation in molecular studies of tumors (8). The

intra-tumor heterogeneity of multiple primary lung cancers

(MPLC) may lead to therapy failure and cancer progression
Frontiers in Oncology 04
(9, 10). Further study of the molecular characteristics and TMB

distribution of MPLC can help guide clinical practice effectively.

Previous studies have demonstrated that approximately 85%

of individuals with LUAD have known driver mutations,

including EGFR, KRAS, ALK, ERBB2, ROS1, RET, MET,

BRAF, NRAS, and TP53 (11, 12). Our study showed that the

main common driver gene was EGFR. The available data also

showed that early‐ and advanced‐stage LUAD exhibit the same

EGFR mutation frequencies and types (13). The major driver

mutations other than EGFR, KRAS, ERBB2, PIK3CA, and TP53

were not detected in our study, which more frequently occurs in

Asian LUAD (12, 14). This may be because ALK fusion gene-

positive LUAD typically occurs in young non-smokers or rare

smokers (15). METex14 alterations are enriched in sarcomatoid

histologies, with a prevalence ranging from 8%-22% (16, 17).

The ROS1 gene was reported to be present in 1%–2% of

NSCLCs, which is common in young non-smoking female

patients with LUAD (17). These findings indicate that known

driver gene mutations dominate early genetic events and

conferred a selective growth advantage. These mutations

occurred in multiple primary and metastatic lesions of the

same patient. Interestingly, if only one lesion was detected, the

lowest detection rate may occur. Therefore, the simultaneous

detection of multiple lesions helps to increase the probability of

targeting drugs. Our key finding is that the different EGFR

mutations always occur in different lesions of one patient,

suggesting that heterogeneous distribution of EGFR mutation

is the major driver event in the development of LUAD. The

intertumoral heterogeneity of EGFR-activating mutations has

also been confirmed at the single-cell level, which was associated

with the EGFR-TKI response in LUAD patients harboring the

EGFR L858R mutation (9). The resistance led by the T790M

mutation is more attributed to 19 exon del than L858R (18).

When the patients have a double mutation with exon 19del and

T790M or exon 19del and L858R, patients will not benefit from

first-generation EGFR-targeted TKI drugs and may benefit from

AZD9291 (19). Identical tumor subtypes respond differently to

the same drug, which may be among many others an effect of

intratumoral heterogeneity. We also identified HSP90AA1

mutations in one patient with two lesions. It has been reported
FIGURE 1

Heatmap showing mutations for each patient.
TABLE 2 The clinical and driver mutation genes characteristics of 30 patients.

Driver gene Maximum positive rate (Ⅰ) (N=30) Positive rate of all lesions (Ⅱ) (N=66) Minimum positive rate (III) (n=30)

EGFR 23 (76.7%) 46 (70.0%) 19 (63.3%)

ERBB2 1 (3.3%) 1 (1.5%) 0

KRAS 6 (20.0%) 8 (9.1%) 4 (13.3%)

PIK3CA 2 (6.7%) 2 (3.0%) 0

TP53 7 (23.3%) 8 (12.1%) 6 (20%)

ALK fusion 0 0 0

MET 1 (3.3%) 1(1.5%) 0
Maximum positive rate, at least one lesion in the patient tested positive; Positive rate of all lesions, positive rate in 66 lesions; Minimum positive rate, all lesions in the patient tested positive.
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TABLE 3 The clinical and driver mutation genes characteristics of the two groups.

N-ID Sample-ID Stage Site Location_1 Location_2 Patho_Subtype TMB

P1 P1-1 IA primary left UL Micro invasive 2.05

P1-2 IA primary left LL In situ 1.54

P2 P2-1 IA2 primary right UR invasive 7.69

P2-2 IA2 primary right LR invasive 5.73

P3 P3-1 IA primary right LR invasive 1.54

P3-2 IA primary right LR invasive 4.66

P4 P4-1 IA1 primary left LL invasive 2.05

P4-2 IA1 primary left LL invasive 2.05

P5 P5-1 IA primary left UL invasive 7.69

P5-2 IA primary left UL invasive 1.54

P5-3 IA primary left LL invasive 7.69

P6 P6-1 IA1 primary right UR invasive 3.59

P6-2 IA1 primary right UR invasive 2.56

P7 P7-1 IA1 primary right LR Micro invasive 2.56

P7-2 IA1 primary right LR Micro invasive 2.05

P8 P8-1 IA1 primary right UR invasive 1.54

P8-2 IA1 primary right UR invasive 0.72

P9 P9-1 IA primary left LL In situ 3.08

P9-2 IA1 primary left UL In situ 1.03

P10 P10-1 IA1 primary right LR Micro invasive 4.62

P10-2 IA1 primary right LR invasive 1.03

P11 P11-1 IA3 primary right LR invasive 3.08

P11-2 IA3 primary right LR invasive 2.05

P11-3 IA3 primary right LR invasive 5.64

P12 P12-1 IA2 primary right LR invasive 5.13

P12-2 IA1 primary right UR invasive 5.64

P12-3 IA3 primary right MR invasive 2.56

P13 P13-1 IB primary left UL invasive 2.56

P13-2 IA primary left LL invasive 6.15

P14 P14-1 IA primary right LR Micro invasive 0.51

P14-2 IA primary right LR invasive 0.51

P14-3 IA primary right LR invasive 1.03

P15 P15-1 IA1 primary right LR invasive 2.56

P15-2 IA1 primary right UR invasive 0.51

P15-3 IA1 primary right LR invasive 2.05

P16 P16-1 IA3 primary right UR invasive 1.03

P16-2 IA1 primary right UR invasive 1.79

P17 P71-1 IAb primary left UL invasive 1.54

P17-2 IAb primary left UL invasive 2.56

P18 P18-1 IA primary left UL invasive 1.54

P18-2 IA primary left UL invasive 1.43

P19 P19-1 IA1 primary right UR Micro invasive 1.03

P19-2 IA1 primary right UR Micro invasive 1.54

P20 P20-1 IA1 primary right LR Micro invasive 2.05

P20-2 IA1 primary right LR Micro invasive 0.51

P21 P21-1 IA1 primary left UL In situ 8.72

P21-2 IA1 primary left UL In situ 1.03

P22 P22-1 IB primary right UR invasive 3.59

(Continued)
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that HSP90AA1 is associated with a shorter overall survival rate

in patients with NSCLC (20). Molecular heterogeneity between

multiple lesions in individuals with the same pathologic type

represents different biological processes, resulting frequently in

different treatment responses for each patient. So, we further

speculated whether multi-primary tumors enrich tumor

heterogeneity, and thus have a greater impact on the

distribution of TMB.

TMB sketches out the status of genomic mutations (21),

which is emerging as a practical biomarker for predicting the

response of immune checkpoint inhibitors (ICIs) (22). Early

studies have shown that PD-L1 expression was markedly

different between primary tumors and paired metastatic lymph

nodes (23). Different histologic components within a tumor and

different pathologic features contribute to the heterogeneous

PD-L1 expression in patients with NSCLC (24). By exploring the

TMB distribution in different lesions of the intratumor, our

results showed that in one patient, TMB distribution in different

lesions was diverse. Although the pathologic phenotypes of the

multiple lesions were consistent, the TMB distribution was still

quite different. Thus, heterogeneity within a tumor and across

multiple tumors within a patient was further demonstrated.

Currently, most clinical trials do not account for intratumoral

heterogeneity of TMB. Intratumor heterogeneity may contribute

to the ambiguous clinical results on TMB status as a predictor

for immunotherapy response in patients with LUAD.
Frontiers in Oncology 06
Morphologic heterogeneity of the tumor may sometimes

provide an important clue to genomic heterogeneity of the

tumor, which is often associated with responses to particular

molecular-targeted and immunotherapy therapy. It also likely

reflects the fact that, because of the considerable tumor, patient,

and treatment heterogeneity, no one “optimal” management

strategy can be delineated. This shows that the simultaneous

detection of multiple primary or metastasis lesions that meet the

sequencing standards can help provide more clinical

guidance information.
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TABLE 3 Continued

N-ID Sample-ID Stage Site Location_1 Location_2 Patho_Subtype TMB

P22-2 IB primary right UR invasive 2.05

P22-3 IA3 primary left UL invasive 1.08

P23 P23-1 IA1 primary right LR In situ 0

P23-2 IA1 primary right LR In situ 1.35

P24 P24-1 IA2 primary right UR Micro invasive 2.05

P24-2 IA1 primary right UR / 5.64

P25 P25-1 IA2 primary right MR invasive 3.08

P25-2 IA2 primary right UR invasive 2.05

P26 P26-1 IA1 metastases right UR invasive 7.69

P26-2 IA1 metastases right LR invasive 8.72

P27 P27-1 IA1 primary right UR invasive 4.1

P27-2 IA1 primary left LL invasive 2.05

P28 P28-1 IA1 primary left UL Micro invasive 2.56

P28-2 IA1 primary left LL In situ 1.54

P29 P29-1 IA1 primary left LL Micro invasive 2.05

P29-2 IA1 primary right UR Micro invasive 2.56

P30 P30-1 IA1 primary right UR Micro invasive 0.51

P30-2 IA1 primary right UR Micro invasive 0.51
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