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EGFR TKIs are not curative, and targeted resistance inevitably results in therapeutic failure.
Additionally, there are numerous uncommon EGFRmutations that are insensitive to EGFR
TKIs, and there is a lack of clinical strategies to overcome these limitations. EGFR TKI and
mAbs target EGFR at different sites, and a combination regimen for delaying/preventing
resistance to targeted therapy or obtaining more intensive inhibition for uncommon
mutations at cellular, animal and human levels has been explored. This review critically
focuses on a combination strategy for uncommon EGFR mutation-positive NSCLC, and
discuss the preclinical data, clinical implications, limitations and future prospects of the
combination strategy.

Keywords: epidermal growth factor receptor, tyrosine kinase inhibitor, uncommon mutation, NSCLC,
drug resistance
INTRODUCTION

Over the past decades, systemic treatment strategies involving epidermal growth factor receptor
(EGFR) tyrosine kinase inhibitors (TKIs) have greatly improved outcomes and represent the
backbone of treatment for advanced EGFR-mutant non-small-cell lung cancer (NSCLC) (1, 2).
EGFR TKIs are now the standard treatment for classic mutations (such as exon 19del and exon 21
L858R point mutations), with median progression-free survival (PFS) ranging from 10-12 months
(2–4) and 18.9 months (5) for first/second-generation EGFR TKIs and third-generation TKIs,
respectively. However, EGFR TKIs are not curative, and targeted resistance inevitably results in
therapeutic failure (6). Moreover, various primary and acquired uncommon mutations (such as
EGFR-dependent or EGFR-independent mutations) have been reported, and such uncommon
EGFR mutations may be associated with poor response (7) or even resistance (8) to EGFR-
TKI monotherapy.

Comprehensive next-generation sequencing (NGS) has greatly promoted clinical research on
targeted therapy. Strategies for targeted therapy to delay drug resistance or find effective targeted
strategies for uncommon mutations have always been a hot topic in clinical research. Despite
available information on resistance mechanisms and uncommon mutations, there is a paucity of
clinical strategies for overcoming these limitations. To date, EGFR TKI combination therapy [with
cytotoxic anticancer agents (9–12), angiogenesis inhibitors (13–16), or TKIs (17)] have been widely
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explored in this heterogeneous group of patients with regard to
efficacy, safety and tolerability. Studies have also begun exploring
combination therapy with EGFR TKIs and mAbs; we call this the
“sandwich” strategy because EGFR is blocked by integrating
EGFR TKIs intracellularly and EGFR mAbs extracellularly)
(18, 19).

This review focuses specifically on the “sandwich” strategy for
EGFR mutation-positive NSCLC, aiming to overcome drug
resistance and discuss prospects for their use in clinical settings.
MECHANISMS OF LIMITED
RESPONSIVENESS TO EGFR-TKIS WITH
UNCOMMON EGFR MUTATIONS

Under normal physiological processes, EGFR forms a dimer when
bound by ligands, such as EGF, EPF, TGFa, AR, BTC, HB-EGF
and EPR, after which autophosphorylation of the tyrosine kinase
domain (TKD) occurs, transmitting pro-proliferation signals in
cells (20). Under circumstances of EGFR driver mutation, the
TKD is homeostatically activated in a ligand-independent manner,
leading to transmission of excessive pro-survival and pro-
proliferation signals and resulting in cancer initiation and
progression (21). The efficacy of EGFR mAbs involves blocking
the binding of ligands to EGFR (part of the mechanism),
inhibiting ligand-induced activation of TKD (22); the efficacy of
EGFR TKIs is related to TKD binding, decreasing the relative
affinity of TKD for ATP in a ligand-independent manner (23).

Intratumor heterogeneity (ITH) (24, 25) is defined as the a
tumor containing different tumor cells (TCs) with different
genomic features. Several studies (26, 27) have described the
ITH and evolutionary process of NSCLC. Primary or acquired
resistance is a direct consequence of preexisting ITH and
continuous development of new therapy-resistant phenotypes.
Broadly five mechanisms of drug resistance (primary and
acquired) to EGFR TKIs have been reported, as follows (8): 1.
EGFR-dependent mutations (5) (including exon 18 point
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mutation (L718Q, G724S), exon 19 point mutation (D761Y,
L747S/P), exon 20 point mutation (S768I, T790M, L792F/H,
G796S/R/D, C797S), exon 21 point mutation (V843I, T854A),
exon 20ins mutation (28) and EGFR amplification (8, 29), with
some complex EGFR mutations reported to be responsible for
resistance acquisition (8, 30)); 2. EGFR-independent mutations
(8), such as activation of alternative signaling pathways, including
RET amplification, MET amplification, and HER2 amplification;
3. Mutations in downstream signaling genes (31) such as BRAF/
KRAS mutation, PIK3CA mutation, and RAS/RAF/MEK/ERK
mutation; 4. phenotype alteration, such as small-cell lung cancer
(SCLC) transformation (29); 5. enhancement of autophagy (6)
(Figure 1). Furthermore, these mechanisms may be coactivated in
a single case, and their crosstalk can further complicate treatment
and worsen patient outcome.

Targeting kinases with small molecular TKI directed at their
well-characterized ATP-binding pockets or allosteric pockets has
been carried out (32). Structures of uncommon mutations may
interfere with the binding of targeted drugs to ATP-binding
pockets or allosteric pockets, which may be a reason for the
limited responsiveness to EGFR TKIs. Cases of uncommon
EGFR mutations are highly heterogeneous (33). Specifically, these
uncommon mutations consist of gatekeeper mutation (T790M),
mutation causing steric hindrance (L718Q, L844V), mutation
modifying the TKI-binding site (L798I, C797S), solvent-front
mutation (G796S/R/D) and mutation within the hinge region
(L792F/H). The T790M mutation in EGFR is located at a special
position; it is often referred to as the “gatekeeper residue”, a
structural location documented to interfere with inhibitor
binding (20). By in silico protein structure modeling for TKI
binding, Yang and colleagues revealed that the L718Q and
L792H substitutions prevent osimertinib (a third-generation
EGFR TKI) binding by introducing spatial confliction and
decreasing local hydrophobicity. Furthermore, the L792 and L718
mutations markedly increase the half inhibitory concentration
(IC50) of osimertinib in vitro (31), consistent with the in vivo
conclusion. L844V mutation is reported to reduce WZ4002 (a
third-generation EGFR TKI) binding and alter hydrophobic
FIGURE 1 | Mechanisms of drug resistance to EGFR TKIs. EGFR, epidermal growth factor receptor; SCLC, small cell lung cancer; TKI, tyrosine kinase inhibitor.
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contacts with its inhibitor (34). As the second-generation
irreversible EGFR TKI afatinib/dacomitinib and the third-
generation EGFR TKI osimertinib bind covalently to Cys797 in
the ATP-binding pocket (35), the occurrence of secondary
mutations near the binding site (C797S (36), L798I (37))
theoretically leads to drug resistance. Uchibori et al. proved that
C797S mutations reduce the affinity between osimertinib and the
EGFR kinase domain and increase the relative affinity for
ATP (38).
POSSIBILITY OF THE “SANDWICH”
STRATEGY IN NSCLC

Using a highly sensitive locked nucleic acid (LNA)-based
method, T790M has been detected in up to 68% of cases of
EGFR TKI acquired resistance (39). Regarding drug resistance
mechanisms to TKIs, EGFR-dependent mutations are observed
in most cases (T790M for first/second-generation and loss of
T790M and other EGFR uncommon and complex mutations for
third-generation) (29). These data suggest instability of the EGFR
signaling pathway or insufficient inhibition of EGFR by TKIs.
Thus, it may be reasonable to combine EGFR TKI and EGFR
mAbs for more intensive consolidation therapy in selected
patients. Currently, EGFR TKIs used for the “sandwich”
strategy include gefitinib, erlotinib, afatinib, EAI045, brigatinib
and lazertinib; EGFR mAbs include cetuximab, necitumumab,
panitumumab and amivantamab.

EGFR TKI and EGFR mAbs both target EGFR; however,
some of their mechanisms of action and their blocking effects do
not completely overlap (Figure 2). Low-molecular-weight TKIs
block EGFR signaling by either competing with ATP (20) or
changing the structure of EGFR (known as allosteric inhibition)
(40). For high-molecular-weight mAbs, EGFR mAbs have the
Frontiers in Oncology | www.frontiersin.org 3
following mechanisms in addition to direct tumor inhibition by
preventing ligand binding by blocking the ligand-binding
extracellular domain. Under normal biological processes, the
binding of ligand to EGFR results in cell surface receptor number
downregulation via internalization of the ligand–receptor
complex, which is eventually degraded in lysosomes (41).
EGFR mAbs have the capacity to form receptor-containing
complexes, which attenuate EGFR pathway signaling through
receptor internalization. Additionally, studies have shown that
EGFR TKIs can induce EGFR upregulation (8, 42–44), and EGFR
mAbs have been proven to be able to decrease the level of cell
surface EGFR (38) and abrogate the increase in TKI-induced
EGFR transcription (44). From an immunological perspective,
mAbs (such as cetuximab and necitumumab) of the IgG1
subtype have the ability to preferentially enhance affinity
toward binding Fc with FcgR, leading to antibody-dependent
cellular cytotoxicity (ADCC) or antibody-dependent cellular
phagocytosis (ADCP) of tumor cells (45, 46). Interestingly, the
human IgG2 isotype EGFR antibody panitumumab has Fc-
mediated effector functions (45, 47). The mechanistic
explanation is that panitumumab is highly potent in recruiting
myeloid effector cells (such as PMN and M1 macrophages) for
tumor cell killing by ADCC and ADCP (48). Therefore,
theoretically, EGFR TKIs and mAbs exert synergistic
antitumor effects while lowering the dose required for efficacy.

EGFR TKI and EGFR mAb target EGFR at different sites, and
preclinical and clinical studies have revealed shared and
complementary mechanisms of action, resulting in superior
inhibition of EGFR, MAPK (mitogen-activated protein kinase),
Akt phosphorylation, induction of apoptosis and vascularization
inhibition of xenografts (49). The “sandwich” strategy has been
explored in delaying/preventing resistance to targeted therapy or
obtaining more intensive inhibition for uncommon mutations at
the cellular, animal and human levels.`
FIGURE 2 | Antitumor mechanisms of the “sandwich” strategy: extracellular domain targeted by EGFR mAbs and intracellular domain targeted by EGFR TKIs.
ADCC, antibody-dependent cellular cytotoxicity; ADCP, antibody-dependent cellular phagocytosis; EGFR, epidermal growth factor receptor; mAb,
monoclonal antibody; NK, natural killer; TKI, tyrosine kinase inhibitor.
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Preclinical Data of the “Sandwich”
Strategy
Early in the last century, scientists realized the unique capability
of this combination regimen for EGFR inhibition (50).
Numerous studies have demonstrated the benefit of EGFR TKI
plus EGFR mAbs in lung cancer using in vitro and in vivomodel
systems (Table 1). Huang et al. found that gefitinib/erlotinib plus
cetuximab shows significant cell proliferation inhibition,
apoptosis promotion and tumor suppression in lung cancer
cell lines and human lung cancer xenografts (51).

Subsequent studies began to focusonspecific typesofmutations.
EGFR exon 20ins is reportedly resistant to EGFR TKIs, and the
afatinib- or osimertinib-based “sandwich strategy” has beenproven
to induce amore potent inhibitory effect against severalEGFR exon
20ins mutations than either therapy alone in Ba/F3 cells
(A763_Y764insFQEA, Y764_V765insHH, A767_V769dupASV,
and D770_N771insNPG) and BALB/c-nu mice (EGFR
A767_V769dupASV and EGFR Y764_V765insHH) (57). A
similar study evaluated combinations of osimertinib + cetuximab
in several NSCLC models with certain complex mutations (E746-
A759del/T790M, L858R/T790M, and E746-A759del/T790M) as
second-line treatment following development of resistance to
osimertinib, and the results demonstrated that osimertinib +
Frontiers in Oncology | www.frontiersin.org 4
cetuximab may be a novel effective therapeutic option (56)
Nevertheless, targeted treatment for patients with cis-C797S/
T790M/classic mutations is difficult, and no effective therapeutic
strategies have been reported. Uchibori et al. found brigatinib to be
effective against cis-C797S/T790M/classicmutations in vitro and in
vivo, and its effect was markedly enhanced by combination with
cetuximab/panitumumab (38). Allosteric inhibitors also play an
important role in the “sandwich” strategy. For example, EAI045 is
an allosteric inhibitor targeting drug-resistant EGFR mutants with
high selectivity and simultaneously spares wild-type EGFR. Jia et al.
(55) tested the in vitro and in vivo efficacy of EAI045 in genetically
engineered Ba/F3 cells and a mouse model, and only EAI045 in
combination with cetuximab was effective for NSCLC driven by
EGFR L858R/T790M and L858R/T790M/C797S.

These preclinical studies suggest a synergistic effect between
EGFR TKIs and EGFR mAbs. However, it is not yet clear whether
we can translate this research evidence from the preclinical stage
to humans.

Clinical Implications of the “Sandwich”
Strategy
A study evaluated the efficacy of gefitinib combined with
cetuximab for patients with advanced/metastatic NSCLC
TABLE 1 | Preclinical data evaluating the “sandwich” strategy.

Year and author Country Strategy Study object Treatment
response

1997 Bos (50) USA PD153035
+cetuximab

Cell lines overexpressing EGFR cell proliferation

2004 Matar (49) Spain Gefitinib
+cetuximab

Vulvar squamous carcinoma cell line (A431), colon carcinoma cell line (DiFi), prostate
carcinoma cell line (DU145), and breast carcinoma cell lines (SK-BR-3, MDA-MB-435S,
MDA-MB-468, MDA-MB-453, and T-47D,BT-474)
A431 xenografts

cell proliferation
tumor regressions

2004 Huang (51) USA Gefitinib/Erlotinib
+cetuximab

Lung/head/neck cancer cell lines
human lung cancer xenografts

cell proliferation/
apoptosis
tumor regressions

2005 Jimeno (44) USA Erlotinib
+cetuximab

HuCCT1 cell lines
A431, HuCCT1, and Panc430 xenografts

cell proliferation/
apoptosis
tumor regressions

2009 Lucia Regales (52) France Gefitinib/erlotinib
+cetuximab/
panitumumab

EGFR-expressing TNBC cell lines

2016 EI Guerrab (53) Japan Afatinib+
cetuximab

Ba/F3 cell lines (A763_Y764insFQEA, Y764_V765insHH,
A767_V769dupASV, D770_N771insNPG)
xenografts (EGFR A767_V769dupASV or Y764_V765insHH).

cell proliferation
tumor regressions

2016 Pirazzoli (54) USA Afatinib+
cetuximab

xenografts (EGFR L858R+T790M) tumor regressions

2016 Jia (55) USA Afatinib+
cetuximab

xenografts (EGFR L858R) time to relapse and
incidence of drug-
resistant tumors

2017 Uchibori (38) USA EAI045
+cetuximab

Genetically engineered mouse (EGFR L858R/T790M or EGFR L858R/T790M/C797S) tumor regressions

2018 Della Corte (56) Japan Brigatinib+
cetuximab/
panitumumab

EGFR-triple-19del
expressing PC9 lung cancer cell lines and xenografts

cell proliferation
tumor regressions
and survival periods

2019 Hasegawa (57) Italy Osimertinib
+cetuximab

HCC827 (E746-A759del/T790M), H1975 (L858R/T790M), PC9-T790M (E746-A759del/
T790M) cell lines and xenografts

tumor regressions
and survival periods

2021 Corso (58) Italy erlotinib
+cetuximab

EGFR-amplified gastroesophageal adenocarcinoma PDX model tumor regressions
July 2022 | Volum
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previously treated with platinum-based chemotherapy without
EGFR mutation or amplification, and the results showed that
none achieved partial response (PR) (59). A similar result was
obtained in a study evaluating erlotinib combined with
cetuximab for patients with acquired resistance to erlotinib
(ORR=0%) (60). Interestingly, the “sandwich strategy” based
on afatinib exhibited significant activity, with an ORR of 29%
and a median PFS of 4.7 months in advanced EGFR-mutant
NSCLC and acquired resistance to erlotinib/gefitinib.
Furthermore, the results showed comparable treatment effects
in patients with T790M-postive or -negative tumors (60).
Inspired by the afatinib-based “sandwich strategy”, the
randomized phase II, multicenter trial SWOG S1403 evaluated
the benefit of afatinib plus cetuximab compared with afatinib
alone as first-line treatment targeting classic mutations (exon
19del and exon 21 L858R). Unfortunately, the results showed
that the addition of cetuximab to afatinib did not improve
outcomes, with 30% of patients in the combination regimen
discontinuing cetuximab due to intolerable adverse events (AEs)
(61). As an EGFR-MET bispecific antibody, amivantamab
(approved by the FDA in 2021) has also been explored in
combination with lazertinib in cases progressing on
osimertinib (CHRYSALIS), and encouraging preliminary
antitumor activity was observed, with an ORR of 36% (62, 63).
CHRYSALIS-2 (64) is an ongoing phase 1/1b open-label study
evaluating the effects of amivantamab + lazertinib in patients
with EGFR-mutant NSCLC (first-line therapy) and a phase 3
study (MARIPOSA) in ongoing to assess activity of the
combination in EGFR-mutant NSCLC (first-line therapy) (65).

Van Veggel et al. reported four stage IV NSCLC patients with
EGFR exon 20ins treated with afatinib (40 mg/d) and cetuximab
(250-500 mg, q2w); 3/4 patients (Ser768_Asp770dup,
Asn771_His773dup and Ala767_Val769dup) showed a partial
response (PR), whereas the remaining (His773dup) showed
stable disease (SD); the mPFS was 5.4 months (66).
Osimertinib (80 mg/d) plus cetuximab (400 mg, q2w) is also
effective for the complex mutation EGFR A767_S768insSVD and
EGFRex20-ins, and the authors concluded that high-dose
osimertinib (160 mg/d) can be considered for such patients,
with good tolerance (67).

C797S and T790M mutations may occur either in cis or trans
in NSCLC (68). In general, tumors harboring the trans-C797S/
T790M/classic mutation are sensitive to a combination of first-
and third-generation TKIs (69–71), and cis-C797S/T790M/
classic mutations are resistant to first/third- and first plus
third-generation EGFR TKIs (36, 72). Preclinical studies have
demonstrated brigatinib plus cetuximab to be effective for
tumors with cis-C797S/T790M/classic mutations in vitro and
in vivo (38). Wang et al. reported the first clinical evidence for the
combination of brigatinib (90 mg/d) and cetuximab (600 mg,
q4w) against the cis-C797S/T790M/19del mutation, with a
remarkable PFS of 9 months (36). Interestingly, trans-C797S/
T790M/classic mutations treated with a combination offirst- and
third-generation TKIs resulted in rapid drug resistance [PFS was
1 month in a case reported by Arulananda (71)] or evolved to cis-
C797S/T790M/classic mutations in a short time (69, 70).
Frontiers in Oncology | www.frontiersin.org 5
Zhou et al. found that addition of bevacizumab to osimertinib
and brigatinib may delay drug resistance (69). Overall, further
research is needed to assess whether it is reasonable to apply
brigatinib and cetuximab early before drug resistance occurs
under such circumstances.

For some rare complex EGFR mutations, EGFR TKIs plus
EGFR mAbs are still therapeutically effective. We have reported a
rare case of lung adenocarcinoma with a novel EGFR–intergenic
region (IGR) (SEC61G) fusion (the mutation frequency was
79.8%) and EGFR amplification (copy number: 5.6). The
patients received first-line targeted combination therapy with
gefitinib (250 mg/d) and cetuximab (500 mg/m2, q2w) and
achieved PR according to RECIST guidelines (19).

Interestingly, several preclinical trials of combinations of
various EGFR TKIs and EGFR mAb targeting EGFR were
successful but failed to translate into clinically significant
results (59, 61, 73, 74) (Table 2). There are several reasons for
such inconsistencies when comparing preclinical and
clinical studies.

First, studies with significant results usually included specific
mutation sites, either preclinical or clinical. That is, this
combination is effective against only specific uncommon EGFR
mutations. For example, although EAI045 in combination with
cetuximab can dramatically inhibit tumors harboring EGFR
L858R/T79M/C797S in mice, this combination does not well
target 19del/T79M/C797S (55). Second, there is limited drug
dosage in humans. For example, afatinib and dacomitinib are
effective at inhibiting EGFR T790M in vitro and in preclinical
models, but their clinical utility for EGFR T790M is hampered
because the clinical doses required to effectively inhibit this
mutation in vivo are high and cause severe toxicity (35). In
general, efficacy is significantly related to dosage: high doses of
EGFR TKIs and mAb result in optimal regression of large tumors
in animals (49), but high dosages of drugs usually lead to
complicated toxicity situations in humans (59). Third, a more
complex tumor microenvironment exists in the human body, and
no animal model is a complete replica for a process within humans
(76). Indeed, one study showed that only approximately 1/3 of
animal research translates into successful human research (77).
Fourth, when we compare preclinical and clinical studies,
mutation in the subjects included (if any) may have a critical
difference in the success or failure of the experiments/clinical trials.
A “sandwich” strategy that achieves more precise intervention
(EGFR mutation before treatment) will result in better disease
control (75). An erlotinib/afatinib-based “sandwich” strategy for
patients with acquired resistance to erlotinib (73)/afatinib (74) has
significantly reduced effectiveness. When we compare SWOG
S1403 (first line: treatment naïve mutation) (61) with the study
by Janjigian (second line: acquired resistance) (75), we conclude
the existence of differences in the biology of untreated disease
compared with that of acquired resistance (uncommon mutations
may be the targeted beneficiary group by the “sandwich” strategy).
In terms of medication, the second-generation irreversible
pantarget inhibitor afatinib may confer more complete
inhibition of ErbB family members. Cetuximab was used at a
higher dose (500mg/m2) in the afatinib-based “sandwich” strategy
July 2022 | Volume 12 | Article 952939
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(59, 73, 75) (Table 1). Fifth, negative experimental results are less
likely to be published (78), which may create the illusion of success
for all published preclinical studies.
“SANDWICH” STRATEGY FOR
OTHER TUMORS

In addition to NSCLC, several malignancies, such as
glioblastoma multiforme, glioblastoma, breast cancer, vulvar
squamous carcinoma, prostate carcinoma, head and neck
cancer, and gastrointestinal cancers (stomach, colorectal, and
pancreatic carcinomas), are associated with EGFR mutation or
amplification. Therefore, EGFR-targeted therapy should
theoretically be effective.

As early as 2004, Matar et al. explored the blocking effect of
gefitinib and cetuximab on the EGFR pathway using human cancer
cell lines (vulvar squamous carcinoma, prostate carcinoma cells and
breast carcinoma cells) and A431 (vulvar squamous carcinoma)
xenografts in nude mice (49). The results demonstrated that the
“sandwich” strategy resulted in a synergistic effect with regard to the
inhibition of cell proliferation and regression of tumors by targeting
EGFR (49). Similar conclusions were reported with the gefitinib/
erlotinib and cetuximab combination for head/neck cancer (51).
Triple-negative breast cancer (TNBC) is characterized by poor
Frontiers in Oncology | www.frontiersin.org 6
prognosis, and a study suggested that the “sandwich” strategy
might result in an enhanced antitumor effect in vitro (53).

With regard to the gastrointestinal digestive system,
colorectal cancer escapes EGFR blockade by downstream
signaling activation (RAS-MEK), and combination of EGFR
blockade and MEK blockade can prevent resistance both in
vitro and in vivo (79). Additionally, gefitinib and cetuximab
can inhibit colon carcinoma cell proliferation and promote
tumor regression in nude mice (49). EGFR amplification
predicts aggressive biological behavior and poor prognosis.
Preclinical trials performed on PDX models with EGFR-
amplified gastroesophageal adenocarcinoma revealed that the
cetuximab and lapatinib/erlotinib combination still results in a
deep and durable response (58). Similarly, in a study evaluating
the biliary tract cancer cell line HuCCT1 (in vitro cell
proliferation inhibition and apoptosis promotion) and
pancreatic cancer cell line Panc430 xenografts, tumor growth
in vivo was significantly decreased with combined therapy
(gefitinib/erlotinib and cetuximab) (44).

However, the data about the “sandwich” strategy are fairly
limited in clinical settings. Most of the studies have focused on
EGFR TKIs or EGFR mAbs, rather than their combination. A
randomized phase 2 study (NCT01919879) comparing
cetuximab and cetuximab plus afatinib in refractory wtKRAS
metastatic colorectal cancer has been completed, but the results
have not yet been reported (80).
TABLE 2 | Clinical data evaluating the “sandwich” strategy.

Year and
author

Country Phase Strategy Study object ORR SD PD PFS ≥3 AE

2008
Ramalingam
(59)

USA I
N=13

Gefitinib: 250 mg/d,
cetuximab:100, 200, or 250 mg/
m2,qw

prior platinum-based chemotherapy 0% 31% 62% NA 31%(250
mg/m2)

2011 Janjigian
(73)

USA I/II
N=19

Erlotinib: 100 mg/d
cetuximab: 250 mg/m2, 375 mg/
m2, and 500 mg/m2),q2w

Acquired resistance to erlotinib 0% 89.5% 10.5% NA NA

2014 Janjigian
(75)

USA Ib
N=126

Afatinib*
Cetuximab: 500 mg/m2,q2w

advanced EGFR-mutant lung cancer
(acquired resistance to erlotinib/gefitinib)

29% 41.3% 21.4% 4.7
m

46%

Brigatinib+ cetuximab
2017 Horn (74) USA Ib

N=36
Afatinib: 40 mg/d
Cetuximab:250-500 mg/m2,q2w

Progression on afatinib 11.1% 38.9% 30.6% 2.9
m

NA

2018 van
Veggel (66)

Netherlands Case
N=4

Afatinib: 40 mg/d
Cetuximab:250-500 mg/m2,q2w

Ser768_Asp770dup, Asn771_His773dup,
Ala767_Val769dup, His773dup

75% 25% NA 4.5
m

25%

2019 Wang
(36)

China Case
N=1

Brigatinib: 90 mg/d
Cetuximab: 600 mg, q4w

cis-C797S/T790M/19 del 100% NA NA 9 m No

2019 Fang (67) China Case
N=1

Osimertinib: 80➔160 mg/d
cetuximab: 400 mg, q2w

EGFR A767_S768insSVD and EGFRex20-
ins.

100% NA NA >5
m

No

2020 Goldberg
(61)

USA II
N=168

Cetuximab+ Afatinib* exon 19del and exon 21 L858R 67% NA NA 11.9 70%

Afatinib* exon 19del and exon 21 L858R 74% NA NA 13.4 40%
2020 Cho (63) Korea I

N=23
(ongoing)

amivantamab+lazertinib Progressing on osimertinib 43.5% 39.1% NA NA 7%

2021 Joshua
(62)

Korea I
N=45
(ongoing)

amivantamab+lazertinib Progressing on osimertinib 36% NA NA 4.9
m

NA

2021 Zhang (19) China Case
N=1

Gefitinib: 250 mg/d
Cetuximab: 500 mg/m2,q2w

EGFR-IGR fusion and EGFR amplification 100% NA NA >2
m
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July 20
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AE, adverse event; EGFR, epidermal growth factor receptor; NA: not applicable; ORR, objective response rate; PD, progressive disease; PFS, progression-free survival; SD, stable
disease; TNBC, triple-negative breast cancer.
* Afatinib 40 mg orally daily, cetuximab 500 mg/m2 intravenously every 2 weeks.
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LIMITATIONS AND PROSPECTS OF THE
“SANDWICH” STRATEGY

The “sandwich” strategy exerts a stronger antitumor effect than a
single drug and has certain clinical prospects for NSCLC,
especially in patients with certain kinds of uncommon EGFR
mutations. However, this combination is far from optimal, which
limits its wide clinical use.

Relatively Severe Toxicity of the
“Sandwich” Strategy
The ultimate goal of targeted therapy is low toxicity and high
efficiency. The most prominent problem of the “sandwich” strategy
is its relatively increased inhibition of wild-type EGFR, leading to
intolerable toxicity. Based on clinical data for patients with acquired
resistance to first-generation TKIs, therapy-related grade ≥3 adverse
events of the afatinib-based “sandwich” strategy occurred in 46%;
36% required a dose reduction, and 13% discontinued therapy due
to intolerable AEs (75). Based on SWOG S1403, therapy-related
grade ≥3 AEs with afatinib plus cetuximab and afatinib occurred in
70% and 40% of patients, respectively, and a dose reduction of
afatinib to 30 mg occurred in 56.7% and 26.2% of patients,
respectively; 30% discontinued cetuximab therapy due to
intolerable AEs in the combination group (61). It is noteworthy
that the first/third-generation TKI-based “sandwich” strategy
appears to have good tolerance, with only 31% reporting ≥3 AEs
(59). However, the sample size for this combination is relatively
small, involving mostly case reports (19, 59, 67, 73). Considering the
rate of grade ≥3 AEs with TKI monotherapy (gefitinib 31% (81),
erlotinib 45% (2), afatinib 36-40% (4), osimertinib 34% (5)), we
conclude that AEs of the first/third-generation TKI-based
“sandwich” strategy may be clinically acceptable but that the
afatinib-based “sandwich” strategy significantly increases the
occurrence of AEs compared to monotherapy. Thus, considering
the various options for patients harboring common EGFR
mutations as well as T790M mutations, the “sandwich” strategy
may not be a priority selection regarding effectiveness and safety.
Recent studies have shown that the novel “sandwich” strategy,
amivantamab+lazertinib, may significantly reduce AEs, with grade
≥3 AEs occurring in only 7% of patients. Therefore, novel, more
effective and safer therapeutic strategies may provide new insight
into the “sandwich” strategy.

Drug Resistance of the “Sandwich”
Strategy
Resistance to targeted therapy is inevitable, and “sandwich”
strategies are no exception. In the era of precision targeted
therapy, gene mutations should be rechecked after drug
resistance to guide subsequent treatment. Due to limited
clinical application, the mechanism of drug resistance of the
“sandwich” strategy is far from understood, and it seems that
EGFR-independent mutations will be the majority because of
sufficient inhibition of EGFR. However, Pirazzoli et al. proved
that an afatinib-based “sandwich” strategy does not suppress
emergence of T790M KRASmutations (such as G12R, G12V and
G12D) and that EGFR amplification is associated with resistance
to an afatinib-based “sandwich” strategy (54). Additionally,
Frontiers in Oncology | www.frontiersin.org 7
mutations in downstream signaling genes (RAS/RAF/MEK/
ERK, PI3K/AKT/mTOR) are induced (54). Combined targeting
with three drugs (osimertinib, bevacizumab and brigatinib) in
patients with cis-C797S/T790 M/L858R mutation seems to delay
the time to incidence of drug resistance (72). Preclinical data
suggest that the afatinib-based “sandwich” strategy markedly
delays drug resistance in transgenic mice harboring EGFR L858R
(54); however, clinical studies have not yielded similar results.
Inspired by a study by Zhao et al. (72), introduction of vascular
endothelial growth factor receptor (VEGFR) TKIs may modify
the resistance mechanism, which requires further study.

Future Prospects of Targeted Therapy
Historically, reversal of drug resistance to first-generation TKIs
(with T790M as the most common resistance mutation) has been
explored by implementing the “sandwich” strategy (73, 75)
because there are no better treatment options. However, with
the development of targeted therapies, a large number of targeted
drugs (such as osimertinib (82), almonertinib (83), avitinib (84),
and furmonertinib (85)) have been developed with high
selectivity for the mutant type, which further reduces the value
of such a strategy for this kind of mutation. for the C797S
mutation, brigatinib has been shown to be effective at inhibiting
cis-C797S/T790M/del19 but spares wild-type cells (38). Another
novel highly potent selective 4th-generation EGFR TKI BLU-945
also has promising activity for the treatment of EGFR T790M/
C797S resistant NSCLC, with high selectivity, and the ongoing
SYMPHONY will reveal more data (86). The novel EGFR TKI
mobocertinib (87) and third-generation TKI furmonertinib
(approval in China in March 2021 (88)) (89, 90) have been
shown to be effective for EGFR exon 20ins disease. Studies have
shown that the effect of treatment with immunotherapy in
patients harboring EGFR exon 20ins mutations is poor (91)
and can even lead to hyperprogressive disease (92). Interestingly,
the EGFR–MET-targeted bispecific antibody amivantamab
(approved by the FDA in May 2021) yielded robust and
durable responses to EGFR exon 20ins-mutated tumors after
progression on platinum-based chemotherapy (74, 93).

Numerous nonsensitive mutations exist, and combination
treatment may drastically reduce the number of remaining
tumor cells compared to a single drug. Combination drugs
often indicate combined AEs. Theoretically, a single agent
targeting nonsensitive mutations may be of great significance,
similar to bispecific antibodies in the field of cancer
immunotherapy, such as amivantamab (31, 34).

What is the potential for the “sandwich” strategy? First, as
we described, EGFR TKI and EGFR mAbs may exert
synergistic antitumor effects, suggesting the possibility that
we can reduce the dose of a drug to control AEs without
impairing the therapeutic effect. Second, with the precision of
medical interventions, treatment for tumors with specific
uncommon EGFR mutations will undoubtedly be tailored
more individually, especially with the “sandwich” strategy
(relatively severe toxicity). Third, research and development
of new drugs with high efficacy and low toxicity may
offer breakthroughs in the “sandwich” strategy. A novel
combination amivantamab + lazertinib is being explored
July 2022 | Volume 12 | Article 952939
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as a first-line or multiple-line treatment, with promising
therapeutic effects.

As another cornerstone of therapy, the role of chemotherapy in
NSCLC should not be ignored. Nonetheless, studies have shown
that TKIs are not inferior to or even better than chemotherapy
with respect to disease control in patients with uncommon EGFR
mutations (such as exon 20ins, L861Q and G719X) (94, 95).
Studies have also demonstrated that chemotherapy for patients
with uncommon mutations may result in significantly better
survival (96, 97) than with EGFR-TKIs, despite worse mPFS
(97). Therefore, it is currently unknown how to best sequence
these different therapies. There is also a lack of evidence with
respect to the advantages and disadvantages of chemotherapy and
the “sandwich” strategy. Further studies are needed to investigate
appropriate drug sequences.
CONCLUSIONS

In this review, we focus on several EGFR-dependent mutations
for which a “sandwich” strategy is possible. Our review highlights
that dual EGFR inhibition is particularly meaningful in this
patient population. We conclude that the “sandwich” strategy
may have limited benefit in patients with previously untargeted
classic EGFRmutations and is expected to improve the prognosis
of NSCLC patients harboring certain uncommon EGFR
Frontiers in Oncology | www.frontiersin.org 8
mutations. However, their relatively severe toxicity limits their
clinical application, and there is an urgent need to develop new
targeted drugs with less inhibition of wild-type EGFR.
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