
Frontiers in Oncology | www.frontiersin.org

Edited by:
Peng Qu,

National Institutes of Health (NIH),
United States

Reviewed by:
Hao Wang,

Tianjin Medical University General
Hospital, China

Yong Zhao,
Institute of Zoology (CAS), China

*Correspondence:
Yong-Guang Yang
yongg@jlu.edu.cn

Wentao Liu
liuwt@jlu.edu.cn

Specialty section:
This article was submitted to

Cancer Immunity
and Immunotherapy,

a section of the journal
Frontiers in Oncology

Received: 26 May 2022
Accepted: 15 June 2022
Published: 08 July 2022

Citation:
Tan Y, Zhao L, Yang Y-G and Liu W
(2022) The Role of Osteopontin in

Tumor Progression Through Tumor-
Associated Macrophages.
Front. Oncol. 12:953283.

doi: 10.3389/fonc.2022.953283

REVIEW
published: 08 July 2022

doi: 10.3389/fonc.2022.953283
The Role of Osteopontin in Tumor
Progression Through Tumor-
Associated Macrophages
Yuying Tan1,2, Lei Zhao1,2, Yong-Guang Yang1,2,3* and Wentao Liu1,2*

1 Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University,
Changchun, China, 2 National–Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University,
Changchun, China, 3 International Center of Future Science, Jilin University, Changchun, China

Osteopontin (OPN) is a multifunctional phosphorylated protein. It is widely involved in solid
tumor progression, such as intensification of macrophage recruitment, inhibition of T-cell
activity, aggravation of tumor interstitial fibrosis, promotion of tumor metastasis,
chemotherapy resistance, and angiogenesis. Most of these pathologies are affected by
tumor-associated macrophages (TAMs), an important component of the tumor
microenvironment (TME). TAMs have been extensively characterized, including their
subsets, phenotypes, activation status, and functions, and are considered a promising
therapeutic target for cancer treatment. This review focuses on the interaction between
OPN and TAMs in mediating tumor progression. We discuss the strategies for targeting
OPN and TAMs to treat cancer and factors that may affect the therapeutic outcomes of
blocking OPN or depleting TAMs. We also discuss the role of cancer cell- vs. TAM-derived
OPN in tumorigenesis, the mechanisms of how OPN affects TAM recruitment and
polarization, and why OPN could mediate anti-tumor and pro-tumor effects, as well as
previously reported discrepancies.

Keywords: osteopontin, tumor associatedmacrophage, tumormicroenvironment, tumor progression, immune regulation
INTRODUCTION

Osteopontin (OPN) is encoded by the secreted phosphoprotein 1 (SPP1) gene. OPN is named for its
role as a bridge between cells and hydroxyapatite through the function of Arg-Gly-Asp (RGD) and
polyaspartic acid motifs (1). It has also been shown that activated T cells express high levels of OPN
in the early stage, which is therefore named the early T-lymphocyte activation-1 (Eta-1) protein in
the view of immunology (2).

The expression of OPN is negatively correlated with the prognosis of patients with colorectal,
head, and neck cancers (3, 4), and it has been identified as a biomarker for tumor progression in
prostate cancer (5), non-clear cell renal cell carcinoma (6), hepatocellular carcinoma (HCC) (7), and
non-small cell lung cancer (NSCLC) (8). OPN can promote the malignant progression of various
cancers by regulating tumor angiogenesis (9), distant metastasis (10–12), maintenance of a stem-like
phenotype (13), tumor stromal fibrosis (14), activation of cell proliferation pathways (15, 16),
medical treatment resistance (17), and interference with immune function (18–20).
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The tumor microenvironment (TME) contains multiple cells
that play a crucial role in cancer pathogenesis. There are immune
cells, fibroblasts, extracellular matrix, and related cytokines
harbored in the TME. In contrast, tumor-associated
macrophages (TAMs) are the main component of TME and
are considered promising targets for the diagnosis and treatment
of cancer. TAMs interact with cancer-associated fibroblasts
(CAFs) and other immune components to facilitate the
development and progression of cancers.

It was reported that OPN is expressed in activated TAMs and
OPN plays an essential role in TAM function during
tumorigenesis and tumor progression. But the underlying
mechanisms of the OPN in the regulation of TAMs have not
been thoroughly investigated. This review summarizes the recent
studies of OPN and TAMs and discusses the potential
mechanisms for the function of OPN on TAMs.
OPN AND ITS RECEPTORS

OPN protein, which is produced by tumor cells, endothelial cells,
smooth muscle cells, fibroblasts, and immune cells, is extensively
modified after translation. The molecular weight of OPN varies
from 44 to 75 kd, depending on the living organ species and cell
types (21). The structure, regulation, physiological, and
pathological effects of OPN have been well summarized in the
recently published reviews, especially for age-related
nonalcoholic fatty liver disease, chronic liver disease, cardiac
fibrosis, pulmonary fibrosis, and multiple sclerosis (7, 22–25).

The structure of OPN consists of the RGD sequence, SVVYGLR
sequence, thrombin cleavage site, matrix metalloproteinase (MMP)
site, calcium and heparin binding domains (Figure 1) (26, 27).
Human OPN can form five different isoforms: OPN-a (full length),
OPN-b (lacks exon 5), OPN-c (lacks exon 4), OPN-4 (also termed
OPN-d, lacks exon 4 and 5), and OPN-5 (the longest isoform, with
an extra exon located between canonical exons 3 and 4) (7, 28, 29).
The elevated level of OPN-a suggests a poor clinical prognosis in
gastric cancer (30). OPN-b resists tumor cell apoptosis in glioma
(31). OPN-c is not present in normal breast tissue but is highly
expressed in breast cancer and promotes tumor progression
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independent of traditional prognostic molecules, such as ER, PR,
and HER2, as a marker of breast cancer progression (32, 33). OPN-
4 and OPN-5 are expressed in esophageal adenocarcinomas and
distinct cancer cell lines (34). OPN-5 is expressed higher than OPN-
b and OPN-c in normal skin (29). However, the mechanism of
OPN-4 or OPN-5 in regulating tumor progression is not
fully investigated.

The functions of OPN also vary with different receptors. CD44
and partial integrin proteins (integrins aVb1, aVb3, aVb5, aVb6,
a4b1, a5b1, and a9b1) are known OPN receptors (23). By binding
to these receptors, OPN triggers various signaling pathways and
regulates tumor progression (Figure 2).

CD44 proteins, which form a multifunctional family of single-
chain transmembrane glycoproteins, play an essential role in tumor
progression and metastasis (41). CD44 isoforms, CD44v6 and v10,
are engaged in the interaction of OPN. OPN which was secreted by
tumor-associated cells, increases the expression of CD44v6 in
colorectal cancer stem cells (CR-CSCs) by activating the PI3K/
AKT pathway, thereby promoting the migration and metastasis of
CR-CSCs (42). In malignant pleural mesothelioma, OPN
transfection significantly increases the adhesion of tumor cells to
hyaluronic acid (HA), which acts as a barrier to drugs, resulting in
drug resistance of tumor cells to NVB, VP-16, and gemcitabine
(GEM) (43).

Integrins play a central role in the interaction with receptors that
are involved in cell adhesion and signal transduction. Numerous
studies have demonstrated that integrins have multiple functions in
tumorigenesis (44). Combined with integrins, particularly aVb3
and a9b1, OPN could mediate cell–cell and cell–ECM interactions
and promote tumor progression (45, 46).

Integrin aVb1. Integrin aVb1 is highly expressed in
mesenchymal cells (MSCs). Further studies have revealed that
the expression of C/EBPa and C/EBPb, which play an important
role in promoting adipogenic differentiation, is upregulated in
the absence of OPN or the blockade of integrin aVb1. Therefore,
OPN maintains a balance between normal adipogenesis and
osteogenesis of MSCs by inhibiting C/EBP activation through
integrin aVb1 (47, 48).

Integrin aVb3. In non-small-cell lung cancer, OPN promotes
inhibitor resistance of acquired epidermal growth factor receptor
FIGURE 1 | Schematic of the human OPN protein structure. There are seven exons encoded in human OPN protein. CD44 and integrins are the receptors of OPN,
and their corresponding binding regions are different.
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tyrosine kinase (EGFR-TKI) by upregulating integrin aVb3
expression and activating downstream FAK/AKT and ERK
signaling pathways that promote tumor cell proliferation (17).

Integrin aVb6. Integrin aVb6 binds with OPN on the surface
of the porcine Tr cell line (pTr2) to promote the adhesion of
pTr2 cells and cationic dependence. Similar to pTr2 cells, porcine
uterine epithelial cells (pUE) also bind with OPN through
integrin aVb3 expressed on their surfaces. OPN regulates
trophoblast ectodermal cell migration and epithelial cell
adhesion by binding with integrin aVb6 or aVb3 respectively
on their surfaces (49).

Integrin a4b1. In rheumatoid arthritis and alcoholic hepatitis
models, monocytes and neutrophils recruited by cleaved OPN
highly express integrin a4b1 on inflammatory sites by binding
with the exposed SLAYGLR motif. In line with this finding,
OPN-mediated migration of monocytes and neutrophils is
almost entirely inhibited by antibodies against the SLAYGLR
motif (M5 antibody) (50, 51). In multiple sclerosis models, OPN
increases phosphorylation of IKKb and activation of the NF-kB
pathway in target cells by binding to integrin a4b1 expressed on
the surface of target cells (52).

Integrin a5b1. The presence of the divalent cation Mn2+ and/
or phorboester TPA significantly increases the activation of
a5b1, which is required for the binding of integrin a5b1 to
OPN by RGD motifs (53).

Integrin a9b1. The results from melanoma B16F10 mouse
model studies revealed that OPN significantly increased the
infiltration of CD31+ cells and cyclooxygenase subtype 2
(COX-2) positive macrophages in tumor cells. OPN was found
to activate the ERK and P38 signaling pathways by binding with
integrin a9b1, leading to the expression of COX-2, a key rate-
limiting enzyme that regulates prostaglandin synthesis in
macrophages (9).

OPN can also interact with some G protein coupled receptors
(GPCRs) (e.g., through b2-adrenergic receptors (ARs) to regulate
Frontiers in Oncology | www.frontiersin.org 3
cardiomyocyte fibrosis and bone metabolism). In terms of
cardiomyocyte fibrosis, OPN inhibits the expression of cAMP
and exchange protein directly activated by cyclic-adenosine
monophosphate1 (Epac1), where cAMP is the downstream
signaling and major second messenger generated by b2-ARs,
and Epac1 is one of the effectors of cAMP that can impede
collagen synthesis (54, 55). In bone metabolism-associated
processes, isoproterenol (ISO) stimulates sympathetic nervous
system tension and causes bone mass loss in WT mice but does
not affect OPN-KO mice. However, neutralized extracellular
OPN yields limited improvement in ISO-induced bone loss.
The mechanism may have two aspects: 1) OPN is the
necessary element of ISO-inducing bone metabolism; and 2)
intracellular OPN (iOPN) inhibits GPCRs, inhibiting the
production of cAMP generated by b2-ARs and cAMP-
response element transcription in osteoblasts (56).
TAMs IN TUMOR

Solid tumors are in vivo three-dimensional organ-like structures
consisting of tumor cells and non-malignant stromal cells.
Tumor-associated macrophages (TAMs) are the major
components of tumor-infiltrating immune cells (57, 58). TAMs
are the only colonies of macrophages present in TME.
Macrophages in TME could harbor either an activated M1 or
an alternatively activated M2 polarization profile by factors in
TME (59). Strictly speaking, TAM is not a macrophage
classification, which dictates the opposing effects on plasticity
or heterogeneity in TME. Current studies have shown that TAMs
consist of tissue-resident macrophages and peripheral blood-
derived monocytes (60). TAMs can constantly be subjected to
transition between M1 and M2, and different phenotypes of
macrophages can co-exist in TME (61, 62). Activated M1-like
TAMs are characterized as producing reactive oxygen species/
FIGURE 2 | Receptors of OPN and their signaling pathways in tumor progression. The different signaling pathways between OPN and its major receptors, CD44
and integrins, are shown to mediate pathological processes in TME (17, 35–40).
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reactive nitrogen species and pro-inflammatory cytokines (e.g.,
interleukin-1b, interleukin-6, and tumor necrosis factor-a) and
contributing to the innate immune defense and the role of killing
tumor cells. Therefore, activated M1-like TAMs are considered
anti-tumor M1 (63). However, M2-like TAMs consist of low
efficiency of antigen presentation and promote cancer
progression through the production of the immunosuppressive
cytokines, such as IL-10 and transforming growth factor-b
(TGF-b), which have been identified as the main factor of
immunosuppression and the marker of poor prognosis in the
tumor microenvironment (64). M2-like TAMs could be defined
into four subtypes: M2a, M2b, M2c, and M2d (65). Furthermore,
the M2d subset plays a role in immune suppression and pro-
tumor, which could be activated by growth factors and cytokines
in the TME. Most TAM phenotypes were M2-type macrophages,
which facilitate tumor growth and metastasis, tissue remodeling,
promotion of angiogenes is , and adapt ive immune
suppression (66).

Triple-negative breast cancer (TNBC) is famous for its high
tumor heterogeneity, which may lead to reduced patient
response to medical treatment (67). Tumor heterogeneity is
not only related to the cancer cells themselves but also to the
immune cells infiltrating the TME. RNA sequencing results
revealed that M2-type TAMs are the main constituents of
TME in TNBC (68). In these TAMs, the expression of TGF-
b1, MS4A6A, CD163, IL8, and PLAUR genes were significantly
increased, which are closely related to angiogenesis and
epithelial–mesenchymal transition (EMT) (67). Meanwhile,
other immunosuppressive cells in the TME, such as T-reg cells,
indirectly promote the activation of M2-type macrophages to
protect tumor cells from cytotoxic killing and inhibit the
immune response (69). Furthermore, TAMs could counteract
the anti-tumor effect of tumor infiltrating NK and T cells and
exert a synergistic promotion effect on immunosuppressive TME
with myeloid-derived suppressor cells, tumor-associated DCs,
and neutrophils (70).
INTERACTIONS BETWEEN OPN
AND TAMs

OPN is identified as an immunomodulatory molecule of activated T
lymphocytes and is known as early T lymphocyte activation-1 (Eta-
1) (71). It functions as a proinflammatory cytokine and chemokine
that plays a crucial role in immune cell functions, including T, B,
NK, and NKT cells; macrophages; DCs; monocytes; neutrophils;
and eosinophils (72–74). OPN, released by tumor cells and TAMs
in TME, has been identified as a multifunctional factor in cancer
promotion and metastasis in several cancers (21), including breast,
stomach, lung, prostate, liver, and colon cancer. It has been revealed
that TAMs secrete excess colony-stimulating factor-1 (CSF1) with
the help of OPN in hepatocellular carcinoma TME. This process
facilitated the recruitment of macrophages and the transformation
of the TAMs, which increased the expression of PD-L1 and the
immune suppressive microenvironment (18).
Frontiers in Oncology | www.frontiersin.org 4
The OPN in TAMs is known as TOPN. OPN expressed by
myeloid and tumor cells endows tumor immune tolerance by
inhibiting CD8 T-cell activation and recruiting inhibitory
macrophages (18, 75, 76). Interferon regulatory factor 8 (IRF8)
is an important transcription factor in myeloid cells and plays a
key role in the development of monocytes and plasmacytoid
dendritic cells (77, 78). IRF8 is mostly silent in MDSCs and could
directly bind to the SPP1 promoter to inhibit OPN expression
(79). In this way, the silencing of IRF8 in MDSCs and tumor cells
led to increased expression of OPN. When OPN was
overexpressed, it inhibited IFNg production in mouse CD8 T
cells, thereby reducing the antitumor activity of CD8 T cells (75).
The results reported by Li et al. indicated that OPN secreted by
TAMs upregulated PD-L1 expression through the NF-kB/P65
pathway in an NSCLC mouse model, and TOPN was positively
correlated with PD-L1 expression in NSCLC patients (19). FAP+

fibroblasts and SPP1+ macrophages are the major components of
TME in colorectal cancer, which are characterized as major
contributors to the desmoplastic tumor structure and
immunotherapy resistance against PD-L1 in colorectal cancer
(80). Some pieces of evidence have demonstrated that OPN
infiltrating macrophages facilitated tumor cell survival and
angiogenesis in glioblastoma multiforme (GBM) (81). In
TNBC, TOPN released by TAMs can also regulate tumor
metastasis. TAMs release cytokines including OPN, CCL7,
CCL19, CXCL7, NRG3, HGF, and TGF-b3 and regulate tumor
metastasis (82). Understanding the link between TOPN and
TAMs in TME and their various functions in tumor
progression, angiogenesis, and stromal remodeling may
provide a novel target for cancer treatment. Moreover, OPN
secreted from tumor cells is one of the crucial drivers of TAMs
recruitment and polarization, tumor angiogenesis, and tumor
fibrosis promotion, which will be discussed later.

Given the supporting functions of TME for tumor cells, an
appropriate TME is important to the development and
progression of tumors, except for the malignant characteristics
of tumor cells themselves. The TME plays an important role in
the recruitment of immunosuppressive cells, education or
destruction of normal stromal cells and vascular endothelial
cells, and metastasis to distant areas to escape immune
surveillance of the host. Numerous studies have confirmed that
tumor-associated OPN participates in TAMs migration and
recruitment, polarization, tumor fibrosis, tumor angiogenesis,
and immune homeostasis (Figure 3).
OPN PROMOTES TUMOR PROGRESSION
BY ACTING ON TAMs

Various cancer models have confirmed that OPN can regulate
tumor progression by recruiting macrophages. In tumor tissues,
OPN, as a major chemokine, can regulate macrophage migration
by interacting with integrin aVb5, CD44, GPCR, or the CSF1–
CSF1R axis. With the accumulation of macrophages in TME,
they are educated to become M2-type TAMs, and further
July 2022 | Volume 12 | Article 953283
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promote tumor stromal fibrosis by secreting TGF-b or platelet-
derived growth factors (PDGFs). Recently, single-cell RNA
sequencing (scRNA-seq) verified that the cluster of SPP1+

TAMs can also be active CAFs. Meanwhile, in the presence of
OPN, TAMs promote angiogenesis through JAK/STAT3, NF-
kB, and ERK/p38 signaling pathways.

OPN Facilitates the Migration and
Recruitment of TAMs
OPN can act as a chemotaxin for macrophages and is involved in
the control of macrophages migration and recruitment. It has
been well demonstrated both in vivo and in vitro that integrins,
CD44, chemokines, GPCRs are intimately involved in the
regulation of macrophage migration, which process can be
regulated by OPN.

In hepatocellular carcinoma (HCC), tumor-released OPN can
stimulate macrophages to secrete CSF1 through the PI3K–ATK–
p65 signaling pathway and then induce infiltration of
macrophages. Excessive macrophages play an important role in
the recurrence of HCC (18, 83). In GBM patients, high OPN
expression is positively correlated with TAMs infiltration and
tumor progression and negatively correlated with survival
prognosis. In line with the studies in humans, depletion of
OPN in mice resulted in reduced TAM infiltration and
increased the survival rate of mice with GL261 GBM (76). The
mechanism of these phenotypes is associated with integrin
aVb5, which is highly expressed in GBM-infiltrated TAMs
(76). Zhu et al. (84) found that OPN and GPCRs are related to
the migration of macrophages. Their study indicated that in the
presence of N-formyl-methionyl-leucyl-phenylalanine (fMLP),
which can activate GPCRs, WT macrophages migrate nearly
twice as much as OPN−/− macrophages. CD44−/− macrophages
exhibit the lowest migration rate. With the supplement of
exogenous OPN, the migration of OPN−/− macrophages can be
restored in an OPN dose-dependent manner. However,
exogenous OPN did not rescue the impaired chemotaxis of
Frontiers in Oncology | www.frontiersin.org 5
CD44−/− macrophages to fMLP. These results indicate that
CD44 is the necessary factor in the GPCRs-mediated migration
and that iOPN could modulate the CD44 activity.

However, in the spontaneous tumor model of breast cancer,
although OPN is highly expressed in the tumor tissues of
transgenic mice, the incidence of spontaneous tumor and
tumor volume are independent of the presence of OPN.
Unexpectedly, the number of macrophages in tumors of WT
and OPN-KO mice has been found to be independent of the
OPN genotype (85). The authors speculated that the lack of OPN
may lead to compensatory mechanisms that promote tumor
progression or the dependence of spontaneous tumor models on
OPN, which may be different from orthotopic implanted tumor
models. It has been demonstrated in another study that OPN-
KO mice showed a reduction of infiltrating macrophages in
tumor tissue, while OPN-KO treatment has little effect on
infiltrating macrophages in normal tissue (9). The above
studies indicated that OPN can be used as a specific factor to
regulate the roles of macrophages in the infiltration of
tumor tissues.

OPN Induces and Maintains the
Alternative M2 Activation of TAMs
Alternatively, the activated M2 polarization profile of TAMs is
considered an indispensable component of TME. Although most
literature has confirmed that OPN has a recruitment effect on
macrophages, this is inconsistent with the effects of OPN on the
TAM polarization (18, 76). OPN originating from tumor cells
can induce the monocytes to undergo alternative M2 activation.
The percentage of M2 macrophages was significantly increased
when the human monocyte cell line U937 was treated with OPN-
positive conditioned medium of the human gastric cancer cell
line AGS. While a mixture of co-cultured OPN+ AGS and U937
cells was inoculated into the back skin of nude mice, the
xenografts from the mixture showed faster growth and
correlated with poorer survival compared with the inoculation
FIGURE 3 | Functions of OPN and TOPN secreted by tumor cells and macrophages separately in TME. OPN played roles in tumor progression through TAMs (right
part) and the effect of macrophage-derived OPN, termed TOPN, functioned in tumor tissue summarized (left part).
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of OPN+ AGS cells alone (86). In HCC patients, the expression of
OPN was positively correlated with the infiltration of TAMs in
tumor tissues. By analyzing the numbers of tumor-infiltrating
immune cells and profiles of chemically induced liver tumors
from WT and OPN-KO mice, OPN derived from host and HCC
cells was found to stimulate macrophages to secrete CSF-1 and
then activate the CSF1-CSF1R axis of macrophages to promote
macrophage chemotaxis and M2-like polarization in HCC cells
(18). These studies show that OPN participates in the process of
M2-like macrophage polarization and maintains an M2-like
macrophage phenotype.

However, Wei et al. (76) have indicated that OPN maintained
the genetic characteristics and phenotype of M2 TAMs but did
not induce TAM polarization (76). In this study, the healthy
donors were treated with various concentrations of recombinant
OPN protein. After that, the representative markers of M2-like
macrophages were examined. Interestingly, the markers of M2-
like macrophages did not respond to the treatment with
recombinant OPN protein, and the number of M2-like
macrophages did not significantly change (76).

Tissue macrophages have long been thought to develop from
monocytes that enter tissues after circulating in the blood.
However, with the development of molecular technology and
the establishment of new animal models, this concept is
increasingly questioned (87, 88). Studies on mice and humans
have shown that macrophages in tissues can be divided into
tissue-resident macrophages (TRMs) and blood-derived
macrophages according to their sources and physiological
characteristics, and the proportions of blood-derived
macrophages and TRMs in different organs are different.
Microglia in the brain are derived from primitive macrophages
in the embryonic yolk sac, and erythrocytic myeloid progenitor
cells (EMPs) in the yolk sac are the primary source of Kupffer
cells (89–92). In tumor tissues, macrophages are derived not only
from peripheral blood but also from a group of TRMs that are
involved in the formation of TAMs. In the above experiments,
macrophages were considered a single population without
considering different sources of macrophages. Not only is the
polarization effect of OPN on the blood source and TRM unclear,
but also the polarization effect of OPN on TRM has different
origins. Although lacking experimental evidence, the reported
different effects of OPN on TAM polarization between different
mouse models may be possible due to the difference in TRMs.

It has been reported that PD-L1 is downregulated in OPN
deficient macrophages and the markers of M1-like macrophages
exist predominately rather than M2-like macrophages (93).
Meanwhile, OPN in HCC promoted PD-L1 expression in
macrophages by activating the CSF1-CSF1R pathway. The
combination of anti-PD-L1 antibody and CSF1R inhibitor
could promote the infiltration of CD8+T cells and reduce the
location of TAMs, which are beneficial to the HCC therapeutic
effect of anti-PD-L1 antibody (18).

OPN Promote Tumor Fibrosis via TAMs
OPN can promote tumor fibrosis through its chemotactic effect
on macrophages and activation of cancer-associated fibroblasts
Frontiers in Oncology | www.frontiersin.org 6
(CAFs) in TME (14, 94–96). TAMs and CAFs can cross-talk in
the TME: CAFs can secrete chemokines to attract monocytes
into the tumor microenvironment and differentiate into TAMs;
TAMs can promote fibroblast activation by secreting TGF-b or
promote fibroblast proliferation by secreting PDGFs (97). Single-
cell RNA sequencing (scRNA-seq) analysis from colorectal
cancer patients showed that SPP1+ TAMs expressing
syndecan-2 (SDC2) were more likely to interact with CAFs
expressing MMP-2 through the combination of SDC2 and
MMP-2 to promote the activation of CAFs and tumor tissue
fibrosis. Notably, SPP1+ TAMs were resistant to CSF1R blockade
in a mouse model, and high infiltration of SPP1+ TAMs in colon
cancer patients had a poor prognosis (96).

Although TAMs have a significant feature of promoting
fibrosis (such as collagen synthesis and deposition, etc.),
studies on hepatic fibrosis disease models have found that
macrophages play different or opposite roles in different stages
of fibrosis progression (98, 99). In the case of inflammatory
injury, clearance of macrophages helps alleviate the
accumulation of abnormal collagen in the injured liver.
Unexpectedly, during the recovery phase, macrophages
promoted matrix degradation and absorption. After
macrophage depletion, the proportion of Sirius red-staining
positive collagen matrix in the liver increases from 1% to more
than 3% (98). In a CCL4-induced hepatic fibrosis mouse model,
the M1-type macrophages not only had a therapeutic effect on
liver fibrosis by increasing the apoptosis of hepatic stellate cells
but also recruited more endogenous anti-fibrosis macrophages
into the liver by producing chemokines CCL2 and CCL3 (99).
Since TAMs are highly heterogenic (100), OPN may play
different roles in tumor fibrosis depending on the composition
of TAMs in the tumor.

OPN Promotes Tumor Angiogenesis
Through TAMs
Angiogenesis plays a vital role in promoting malignant tumor
growth, diffusion, and metastasis. Numerous studies have
indicated that TAMs are the crucial factors in regulating tumor
angiogenesis (60, 101). TAMs can secrete pro-angiogenic growth
factors and release MMPs to promote the degradation of
extracellular matrix around blood vessels and facilitate the
extension of tumor blood vessels (102).

A few studies have reported that OPN can promote tumor-
associated angiogenesis by regulating macrophages with different
phenotypes. Immunohistochemistry results of tumor tissue
indicated that GBM-related macrophages express metalloprotease-
disintegrin 8 (ADAM8), which is associated with invasive and poor
prognosis (103–105). It has been reported that the supernatant of
ADAM8 overexpressed macrophages can induce human umbilical
vein endothelial cells (HUVEC) to form more tube-like structures
than the ADAM8 deficient group. However, ADAM8 has no
correlation with the polarization of macrophages (106).
Nevertheless, the expression of OPN is reduced in ADAM8-
deficient macrophages (105). Finally, they found that OPN
regulates the angiogenesis of ADAM8-deficient macrophages
through JAK/STAT3 and NF-kB signaling pathways (105). In
July 2022 | Volume 12 | Article 953283
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melanoma, the expression of COX-2 in macrophages and the
angiogenesis capacity of HUVEC cells were enhanced through an
ERK/p38-dependent pathway which was regulated by the OPN
secreted by tumor cells (9).

OPN can also promote tumor angiogenesis in a TAM-
independent manner. OPN could promote endothelial cell
proliferation and activate tumor cells to secrete VEGF. OPN
residues in tumors bind to CD44 and integrin receptors to
mediate NF-kB, PI3K/Akt, VEGF, uPA, and MMPs to
promote endothelial cell proliferation (107, 108). Moreover,
OPN regulates the proliferation and growth of muscle-derived
angiogenic progenitor cells (MDPCs) through the PI3K/Akt
pathway (109). In the breast cancer mouse model, exogenous
and tumor-derived OPN can promote VEGF expression and
tumor angiogenesis by activating the Brk/NF-kB/ATF-4
signaling pathway (110). However, in the neuroblastoma
mouse model, OPN promotes intratumor angiogenesis by
stimulating vascular endothelial cell migration (111).
CONCLUSIONS AND PERSPECTIVE

OPN, as a secreted protein, has complicated biological functions
and plays an important role in the regulation of tumorigenesis, anti-
tumor immunity, and modulation of TME. The effects of OPN on
immune regulation have been confirmed in diverse diseases, such as
inflammatory and autoimmune disease models. It is not surprising
that the neutralizing antibodies of OPN have been proven to
alleviate various inflammatory-mediated diseases, such as
osteoporosis, hepatitis, and arthritis. Furthermore, some
monoclonal antibodies to OPN have been used in therapy
strategies in the context of cancer. For example, anti-OPN
antibodies retard the growth and reduce metastasis of breast
cancer in mice (112). Unfortunately, the detailed mechanisms of
OPN function in TME have not been fully developed. Simply
neutralizing or completely depleting their activities is unlikely to
be an optimal or effective approach (113–115).

Recently, the potential of programmed macrophage subsets
has been explored, while OPN participating in the redefinition of
TAMs subpopulations and functions in the steady state would be
a promising tumor immune treatment strategy. However, we
Frontiers in Oncology | www.frontiersin.org 7
believe that the following issues should be considered when
developing OPN or TAM-targeted strategies: Firstly, OPN is a
multifunctional factor that plays a cell-specific role in
inflammation, immunity, and tissue repair, and it has various
variants with different activities (116). In the TME, macrophages
are the major constituent cell population, but not the only one.
The depletion of TAMs may impair the antitumor effect of TME
or compensatory stimulation of the proliferation of other cells
with immunosuppressive function (i.e., MDSC) and aggravate
tumor progression. Secondly, some reports suggest that OPN
exhibits anti-tumor characteristics under certain circumstances:
1) OPN deficiency in squamous cell carcinoma mouse models
leads to accelerated tumor growth (117). In intrahepatic
cholangiocarcinoma, the high expression level of OPN in
tumors indicates better overall survival and decreased lymph
node metastasis (118), 2) OPN-deficient macrophages exhibit
impaired antitumor cytotoxicity (117), and 3) stromal-derived
OPN enhances NK cell infiltration into the prostate tumor in the
genetically modified mice (119). Thirdly, both OPN and TAMs
are phenotypically and functionally heterogeneous (120, 121),
and there are still many gaps in our understanding of the effects
of OPN on TAMs. Therefore, further in-depth studies are
warranted to understand the underlying mechanisms of OPN
and TAMs in tumorigenesis and tumor progression, which may
offer new hope for future cancer treatments.
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