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Cholangiocarcinoma (CHOL) is highly malignant and has a poor prognosis. This study is
committed to creating a new prognostic model based on hypoxia related genes. Here, we
established a novel tumor hypoxia-related prognostic model consisting of 6 hypoxia-
related genes by univariate Cox regression and the least absolute shrinkage and selection
operator (LASSO) algorithm to predict CHOL prognosis and then the risk score for each
patient was calculated. The results showed that the patients with high-risk scores had
poor prognosis compared with those with low-risk scores, which was verified as an
independent predictor by multivariate analysis. The hypoxia-related prognostic model was
validated in both TCGA and GEO cohorts and exhibited excellent performance in
predicting overall survival in CHOL. The PPI results suggested that hypoxia-related
genes involved in the model may play a central role in regulating the hypoxic state. In
addition, the presence of IDH1 mutations in the high-risk group was high, and GSEA
results showed that some metabolic pathways were upregulated, but immune response
processes were generally downregulated. These factors may be potential reasons for the
high-risk group with worse prognosis. The analysis of different immune regulation-related
processes in the high- and low-risk groups revealed that the expression of genes related
to immune checkpoints would show differences between these two groups. We further
verified the expression of the oncogene PPFIA4 in the model, and found that compared
with normal samples, CHOL patients were generally highly expressed, and the patients
with high-expression of PPFIA4 had a poor prognosis. In summary, the present study may
provide a valid prognostic model for bile duct cancer to inform better clinical management
of patients.

Keywords: cholangiocarcinoma, hypoxia status, prognostic model, immune microenvironment, PPFIA4
INTRODUCTION

Cholangiocarcinoma (CHOL) is a malignant and aggressive disease with a poor prognosis, the
median survival less than 24 months (1). Depending on the location of the tumor, CHOL is divided
into intrahepatic cholangiocarcinoma (iCCA) and extra-hepatic cholangiocarcinoma (eCCA), and
eCCA is divided into perihilar cholangiocarcinoma (pCCA) and distal cholangiocarcinoma (dCCA)
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(2). The early symptoms of CHOL are insidious and not easily
detected, and most patients are diagnosed at an advanced stage
(2). For patients with advanced CHOL, treatment options are
limited. The median overall survival (OS) of patients treated with
standard chemotherapy regimens (gemcitabine and cisplatin) is
still less than 1 year (3). Therefore, it is clinically important to
find the relevant factors affecting the prognosis of patients with
CHOL. The American Joint Committee on Cancer (AJCC)
staging manual has become a benchmark for classifying cancer
patients, determining prognosis, and determining the best
treatment (4). However, it has been discovered that the TNM
staging approach is insufficient for determining prognosis and
does not account for cancer’s biological heterogeneity. There is
significant variation in prognosis and treatment response even
among patients with the same stage, and other factors such as
age, performance status, and tumor site might affect patient
survival, therefore it only provides limited information on
clinical prognosis (5). As a result, developing reliable
prognostic biomarkers is critical in order to improve clinical
prognostic value. With the continuous improvement and
development of high-throughput sequencing technology (6), it
is possible to exploit potential molecular targets in the CHOL
genome using bioinformatics technology. The development of
promising molecular targets is essential to improve the
application of targeted therapy for CHOL.

The tumor microenvironment is a complex and variable
cellular microenvironment, which can not only provide the
material conditions required for the growth and proliferation
of tumor cells, but also change its composition through
autocrine and paracrine secretion of tumor cells (7). It was
reported that CHOL cells can construct their own favorable
environment by secreting tumor-related regulatory mediators
through the extracellular matrix and stromal cells, thus
promoting the proliferation of CHOL cells and enhancing
their resistance to treatment (8). Most solid tumors include
hypoxia as a micro environmental trait, and developing
tumors frequently live in hypoxic environments due to
limited blood supply (9). The hypoxic conditions could
enhance the angiogenesis, proliferation and invasive abilities
of tumor cells (10, 11). Similarly, in CHOL studies, hypoxia
has been found to increase the aggressiveness of CHOL (12). In
iCCA studies, hypoxic environment was able to promote the
progression of CHOL through upregulation of Rab1a (13). It
has been found that in CHOL, hypoxia-induced Sonic
Hedgehog signaling pathway regulates cancer stemness,
epithelial-to-mesenchymal transition and invasion (14).

In the present study, the hypoxia-related genes for CHOL
were mainly screened by GEO and TCGA-CHOL dataset. The
prognostic signature characterized by hypoxia-related genes
were filtered according to univariate and LASSO regression
analysis, and the risk score of each samples were obtained.
Subsequently, CHOL samples in TCGA were classified into
high- and low-risk subgroups according to the risk score, and
the differences between high- and low-risk subgroups were
further explored, such as survival differences, clinical
characteristics differences, enrichment differences, somatic cell
Frontiers in Oncology | www.frontiersin.org 2
mutation differences, and tumor immunomodulatory gene
expression differences.
MATERIALS AND METHODS

Pre-Processing and Data Collection
We utilized the R package TCGAbiolinks (15) to download the
36 CHOL RNA-seq data [log2(FPKM+1)] and relevant clinical
information from the TCGA database (https://portal.gdc.cancer.
gov/). The 36 samples with both available RNA-seq data and
clinical information were used as the training set for hypoxia-
related markers. The GSE107943 dataset was obtained from the
GEO database (https://www.ncbi.nlm.nih.gov/geo/), which were
used as the external validation set, containing available
microarray expression data and clinical data of bile duct cancer
samples. The microarray data preprocessing process was as
follows: remove null probes and probes corresponding to
multiple genes at the same time, and use the median
expression value of these probes as the expression value of the
gene when multiple probes correspond to the same gene.

Prognostic Model Construction
The 200 potential hypoxia-related genes were retrieved from
MSigDB’s HALLMARK HYPOXIA pathway (https://www.gsea-
msigdb.org/gsea/index.jsp) (v7.4 version). All prognosis-
associated hypoxia genes were screened using univariate Cox
hazard analysis, with a p-value of 0.1 chosen as the cutoff.
Utilizing the R package glmnet, the Lasso Cox regression
model was built using all prognosis-related hypoxia genes, and
candidate genes were penalized to exclude redundant
components and reduce the risk of overfitting (16). A 10-fold
cross-validation under the constraint of low bias is used to
calculate the model’s penalty parameter (l).

To determine the best prognosis-associated hypoxia
signature, Lasso regression analysis was used, and the
regression coefficients were calculated for each gene separately,
and then the sample risk scores for multivariate Cox regression
were calculated using the R package survminer (17), with the
formula as follows:

Risk Score =o
n

i=0
bi*ci

bi denotes the weight of each gene in Lasso Cox regression; ci
denotes the expression level of each gene.

The CHOL patients were divided into high-risk and low-risk
groups based on Risk score. Kaplan-Meier curves of survival
differences between samples in the high-risk and low-risk groups
were plotted, and significant differences in OS between groups
were assessed based on log-rank tests.

Correlation Analysis of Prognostic Models
and Clinical Characteristics
The univariate and multivariate Cox hazard regression analysis
were performed separately for risk scores and patient clinical
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characteristics (including age, gender, and stage) to determine
whether the predictive power of the prognostic model was
independent of clinical characteristics. Risk ratios (HR) and
95% confidence intervals were calculated for each candidate
prognostic factor, with a p-value < 0.05 as the threshold of
significance. In addition, differences in risk scores across age, sex,
and stage subgroups were assessed based on the Wilcoxon rank-
sum test.

Gene Interactions Analysis
The expression correlation between genes in the prognostic
model was assessed based on Pearson correlation analysis. In
addition, the interactions of proteins encoding hypoxia-related
genes were obtained based on the STRING database (http://
www.string-db.org/), and protein-protein interactions (PPI)
network of hypoxia-related genes were constructed, and the
network graphs were visualized using Cytoscape (v3.9.1) to
assess the interactions of the genes in the prognostic model.

Functional Enrichment Analysis
Gene set enrichment analysis (GSEA) was used to identify
biological processes that differed significantly between high-
and low-risk group samples (18). We examined biological
processes from the GO database and KEGG signaling pathways
for significant variations between high- and low-risk group
samples using the R tool ClusterProfiler (19). To screen the
collection of substantially linked genes, a corrected p-value of less
than 0.05 was employed as a criterion, and the p-value correction
technique Benjamini Hochberg was applied.

Somatic Cell Mutations
TCGA provided the tumor mutational data. The mutation genes
were calculated using tumor mutational burden (TMB). The
mutational data in both the high-risk and low-risk groups were
analyzed using the R maftools package (20). P-values less than
0.05 were deemed statistically significant.

Expression of Immune-Negative
Regulatory Genes
The cancer immune cycle has emerged as the primary research
framework for cancer immunotherapy. It describes a cyclical
process in which the immune system eradicates cancer: Antigen
Processing and Presentation (Category 1), Atimicrobials
(Category 2), Chemokines (Category 3), Cytokine Recepors
(Category 4), Cytokines (Category 5), Matrix remodeling
(Category 6), and Nature Killing Cell Cytoxicity (Category 7)
(21). In the low and high hypoxia risk groups, we looked at the
expression of genes that negatively regulate these processes.
Tracking Tumor Immunophenotype (http://biocc.hrbmu.edu.
cn/TIP/index.jsp) was used to identify immunonegative
regulation-related genes (22).

Tissue Specimens
From September 2021 to March 2022, 10 paired fresh
cholangiocarcinoma tissues and neighboring non-tumor tissues
were taken from patients who underwent radical surgery at Xi’an
Jiaotong University’s First Affiliated Hospital. In addition,
Frontiers in Oncology | www.frontiersin.org 3
between December 2013 and April 2016, 62 patients with
cholangiocarcinoma who had a curative procedure were
enrolled in a cohort. The protocol was authorized by the First
Affiliated Hospital of Xi’an Jiaotong University’s Institutional
Medical Ethics Committee (No. XJTU1AF2021LSK-261).

RNA Isolation and RT-qPCR
The RNeasy Mini Kit (Qiagen) was used to extract total RNA,
and the reverse transcription was done with the High Capacity
cDNA Reverse Transcription Kit (Thermo Fisher Scientific). A
LightCycler480 PCR equipment was used to perform
quantitative PCR using SYBR Green dye (Roche). GAPDH was
used to standardize the relative fold change in expression.

Immunohistochemistry (IHC)
Following deparaffin deparaffinization, rehydration and antigen
retrieval, the paraffin-embedded slides were incubated with
primary anti-PPFIA4 antibody (1:100, Sigma) at 4°C overnight.
HRP-conjugated secondary antibody and DAB peroxidase
substrate were utilized for immunostaining.

Statistical Analysis
All statistical analyses were performed using R software (version
4.1.2; https://www.R-project.org). Wilcoxon rank-sum test was
used to compare significant differences in continuous variables
between the two groups. Pearson correlation analysis was used to
analyze the expression correlation between genes. Differentially
expressed genes between high and low risk groups were
identified based on the R package limma (23) with a
differentially expressed gene threshold of |log2FC| > 0.58 and
p-values < 0.05. The univariate Cox regression analysis was
performed using the R package survival, and multi-factor Cox
regression analysis was performed on prognostic model scores to
explore the the independent prognostic value of the score.
Kaplan-Meier curves were plotted using the R package
survminer, and the significance of differences between groups
was assessed based on the log-rank test. And p-values < 0.05 were
used as the threshold of significance for statistical analysis.
RESULTS

Establishment of a Hypoxia-Related
Prognostic Model for CHOL
We acquired 200 hypoxia-related genes from the MSigDB
database to study the predictive efficiency of hypoxia-related
genes in CHOL. EGFR, PFKL, CHST2, ADORA2B, EDN2,
HMOX1, CP, PPFIA4, PLAC8, IDS, ALDOC, STBD1, BCL2
were among 13 hypoxia-related genes found to be substantially
linked with overall survival (OS) in the TCGA CHOL cohort
using univariate Cox hazard analysis (p-value < 0.1, Figure 1A).
Based on the median value of gene expression (EGFR, PFKL,
CHST2, ADORA2B, EDN2, HMOX1), we separated the samples
into two groups, and Kaplan-Meier curve analysis revealed that
gene expression affected patient survival (log-rank test p-value <
0.05, Figure 1B).
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Although we initially observed genes with prognostic efficacy
in CHOL patients by univariate Cox regression analysis and log-
rank test, we further performed Lasso regression analysis based
on these 13 genes in order to integrate these informative genes to
obtain a more optimal prognostic model, while removing
redundant factors and controlling the risk of overfitting. Ten-
fold cross-validation was performed under optimal conditions to
determine the penalty parameter (l) of the model. We screened
out 6 most predictive factors for OS (Figures 1C, D). PPFIA4
and CP were retained as a valid prognostic risk factor, while
BCL2, PLAC8, PFKL and EGFR were retained as a prognostic
protective factor, Together, they constituted a prognostic risk
model associated with hypoxia in CHOL. Based on the linear
combination of the expression levels of these genes and the
corresponding weights, we could assess the hypoxia-related
prognostic risk score for each patient (Figure 1E). The
corresponding association between the expression of 6
hypoxia-related signature in the prognostic model and the vital
status and survival of patients were visualized in Figure 1F.

Independent Validation of the Hypoxia-
Related Prognostic Model
The risk score for each patient with CHOL in the TCGA was
determined using the hypoxia-related prognostic model for
CHOL that was constructed. After obtaining each patient’s risk
value, the samples were sorted from low to high in terms of risk
score, and scatter plots were used to display the results. The
median of all sample risk scores was used as the cutoff, and the
samples were divided into two groups: high risk and low risk,
the low-risk group’s OS was likewise considerably lower than the
high-risk group’s (log-rank test p-value < 0.001, Figure 2A). We
also calculated heat maps for display to investigate the expression
Frontiers in Oncology | www.frontiersin.org 4
of different genes in the risk model across all genes in different
samples, and we discovered that the expression of six hypoxia-
related genes in the model differed considerably in the high- and
low-risk groups (Figure 2B).

To assess the robustness and generalizability of the hypoxia-
related prognostic model, we collected CHOL samples from
GSE107943 as an independent validation cohort. Patients were
divided into high-risk and low-risk groups according to the risk
score of the prognostic model. We obtained similar results to the
training cohort through an external validation cohort
(Figures 2C, D).

Hypoxia-Related Risk Score Is an
Independent Prognostic Factor
We then explored the independence of the prognostic model in
patients with CHOL from TCGA. The univariate Cox regression
analysis revealed that the hypoxia-related risk score was the only
prognostic factor of OS (HR = 5.94, p-value < 0.001, Figure 3A).
Further, the multivariate Cox regression analysis confirmed the
independent prognostic value of the hypoxia-related risk score
(HR = 74.71, p-value = 0.004, Figure 3B).

In the GEO cohort, univariate Cox analysis showed that
hypoxia-related risk score (HR = 2.65, p-value = 0.046), stage
(HR = 3.48, p-value = 0.015) were prognostic factors in patients
with CHOL (Figure 3C). Hypoxia-related risk score (HR = 3.06,
p-value = 0.032) and stage (HR = 3.88, p-value = 0.017) were
found to be independent predictive markers in patients with
CHOL in a multifactorial Cox analysis (Figure 3D), which is
consistent with the TCGA cohort’s findings. The prognostic
risk scores established in our study might be used as
independent risk factors affecting patient prognosis based on
the above investigations.
B

C D E F

A

FIGURE 1 | Construction of a hypoxia-related prognostic model for CHOL. (A) A forest map showed 13 hypoxia-related signatures identified by univariate Cox proportional
hazard regression. (B) OS curves of CHOL patients with different PPFIA4 expression. (C, D) The LASSO Cox regression model to identify the most robust hypoxia-related
signatures. (E) Distribution of LASSO coefficients of the hypoxia-related gene signature. (F) The heatmap of the vital status, survival and gene expression.
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To further corroborate the independence of prognostic risk
scores from clinical characteristics, we compared the differences
in the distribution of risk scores by grouping patients based on
their age, gender and stage, respectively. We found no significant
differences in risk scores by age and tumor stage grouping (p-
value > 0.05, Figures 3E, G), but slightly higher in male patients
than in female patients (p-value < 0.05, Figure 3F).

The Interaction Mechanism Between
Prognostic Genes
Although the 6 signature genes we obtained from the prognostic
model were all involved in the tumor hypoxic state hallmark, but
their interactions with other hypoxic genes were not clear, so we
examined the co-expression of these genes. Overall, there was no
strong co-expression among the hypoxia-related genes involved
in the prognostic model (Pearson |r| < 0.34, Figure 4A),
indicating that the redundant genes with strong associations
had been filtered out through LASSO Cox analysis. In addition,
we looked at how the hypoxia-related genes in the model
interacted with other hypoxia-related genes. We built a PPI
network connecting the genes in the prognostic model and
other hypoxia-related genes using the interactions of gene-
Frontiers in Oncology | www.frontiersin.org 5
encoded proteins retrieved from the String database online
tool (Figure 4B).

We found extensive interactions between EGFR, CP, PFKL
genes and other hypoxia-associated genes in the model. The
model includes hypoxia-related genes, which might play a key
role in tumor hypoxia regulation.

Hypoxia-Related Risk Xcores Reveal
Differences in Molecular Tumor
Characteristics
To explore the underlying molecular mechanisms of hypoxia-
related prognostic models, we first examined somatic mutations
in different risk groups in the TCGA-CHOL cohort. Due to the
small sample size of the TCGA-CHOL dataset, the comparison
of differences in mutation frequencies failed to present significant
results (Figure 5A, p-value < 0.05). However, we found four
patients in the high-risk group enriched for the IDH1 mutation,
while only one patient in the low-risk group was enriched for this
mutation (Figure 5A).

Using GSEA enrichment analysis, we looked into the biological
pathways altered by the hypoxia-related predictive risk score in
subgroups. Metabolic processes such as “Carbon metabolism”,
B

C

D

A

FIGURE 2 | Independent validation of hypoxia-related prognostic models. (A, C) Survival curve for low-risk and high-risk subgroups in the training dataset and validation
dataset. (B, D) The expression heat map of the 6 prognostic hypoxia-related signatures in low-risk and high-risk subgroups training dataset and validation dataset.
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“Glycolysis/Gluconeogenesis”, “Biosynthesis of amino acids”,
“Cholesterol metabolism”, “PPAR signaling pathway” and “Fatty
acid degradation” were dramatically increased in the high-risk
group (NES > 0, FDR < 0.0001), whereas T cell receptor signaling
route, natural killer cell mediated cytotoxicity, antigen processing
and presentation, chemokine signaling pathway, and cytokine-
cytokine receptor interaction were all significantly downregulated
in the high-risk group (NES < 0, FDR < 0.0001, Figure 5B). In
Frontiers in Oncology | www.frontiersin.org 6
addition, GSEA enrichment analysis of GO-BP showed that
metabolic processes such as “protein-lipid complex subunit
organization”, “protein-lipid complex subunit organization”,
“protein-lipid complex remodeling”, “protein-containing complex
remodeling”, “organic acid catabolic process”, “requlation of lipid
catabolic process”, “carboxylic acid catabolic process”, “neutral lipid
metabolic process”, “sterol metabolic process”, “small molecule
catabolic process”, “cellular amino acid metabolic process”,
B

C

D

E F G

A

FIGURE 3 | The Hypoxia-related risk score is an independent prognostic factor. (A-D) The forest plot of the univariate and multivariate Cox regression analysis
shows that the risk score was an independent risk factor for overall survival in training dataset and validation dataset. (E-G) The box line chart of the differences in
the distribution of risk scores by grouping patients based on their age, gender and stage.
BA

FIGURE 4 | The interaction mechanism between Prognostic Genes. (A) The spearman correlation analysis based on the expression of the 6 hypoxia-related
signatures. (B) The Protein–Protein network interactions including 200 hypoxia-associated genes.
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“secondary alcohol metabolic process”, “steroid metabolic process”,
“organic acid biosynthetic process”, “lipid catabolic process” were
increased dramatically in the high-risk group (NES > 0, FDR <
0.0001). We observed that “leukocyte migration”, “leukocyte
mediated immunity”, “regulation of cell-cell adhesion”,
“mononuclear cell migration”, “I-kappaB kinase/NF-kappaB
signaling”, “adaptive immune response”, “leukocyte cell-cell
adhesion”, “interleukin-12/10 production “, “cell activation
involved in immune response”, “antigen processing and
presentation”, “positive regulation of cell activation” were
significantly downregulated in the high-risk group (NES < 0, FDR
< 0.0001; Figure 5C). Taken together, we deciphered the tumor
molecular signature of the differences between hypoxia-related risk
subgroups, suggesting potential molecular mechanisms for the
different risk subgroups.

Hypoxia-Related Risk Scores Reveal
Differences in Tumor Immune
Microenvironment Characteristics
Tumor-immune interactions are crucial in controlling the
immune milieu because they incorporate the effects of several
regulators. We looked examined how immune regulatory genes
Frontiers in Oncology | www.frontiersin.org 7
were expressed differently in high-risk and low-risk people. We
discovered that genes involved in immune modulation were
expressed differently in high and low risk groups (Figure 6A).
We looked examined how divergent genes were expressed in
distinct immune regulatory groups.

The genes HLA-DPB1, HLA-DQA1, HLA-DRA, HLA-DRB1
and HLA-DRB5 in the “Antigen Processing and Presentation”
category were considerably downregulated in the high-risk group.
PLA2G2A, KNG1, HRG, and other genes associated to
“antimicrobials” were considerably downregulated in the high-risk
group. CCL17, a gene associated to “chemokines,” was considerably
downregulated in the high-risk group. The gene EGFR, which
belongs to the “Cytokine Receptors” category, was considerably
downregulated in the high-risk group. The genes CTF1, GDNF,
HAMP, IGF2, SAA1, SAA2, TGFA, which belong to the “cytokines”
category, were considerably downregulated in the high-risk group.
CA9 and PLOD2, which are connected to “matrix remodeling,”
were considerably downregulated in the high-risk group. The gene
PLCG2, which is connected to “Natural Killer Cell Cytotoxicity,”
was considerably downregulated in the high-risk group. The above
results are shown in figures (Figures 6A, B). These findings show
that immune checkpoint expression differs under the effect of
B CA

FIGURE 5 | Hypoxia-related risk scores reveal differences in tumor immune microenvironment characteristics. (A) The heatmap for mutational gene and mutation
type in the high- and low-risk groups. (B) The GSEA enrichment analysis for KEGG signaling pathways between the high- and low-risk groups. (C) The GSEA
enrichment analysis for biological processes from the GO database between the high- and low-risk groups.
BA

FIGURE 6 | Hypoxia-related risk scores reveal differences in tumor immune microenvironment characteristics. (A) The volcano plot of different expression immune-
related genes. (B) The heatmap of immune-related genes and different immune categories in the high- and low-risk group.
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CHOL’s hypoxic condition, affecting the immunological
microenvironment’s control.

The Expression of PPFIA4 Is Dramatically
Increased in CHOL Tissues
To further corroborate these findings, PPFIA4 mRNA levels
were measured in 10 matched fresh CHOL tissues with
surrounding non-tumor tissues. When compared to non-
tumor t i s sues , the amount o f PPFIA4 mRNA in
cholangiocarcinoma tissues became much higher (Figure 7A).
In addition, we investigated PPFIA4 expression in a cohort of
patient with cholangiocarcinoma samples from our hospital by
IHC assay, which demonstrated predominant expression of
PPFIA4 within tumor cells (Figure 7C, D). The expression of
PPFIA4 was found in 26 of the 62 carcinoma samples (41.9%),
whereas the remaining 36 samples (58.1%) were negative.
Table 1 outlined the link between PPFIA4 expression and
clinicopathological characteristics. The presence of PPFIA4 was
significantly linked to large tumor size, advanced TNM stage,
and lymph node metastasis, while there was no correlation of
PPFIA4 expression with gender, age, differentiation and tumor
Frontiers in Oncology | www.frontiersin.org 8
stage. Additionally, individuals with high PPFIA4 expression had
a poorer 5-year OS prognosis (Figure 7B, p-value = 0.03).
DISCUSSION

The molecular mechanisms underlying the development of
CHOL are still unclear. It was reported that hypoxia enhances
the aggressiveness of CHOL cells (12) and the malignant
behavior of tumors can be regulated through hypoxia-related
gene (13, 24). Gene signatures have been utilized to predict the
prognosis of many malignancies in recent years, and they have
proven to be more accurate than TNM staging and histological
diagnosis (25, 26). Hypoxia has been identified as a factor
impacting patient prognosis that is independent of clinically
established prognostic variables such as tumor stage, lymph node
status, and tumor grade (27). Although approaches such as
nitroimidazole, PET imaging, and IHC biomarker expression
have been used to determine the degree of hypoxia in patients’
tumors, the precise proven method remains unknown (28, 29).
For a number of malignancies, such as prostate cancer, lung
FIGURE 7 | PPFIA4 expression is significantly upregulated in cholangiocarcinoma tissues. (A) PPFIA4 mRNA levels were determined by RT-qPCR in 10 pairs of
cholangiocarcinoma tissues and matched non-tumor tissues. NT, tumor adjacent non-tumor tissue; T, tumor. ***p-value < 0.001. (B) OS curves of
cholangiocarcinoma patients with different PPFIA4 expression. (C) Representative IHC images of positive PPFIA4 expression. (D) Representative IHC images of
negative PPFIA4 expression. Scale bar, 100 µm.
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cancer, and breast cancer, prognostic models based on hypoxia-
related gene expression have been described (30–32). In this
study, we used a Cox and Lasso regression model to analyze 200
hypoxia-related genes, and then screened 6 prognosis-related
hypoxia-related genes and constructed a prognostic prediction
model for CHOL, and the OS of the high-risk group was
significantly lower than that of the low-risk group, and we
validated our model using the GEO CHOL date set. The
prognostic model we constructed is an ideal model with better
sensitivity and specificity.

Phosphofructokinase L (PFKL) includes Binding locations for
hypoxia-inducible factor 1 (HIF-1) (33). HIF-1 is a nuclear
transcription factor that is active in the oxygen state where the
body is adapted to hypoxia or hypoxia. HIF-1a has a certain
transcriptional activity and a broad target gene spectrum (34). In
hypoxia, the transcriptional and translational levels of HIF-1a
can increase exponentially with prolonged hypoxia (35). D-
fructose 6-phosphate is converted to D-fructose 1,6-
bisphosphonate, a crucial step in glucose metabolism, by an
enzyme encoded by PFKL (glycolysis) (36). In the tumor hypoxic
region, tumor cells translocate extracellular glucose into the cell
via glucose transporter proteins on the cell membrane to
produce pyruvates and ATP via the glycolytic pathway, and
LDH-A acts to convert it to lactate (37). The production of
lactate constitutes a local acidic environment for tumor cell
proliferation and activates the cascade reaction of protein
hydrolases to convert pre-matrix metalloproteinases into
matrix metalloproteinases, which promote the degradation of
the extracellular matrix of cancer cells and facilitate the invasion
of surrounding tissues by tumor cells (38). A number of cancers
have been identified to have PFKL as a component of the
glycolysis process, including lung cancer (39), esophageal
cancer (40), neuroblastoma (41) and hepatocellular carcinoma
(42). The Bcl-2 protein family is one of the core regulatory
Frontiers in Oncology | www.frontiersin.org 9
mechanisms of apoptosis, which can receive and transmit
intrinsic intracellular signals or external environmental stress
signals, such as nutrient or hypoxic stress, DNA damage,
oncogene over-activation, endoplasmic reticulum stress, etc
(43). It was found that Bcl-2-associated transcription factor
BCLAF1 was highly expressed under hypoxia with a time-
dependent hypoxic effect and positively correlated with HIF1a
expression (44). PTPRF Interacting Protein Alpha 4 (PPFIA4)
was reported to be glycolysis-associated signature, involved in
glycolysis of tumor microenvironment (45). Proliferation and
migration of tumor cells in colon cancer are facilitated by
PPFIA4’s ability to increase tumor glycolysis (46); PPFIA4 also
increases mitochondrial metabolism via MTHFD2 in
desmoplastic-resistant prostate cancer (47). In our study, we
found that PPFIA4 was oncogenic in CHOL and its high
expression was associated with poor prognosis of patients. We
confirmed the high expression of PPFIA4 in the tumor tissues of
CHOL patients through fresh tumor tissues and their
corresponding paraneoplastic tissue and previous pathological
slides collected clinically. Likewise, we confirmed that high
PPFIA4 expression was significantly associated with poor
patient prognosis. We hypothesized that the expression status
of PPFIA4 in CHOL tumor tissues could reflect the hypoxic
status in tumor tissues. It has been discovered that PLAC8
enhances human interstitial extravillous trophoblast cell
invasion and migration, and hypoxia dramatically upregulates
PLAC8 expression in this cell population (48). In hypoxic
conditions, Ceruloplasmin (CP) induces generates oxygen
radicals (49), while inducing activation of HIF-1a (50),
Overexpression of CP in clear cell renal carcinoma is linked to
oncogenic pathways and worse survival rates (51). Epidermal
Growth Factor Receptor (EGFR) is a primary regulator of HIF-1
under hypoxic conditions, and mutant EGFR is a prominent
regulator of HIF-1a in EGFR mutant NSCLC cells (52). In
TABLE 1 | Relationships between PPFIA4 expression and clinicopathological characteristics.

Clinicopathological features N PPFIA4 expression P
Negative Positive

Gender 36 26 0.903
Male 40 23 17
Female 22 13 9
Age (years) 0.233
< 60 21 10 11
≥ 60 41 26 15
Tumor size (cm) 0.014
< 3 34 15 19
≥ 3 28 21 7
Differentiation 0.787
Well/moderately 25 14 11
Poorly 37 22 15
Tumor stage 0.986
T1-T2 43 25 18
T3-T4 19 11 8
Lymph node metastasis 0.020
Absent 39 27 12
Present 23 9 14
TNM stage 0.028
I-II 34 24 10
III-IV 28 12 16
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addition, EGFR was reported that it can blocked anti-cancer
miRNA maturation under hypoxic status (53).

Somatic mutations between high- and low-risk groups were
compared in this study. Among the high-risk individuals, we
observed that Isocitrate Dehydrogenase (NADP(+)) 1 (IDH1)
mutations were more common than expected. IDH1 has been
linked to tumor hypoxic reprogramming, according to a study
(54). Mutations in IDH1 reduce IDH1’s catalytic activity and
activate HIF-1 a in glioblastoma cells (55). Wild-type IDH1
suppresses tumor development in renal cell carcinoma via
degrading HIF-a (56). By using GSEA to examine the
variations in cellular activities and pathways between high and
low risk groups, we found that metabolic processes and pathways
associated with hypoxic state were upregulated, but immune
response processes were generally downregulated. Prognostic
models developed by our team may be able to respond well to
tumor microenvironment hypoxia.

Genes associated to the negative regulation of the tumor
immune, such as checkpoints and suppressor-related genes, were
examined between high and low risk groups to study the
hypoxia/immunity association. Immune checkpoints are targets
of immunotherapy, and researchers have found that patients
with tumors co-expressing HIF-1a, a subtype of HIF, and PD-
L1, an immune checkpoint, have a high risk of tumor recurrence
and metastasis as well as lethality (57). In CHOL, hypoxic
condition altered the regulatory impact on the immune milieu
by modifying the expression of immunological checkpoints. In
the high-risk scenario, the hypoxic condition could boost the
ability of tumors to escape and invade.

It is possible that our research contained some flaws. In the
first place, the research is a retrospective one with a relatively
limited sample size. Therefore, the sparse mutation landscape
was not suitable for further investigation of genetic factors
associated with the hypoxia-related risk score. For example,
only three samples showed KRAS and TP53 mutations. In
addition, the insufficient clinical information of patients and
lack of diversity also hindered the further in-depth analysis. In
the present study, most (32/36) of the obtained TCGA-CHOL
samples were intrahepatic cholangiocarcinoma, and
cholangiocarcinoma at different histological sites may present
different molecular features, therefore, study with large sample
size would be needed in the future to further analyze
cholangiocarcinoma samples from different sites. Nevertheless,
the 6-gene hypoxia-related signature identified in our study
Frontiers in Oncology | www.frontiersin.org 10
demonstrated the value to better predict the prognostic status
of patients and respond to the hypoxic status of tumor cells.
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