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Cancer cells are known to undergo metabolic adaptation to cater to their

enhanced energy demand. Nicotinamide adenine dinucleotide (NAD) is an

essential metabolite regulating many cellular processes within the cell. The

enzymes required for NAD synthesis, starting from the base precursor -

tryptophan, are expressed in the liver and the kidney, while all other tissues

convert NAD from intermediate precursors. The liver, being an active metabolic

organ, is a primary contributor to NAD biosynthesis. Inhibition of key enzymes

in the NAD biosynthetic pathways is proposed as a strategy for designing anti-

cancer drugs. On the other hand, NAD supplementation has also been reported

to be beneficial in cancer in some cases. As metabolic adaptation that occurs in

cancer cells can lead to perturbations to the pathways, it is important to

understand the exact nature of the perturbation in each individual patient. To

investigate this, we use a mathematical modelling approach integrated with

transcriptomes of patient samples from the TCGA-LIHC cohort. Quantitative

profiling of the NAD biosynthesis pathway helps us understand the NAD

biosynthetic status and changes in the controlling steps of the pathway. Our

results indicate that NAD biosynthesis is heterogeneous among liver cancer

patients, and that Nicotinate phosphoribosyl transferase (NAPRT) levels are

indicative of the NAD biosynthetic status. Further, we find that reduced NAPRT

levels combined with reduced Nicotinamide phosphoribosyl transferase

(NAMPT) levels contribute to poor prognosis. Identification of the precise

subgroup who may benefit from NAD supplementation in subgroup with low

levels of NAPRT and NAMPT could be explored to improve patient outcome.

KEYWORDS

NAD metabolism, pathway model, NAPRT, NAMPT, liver cancer, precision medicine,
patient subtyping
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Introduction

Nicotinamide adenine dinucleotide (NAD) is an essential

cofactor for the cell. It mediates various biological processes such

as energy metabolism, DNA repair, signalling, and gene-

expression regulation. NAD regulates energy metabolism

pathways, including glycolysis, fatty acid oxidation

(b-oxidation), the tricarboxylic acid (TCA) cycle, and

oxidative phosphorylation (1). NAD exists in both oxidised

(NAD+) as well as in reduced (NADH) forms; the total

concentration of NAD+ and NADH is considered as the NAD

pool in the cell (2). The NAD+/NADH ratio maintains the redox

potential of the cell and thereby acts as a metabolic regulator of

various NAD-dependent reactions (3). This includes more than

600 metabolic reactions as well as some involved in the

signalling. The utilisation of NAD at the global level in the cell

makes it an indispensable currency metabolite for the cell (1).

Three routes that lead to NAD biosynthesis are well

characterised, the first route from tryptophan as a precursor

(kynurenine pathway) (Figure 1A and Table 1: reactions J1-J10),

the second from nicotinic acid (Preiss-Handler pathway)

(Figure 1A and Table 1: reaction J22), and the third, a salvage

pathway that utilizes several alternative precursors (4–6)

(Figure 1A and Table 1: reactions J8, J17-J20). All the known

genes involved in the NAD biosynthesis are expressed in the

liver (7–9). In particular, hepatocytes can utilise all precursors

from vitamin B3 and from tryptophan to NAD+, indicating that

the precursors and the synthesis of NAD are high in the liver.

The liver also serves as a reservoir of the NAD pool by

converting NAD precursors from nutrient sources to

nicotinamide (Nam) that can be released into the bloodstream

when required (8, 9). Thus, it can be said that the liver regulates

the overall physiological requirement of this essential energy

currency. NAD does not get degraded in metabolic processes but

only interconverts between oxidised NAD+ form to the reduced
Abbreviations: ADPR, ADP-ribose; cADPR, Cyclic ADP Ribose; COPASI,

COmplex PAthway Simulator; CoRC, COPASI R Connector; DNA,

Deoxyribonucleic acid; HCC, hepatocellular carcinoma; HR, Hazards ratio

value; log2FC, log2 of Fold Change value; Na, Nicotinic acid; NaAD, Nicotinic

acid adenine dinucleotide; NAD, Nicotinamide adenine dinucleotide;

NADnet, quantitative kinetic model of the NAD biosynthetic pathway;

NADP, Nicotinamide adenine dinucleotide phosphate; Nam, Nicotinamide;

NaMN, Nicotinic acid adenine mononucleotide; NAMPT, Nicotinamide

phosphoribosyl transferase; NAPRT, Nicotinate phosphoribosyl transferase;

NAR, Nicotinic acid riboside; NL, normal liver; NMN, Nicotinamide

mononucleotide; NMNAT, NMN adenylyltransferase; NR, Nicotinamide

riboside; ODE, Ordinary differential equations; PRPP, Phosphoribosyl

diphosphate; PARP, Poly (ADP-ribose) polymerase; PaxDb, Protein

Abundance Database; RNASeq, RNA sequencing; ROS, reactive oxygen

species; TCA, tricarboxylic acid cycle; TCGA-LIHC, The Cancer Genome

Atlas-Liver Hepatocellular Carcinoma.
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NADH form. On the other hand, processes related to DNA

repair, MAPK signalling, Ca+2 signalling, and gene expression

utilise NAD and degrade it to Nam, which can be later converted

back to NAD (7, 10). Hence, any imbalance in the NAD pool will

lead to global perturbations in the cell and are known to be

associated with various disease conditions such as ageing,

inflammation, and cancer.

In cancer, three routes of NAD utilisation are known to be

perturbed and are associated with carcinogenesis (7). The first

route of NAD utilisation is the NAD mediated central carbon

metabolism which is highly altered in cancer (Warburg effect).

Reduced values of the NAD+/NADH ratio lead to activation of

HIF1a through oxidative stress, which in turn activates

transcriptional expression of glucose metabolism. Interestingly,

not only the central carbon metabolism but other NAD utilising

metabolic processes such as fatty acid oxidation, bile acid synthesis,

glycerophospholipid metabolism, amino sugar metabolism, etc.,

are also known to be altered in cancer, especially in hepatocellular

carcinoma (HCC) (1, 11). The second utilisation route of the NAD

pool is the phosphorylation of NAD+ to NADP+ by the NAD

kinase enzyme (Figure 1A and Table 1: reaction J11). NADP+ also

has a variety of cellular functions which are associated with

carcinogenesis, such as the reactive oxygen species (ROS)

defence, detoxification, and oxidative burst in an immune

response. The third and the most important utilisation route of

NAD is the NAD degrading ADP-ribose (ADPR) transfer

reactions (Figure 1A and Table 1: reaction J13-J15). NAD acts as

a co-substrate for three families of proteins namely Sirtuins, PARPs

and cADPR synthases (5). These reactions are critical for CD38

signalling, P53, FOXO, MAPK-dependent growth signalling,

mono-ADP-ribosylation reactions, and many more (7). Most of

the above-mentioned processes are not only altered in cancer but

also have a carcinogenic role in tumour progression. The preferred

route of NAD synthesis and utilization is tissue-dependent, and is

epigenetically encoded in the cells (5, 10–12). Extracellular NAD

pools, partially produced by extracellular NAMPT and NAPRT,

aid in inflammation and immune suppression further enhancing

the tumour progression (13). The enzymes and metabolites

involved in de novo pathway are known to be associated with

inflammation and immune response (14, 15). Gut bacteria also

help in maintaining the NAD pool in the body by producing NAD

pathway intermediates, like NaAD, which can be directly

converted into NAD (refer to Figure 1A and Table 1: reactions

J9, J10), especially in the liver as well as other organs (16).

Therefore, synthesis and NAD utilising reactions, in particular

the NAMPT, Sirtuins, and PARPs, have been explored as potential

drug targets in the last two decades (17–21). However, many drugs

targeting NAD and associated pathways have failed in clinical trials

for various reasons such as drug toxicity, patient heterogeneity, and

alternate routes of signalling (7, 22).

On the other hand, reports from various epidemiologic

studies suggest an association between low NAD precursor

diets with an increased rate of cancer incidence (23). NAD
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levels decrease with ageing, thus forming an association with

diseases related to ageing, such as neurodegenerative diseases,

cardiovascular diseases, bone dysfunctions, and cancer (24–26).

Studies using mice models of cancer and ageing also exhibit low

NAD levels and therefore are more prone to oxidative stress.

Current knowledge about this suggests that a low NAD level can

lead to oxidative stress-induced DNA damage and thereby

promote mutagenesis and tumour initiation (10, 27). Thus, a
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high level of NAD can have a preventive role in tumorigenesis.

Another recent study Tummala et al. reported that an increased

expression of unconventional prefoldin RPB5 interactor (URI)

leads to AhR- and/or ER-mediated reduction of the NAD pool

and thereby promotes HCC tumorigenesis due to increased

DNA damage (28). This seemed to suggest that NAD

supplementation can have a protective role against HCC

development and progression in cirrhotic patients (29, 30).
B C

A

FIGURE 1

NAD Biosynthesis is perturbed in HCC. (A) Diagrammatic representation of the liver NADnet. Metabolites are represented as yellow nodes;
enzymes are in cyan colour. NAD+ can be synthesised by the three different routes - (A) Route I: de novo biosynthesis pathway starting with the
precursor tryptophan (B) Route II: Preiss−Handler pathway from nicotinic acid and (C) Route III: NAD salvage pathway utilising nicotinamide and
nicotinamide riboside for NAD+ biosynthesis. Note: NAD represents total NAD in the system (both oxidised and reduced form). (B) Validation of
the liver NADnet. The above panel (Measured) is adopted from the report of Mori et al. and represents the metabolic reconstruction of NAD
biosynthesis in mouse liver tissue and reflects the main route of NAD generation is via NMN. The below panel (Calculated) is the reconstruction
of NAD biosynthesis from steady-state concentrations and fluxes obtained from model simulation. r is the Spearman correlation between
measured and calculated fluxes. r* is the Spearman correlation between measured and calculated metabolite concentrations. (C) Time course
simulation of NAD levels for the base model. The blue curve shows the changes in NAD concentration (µM) (log10 scale) with respect to time(s)
(log10 scale).
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However, while on the one hand, an increase in NAD related

activities are linked to metabolic and signalling alterations in

cancers, leading to the hypothesis that the pathway is an

attractive drug target for tumour killing. On the other hand,

NAD protects cells from DNA damage and is found to be

downregulated in many cancers including HCC, hence suggesting

that supplementation of NAD can stop carcinogenesis. These

seemingly opposite findings of NAD imbalance in HCC have led

to a controversy about the role of NAD in tumorigenesis. Therefore,

it is important to first address the role of NAD in tumorigenesis in

individual HCC patients and understand whether it acts as a

tumour suppressor or a tumour promoter.

The main objective of this study is to decipher the role of

NAD in HCC and to understand whether NAD biosynthesis
Frontiers in Oncology 04
inhibition or alternately NAD supplementation will be beneficial

in treating HCC. To address this objective, it is important to

understand the NAD pathway profile in HCC and whether there

is any heterogeneity among HCC patients. Pathway modelling

offers a useful method to profile the individual enzymes in the

pathway and decide whether it is altered in a given individual as

compared to the normal liver (NL) and, if so, in which direction.

Knowledge of the NAD pathway profile in individual HCC

patients will enable precision targeting and ultimately aid the

clinician in decision-making for the management of HCC. To

answer these questions, in this work, a quantitative kinetic model

of the NAD biosynthetic pathway (NADnet) is constructed and

simulated for each individual patient by integrating patient-

specific transcriptomics data available through TCGA-LIHC.
TABLE 1 NADnet pathway reactions to gene, enzyme, and Factor mappings information.

No. Reaction
ID

Gene Enzyme name EC Reaction Factor

1 J1 TDO2, IDO2, IDO1 Tryptophan 2,3-dioxygenase 1.13.11.11 L-Tryptophan + O2 = N-Formyl-L-kynurenine F1

2 J2 AFMID Formylkynurenine
formamidase

3.5.1.9 N-Formyl-L-kynurenine + H2O = Formate + L-Kynurenine F2

3 J3 KMO Kynurenine 3-hydroxylase 1.14.13.9 L-Kynurenine + NADPH + H+ + O2 = 3-Hydroxy-L-kynurenine
+ NADP+ + H2O

F3

4 J4 KYNU Kynureninase 3.7.1.3 3-Hydroxy-L-kynurenine + H2O = 3-Hydroxyanthranilate + L-
Alanine

F4

5 J5 HAAO 3-Hydroxyanthranilate 3,4-
dioxygenase

1.13.11.6 3-Hydroxyanthranilate + O2 = 2-Amino-3-carboxymuconate
semialdehyde ! Quinolinate

F5

6 J6 QPRT Quinolinate
phosphoribosyltransferase

2.4.2.19 Quinolinate + PRPP = NMN + PPi + CO2 F6

7 J7 NMNAT1, NMNAT2,
NMNAT3

NMN adenylyltransferase 2.7.7.1 NaMN + ATP = NaAD+ + PPi F7

8 J8 NMNAT1, NMNAT2,
NMNAT3

NMN adenylyltransferase 2.7.7.1 NMN + ATP = NAD+ + PPi F8

9 J9 NADSYN1 NAD+ synthetase (glutamine-
hydrolyzing)

6.3.5.1 NaAD+ + ATP + L-Gln + H2O = NAD+ + AMP + PPi + L-Glu F9

10 J10 NADSYN1 NAD+ synthetase (ammonia-
dependent)

6.3.1.5 NaAD+ + ATP + NH3 = NAD+ + AMP + PPi F10

11 J11 NADK NAD+ kinase 2.7.1.23 NAD+ + ATP = NADP+ + ADP F11

12 J12 BST1, CD38 NAD+ glycohydrolase 3.2.2.5 NAD+ + H2O = Nicotinamide + ADP-ribose F12

13 J13 BST1, CD38 NAD(P)+ nucleosidase 3.2.2.6 NAD(P)++ H2O = Nicotinamide + ADP-ribose(2¢-phosphate) F13

14 J14 PARP1 Poly (ADP-ribose) polymerase 2.4.2.30 NAD+ + (ADP-ribose) n = Nicotinamide + (ADP-ribose) n+1 F14

15 J15 ART3, ART4, ART5,
SIRT6

Mono ADPribosyltransferase 2.4.2.31 NAD
+

+ L-Arg = Nicotinamide + N(2)-(ADP-ribosyl)-L-Arg F15

16 J16 ENPP1, ENPP3 NAD+ pyrophosphatase 3.6.1.22 NAD+ + H2O = AMP + NMN F16

17 J17 NAMPT Nicotinamide
phosphoribosyltransferase

2.4.2.12 Nicotinamide + PRPP = NMN + PPi F17

18 J18 NT5E, NT5C1A,
NT5C2

5’-Nucleotidase 3.1.3.5 NMN + H2O = Nicotinamide riboside + P F18

19 J19 PNP Nicotinamide nucleoside
phosphorylase

2.4.2.1 Nicotinamide riboside + P = Nicotinamide + R-1-P F19

20 J20 NMRK1 Ribosylnicotinamide kinase 2.7.1.22 ATP + Nicotinamide riboside = ADP + NMN F20

21 J22 NAPRT Nicotinate
phosphoribosyltransferase

2.4.2.11 Nicotinate + PRPP = NaMN + PPi F22
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Materials and methods

Model building of NADnet

The base structure of the network
The liver NADnet, a liver-specific NAD biosynthesis

network, was reconstructed in the laboratory using the

previously published NAD model on glioma from our

laboratory (31). The model comprehensively captures known

reactions in the NAD biosynthesis, covering the de novo pyridine

ring formation via the kynurenine pathway, the utilisation of

dietary precursor nicotinate through the Preiss−Handler

pathway, and the utilisation of nicotinamide and nicotinamide

riboside through the NAD salvage pathway for NAD+ synthesis

in cancer. A base model was first constructed by considering

reactions that can occur in any human tissue, which was

subsequently curated to check for the feasibility of each

reaction in the human liver. It was observed that out of 24

enzymatic reactions from the base model, only 21 enzymatic

reactions were feasible in the liver and were therefore retained.

Other than the enzymatic reactions, four non-enzymatic sink

reactions were added to the model for the model stability. A list

of enzymatic reactions in the model is provided in Table 1.

Kinetic parameters for each of the enzymes in the model were

manually curated from the primary literature. Kcat, Km, and Ki

for inhibitory interactions were also obtained from the same

primary sources, and wherever possible, the parameters for the

liver tissue were used. A full list of parameters is provided in

Supplementary Table 1. A list of fixed metabolites for simulation

purposes is provided in Supplementary Table 2.

Estimation of FKcat and Fconc
One of the most challenging tasks in kinetic modelling is to

deal with various types of inconsistencies in units of reported

parameters. In order to get all parameters in a comparable

framework, a factor (FKcat) was calculated so as to represent

Kcat in 1/sec units for all enzymes. The detailed calculation of

(FKcat) factor for each type of specific activity is provided in

Supplementary Table 3. For each enzyme in the model, enzyme

concentration was estimated from the PaxDB database (32).

Then, using these estimated Kcat values and enzyme

concentrations, Vmax for each reaction was calculated. The

estimated Vmax values are listed in Supplementary Table 3.
Transcriptome data: TCGA dataset

The Cancer Genome Atlas (TCGA) Liver Hepatocellular

Carcinoma (LIHC) RNASeq HT-Seq gene expression (counts

data) and phenotype data were collected through UCSC Xena

(http://xena.ucsc.edu) (TCGA-LIHC cohort) (33, 34). The

dataset contains 374 HCC tissue biopsy samples, out of which
Frontiers in Oncology 05
three are samples from recurrent HCC samples, and the rest are

from primary HCC. The dataset included 50 normal liver (NL)

tissue biopsy samples as well. For this analysis, we have

considered only primary HCC and Normal liver samples.

RNASeq counts data was normalised using edgeR package (V

3.34.1) (35). The mean of normalised gene count was calculated

for all normal samples and was used as a control to calculate the

fold change of each gene for each tumour sample. All ensembl

ids were mapped to gene symbols using org.Hs.eg.db package in

R Language (V 3.15.0) (36).
Integration of gene expression data into
the model

Fold change values of gene expression of each enzyme were

integrated into the model as described previously (37). The

correlation between RNA and protein is ~ 0.5, indicating that

the transcript levels of genes and the corresponding proteins

follow the same trend in their concentrations, justifying the use

of RNA levels an indicator for the protein levels (38). For

reactions catalysed by multiple genes, the cumulative sum of

fold change values in the expression of all associated genes was

used. The F-factor for each reaction across all patients was

calculated using the mean expression profile of Normal Liver

(39). The F-factors differ between the NL model and any patient

model. For the NL model, F-factors are all equal to one. For

patient models, F-factors are substituted as the cumulative sum

of FC values of genes involved in the corresponding reaction.

The changes in F-factor values influence the reaction rates. For a

given reaction, if the F-factor value is greater than one, the

reaction rate is increased by the F-factor value times as

compared to the NL model; similarly, if the F-factor value is

less than one, the reaction rate is decreased by the F-factor value

times as compared to the NL model.
Mutation analysis

Pre-processed mutation data for each cancer type was

obtained from the cBioPortal resource (40). From this,

mutation frequencies of genes from the NADnet were retrieved.
ODE simulation

Ordinary differential equations (ODE) of the reconstructed

models were solved to obtain steady-state values using the getSS

function, with the modified option of resolution to 1E-03 and the

maximum duration for forward integration to 1E+20, in the

CoRC (V 0.11.0) package (41) in R (V 4.1.3) (42). Steady-state

metabolite concentrations and reaction flux values were analysed.
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Sensitivity analysis

Sensitivity analysis provides a measure of how much a

selected model variable (the effect) changes when a selected

parameter (the cause) is changed. Sensitivity was calculated for

the perturbation effect of individual parameters on the steady-

state concentration of NAD. Therefore, it can identify parameters

having an effect on NAD concentration. For models which gave

results for steady-state analysis, parameter sensitivity analysis was

performed. In the current model, there are 114 parameters, so

each parameter for a given simulation was only varied by 1 %

from the original value, thus resulting in a total of 229 simulations

for each model, i.e., one unaltered parameter simulation and

2*114 single parameters altered either by +1 % or -1 % of the

original parameter value. All the altered parameter simulations

were scaled by taking the percentage change compared to the

unaltered parameter simulation. Results were summarised

separately for concentrations of metabolites and flux of

reactions in the form of a 2D plot with a colour scale

representing the percentage change in the simulation value,

using the corrplot (V 0.92) package in R (43). The red colour

represents an increase in the concentration of the metabolite as

compared to the unaltered parameter simulation, whereas the

blue colour represents a decrease in concentration of the

metabolite. The extent of colour filled in the squares represents

the extent of percentage change in the metabolite due to the

change in the parameter value.

For a summary of all patient model changes, the percentage

change in the altered parameter simulation is calculated and

represented as a pie chart of the percentage of models with

alterations among all the steady-state models.
Correlation analysis

The correlation analysis was performed between NAD genes

and NADmetabolites using Pearson correlation (log2FC values -

for numeric variables) in cor.test function from the stats package

in R. Corrplot function from the corrplot (V 0.92) package was

used to represent the correlogram (43).
Clustering and heatmap

Hierarchical clustering of gene expression data and

metabolite steady-state values with the patient profiles was

carried out using the Heatmap function in ComplexHeatmap

(V 2.8.0) package in R (44). Gene expression data and calculated

metabolite fold changes were categorized into three groups; Up

(log2FC ≥ +1), No_change (-1 < log2FC < +1) and Down (log2FC

≤ -1); and substituted with an integer value before Hierarchical

clustering; Up (+1), No_change (0) and Down (-1).
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Survival analysis

Survival analysis and univariate Cox regression analysis were

performed using the survival (V 3.3-1) package in R (45, 46).

Genes and metabolites for each patient were classified as

upregulated ( log2FC ≥ +1) or downregulated (log2FC ≤ -1).

Hazards ratio values (HR) were obtained using the coxph

function from the survival package. HR in survival analysis is

the hazard ratio which essentially is the ratio of the hazard rates

corresponding to the conditions described by two levels of gene

expression. If the gene has a value HR > +1, the given gene is a

poor prognostic marker (over-expression of the gene is

associated with high mortality of the patients) and vice-versa.

The survdiff function from the survival package was used to

identify the significant genes/metabolites (p-value < 0.05)

associated with patient survival. Survival plots were generated

using the ggsurvplot function from the survminer (V 0.4.9)

package (47). The survival analysis was performed among the

distinct groups.
Results

NAD biosynthesis is perturbed in HCC

NAD biosynthesis network in the human liver
The first objective was to reconstruct a NAD biosynthesis

network that captures the physiological processes in the human

liver tissue. The liver NADnet model consisting of 26 reactions,

29 genes, 31 metabolites, and 138 parameters (Figure 1A) was

reconstructed using the model published in Padiadpu et al. (31).

The liver NADnet model retains all three routes of NAD+

biosynthesis - (a) Route I - production of NAD+ from

tryptophan through the kynurenine pathway, which is known

to be active in the liver (b) Route II - utilisation of Nicotinic acid

(Na) as a substrate for NAD+ generation through the Preiss–

Handler pathway and (c) Route III - the salvage pathway of

synthesising NAD from extracellular precursors provided by the

diet (for, e.g., Nicotinamide (Nam) and nucleosides

(Nicotinamide riboside (NR) and Nicotinic acid riboside

(NAR)) (4–6, 48). Nam, Na, NR, and NAR are collectively

referred to as Vitamin B3. Detailed information about

enzymatic reactions is given in Table 1 and Supplementary

Table 1. A steady-state analysis of the NADnet was performed

using CoRC (V 0.11.0). Steady-state values of metabolites and

fluxes of the corresponding reactions are given in Table 2.

Kinetic stability analysis of the model revealed that it was

asymptotically stable.

Validation of NADnet

The liver NADnet was first inspected for validity by (a)

Steady-state metabolite concentrations from the simulations
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were compared with the experimentally determined values

reported in the literature (8); (b) Steady-state fluxes of

enzymes of the enzymatic reactions were compared with the

experimentally determined values. The available experimental

data about metabolite concentrations were from diverse sources,

including liver tissue, blood, and cerebral fluid. Moreover, some

were from humans, and some from mice and other model

organisms. To add to this difficulty, some were reported as

nmol/gm while some others were given as mmol/gm of the liver

tissue, making direct comparisons difficult. To overcome this

problem, a rank-based correlation, using the Spearman

correlation metric, was calculated for both experimental and

simulated data. Experimentally constructed NAD biosynthesis

rate for mouse liver reported by Mori et al. (8) was compared

with the model-predicted metabolite level and flux rate for

human hepatocytes (Figure 1B). A relative ranking of the

metabolites (NAD, NaAD, NaMN and, NMN) and separately

of the fluxes obtained from the experimental and from the

simulation profile were used to compare the correlation

between experimental and computational predictions. For the

metabolites, the correlation was found to be +1, and for
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enzymatic reactions, it was found to be +0.86, suggesting that

the model is consistent with experimental data. Utilisation of

NMN through NMNAT1 (3) is seen to be the main route of

NAD biosynthesis in the liver (Figure 1B). Further time-course

analysis was performed on the NADnet, and the NAD time

course was plotted (Figure 1C) and compared against

experimentally determined time course after labelled NAD

supplementation in a mouse model (9). The time course

profiles of NAD were in excellent agreement with that

reported in the Liu et al. model.
HCC patients exhibit heterogeneity in
their NAD profiles

Construction of personalised NADnet models
Our next goal was to build personalised NADnet models for

each HCC patient by integrating the transcriptomics data

available in the TCGA-LIHC cohort. First, we studied the

transcriptomic variation in the enzymes of the NADnet in 365

patients in the dataset. The fold change of each gene for a patient
TABLE 2 Steady-state concentration of metabolite and fluxes of reaction.

A) Steady-state metabolite concentrations B) Steady-state fluxes of reactions

Metabolite Concentration (mM) Reaction ID Flux (mM/s)

L-Tryptophan 1.60E + 01 J1 1.90E-03

L-Formyl-kynurenine 6.12E + 01 J2 1.90E - 03

O2 1.00E + 03 J3 1.90E - 03

Hydroxy-L-kynurenine 1.34E - 01 J4 1.90E - 03

NADPH 4.00E + 02 J5 1.90E - 03

Hydroxyanthranilate 6.06E - 07 J6 1.90E - 03

Quinolinate 6.70E - 01 J7 3.74E - 02

NaMN 3.28E + 00 J8 1.53E + 01

PRPP 1.00E + 03 J9 3.63E - 02

PPi 1.54E + 04 J10 1.11E - 03

NaAD 9.53E + 02 J11 1.59E - 02

NAD 2.15E + 04 J12 1.70E - 08

NMN 5.68E + 03 J13 1.98E - 11

ATP 1.00E + 03 J14 9.88E + 00

NH3 1.00E+02 J15 5.03E + 00

Glutamine 6.00E + 02 J16 3.72E - 01

NADP 1.59E + 01 J17 1.49E + 01

Nam 4.98E + 04 J18 4.81E - 12

ADPribose 1.70E - 05 J19 2.75E - 24

ADPriboseP 1.98E - 08 J20 4.81E - 12

L-Kynurenine 9.21E - 02 J22 3.55E - 02

Arginine_protein 1.00E + 03 re23 2.15E - 02

NR 4.12E - 10 re25 1.59E - 02

P 1.00E + 03 re26 1.54E + 01

R1P 5.00E + 01 re27 1.98E - 11

Na 1.00E + 01 re28 1.70E - 08
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sample was calculated by dividing the gene expression values of

tumour tissue by the mean gene expression value of the normal

liver tissues in the TCGA-LIHC cohort. Most of the NADnet

gene expressions in tumours were observed to be significantly

different from the normal tissue (Supplementary Tables 4, 5).

The distribution of log2FC gene expression values among the

NADnet genes was analysed, as shown in Supplementary

Figure 1A, and heterogeneity among patients is shown in

Figure 2A. To build personalised models, the fold change in

expression value of each gene was converted as an expression

factor (F1 - F22), which was further integrated into their

corresponding reaction of the pathway (by utilising gene-

protein-reaction association). As J1, J7, J8, J12, J13, J15, J16,

and J18 reactions are associated with multiple genes, a

cumulative sum of the fold change of genes associated with

each reaction was considered as expression factors. For example,

for the J1 reaction, the cumulative sum of TDO2, IDO1, and

IDO2 gene expression values was taken as the expression

factor (F1).

A distribution of expression factors, shown in Figure 2B,

clearly indicates high heterogeneity across the TCGA-LIHC

cohort for this model. The variation was seen to be the highest

for F7 and F8 (NMN adenylyltransferase), F15 (Mono

ADPribosyltransferase), F1 (Tryptophan 2,3- dioxygenase),

F18 (5’-Nucleotidase), F16 (NAD+ pyrophosphatase), F12

(NAD+ glycohydrolase), F13 (NAD(P)+ nucleosidase), and F22

(Nicotinate phosphoribosyltransferase) reactions (refer to

Supplementary Table 6). The observed gene expression

variations also suggest that there is likely to be variation in the

reaction flux and the metabolite levels across different patients in

the cohort (Supplementary Figure S1A and Supplementary

Table 7). The mutation frequencies of the genes related to

NADnet were also obtained and analysed using the cBioPortal.

The most frequent of them, which was in the PARP1 gene, was

seen to occur only in ~1% of the patients, while the rest of them

were mutated in less than 1% of the patients (Supplementary

Figure S2), clearly indicating that alterations in the NAD

biosynthesis network are because of alteration in gene

expression values, and not because of mutations.

Personalised NADnet models indicate high
patient heterogeneity in the dataset

The previous analysis (Supplementary Figure 1) reflected that

the alterations in NADnet profile in HCC could be attributed to

variations in gene expression of the associated enzymes and also

that there was no indication of any significant alteration in

enzyme kinetics (Km, Kcat). To construct personalised models

for each HCC patient, the corresponding gene expression data was

integrated into the base liver NADnet as a surrogate measure of the

enzyme abundance. Kinetic simulations and steady-state analysis

of each personalised model were performed. Steady-state analysis

was performed for all the models using different resolution

thresholds. With the default COPASI resolution of 1E-09, we
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obtained 39 models with stable states. When the resolution

threshold was lowered to 1E-03, we got 168 models obtaining

stable states. With 1E-01 resolution threshold, we obtained 326

models. Considering the accuracy of defining a steady state and

the number of models obtaining steady states, we used 1E-03 as

the final resolution threshold. After steady-state analysis with the

resolution threshold of 1E-03, 168 models out of 365 models were

found to reach a stable state. As F-factors were the only difference

among all the personalised models, the distribution of F-factors

was compared between both the models, stable (models which

obtained a stable state) and unstable (models which did not obtain

a stable state) (refer to Supplementary Figure S1B and

Supplementary Table 7). The unstable models had a significant

difference in the values of F1, F2, F3, F12, F13, F14, F17, and F22

as compared to the stable models. Also, most of the F-factors

distributions of the unstable models had a higher mean compared

to the stable models. Notably, rate limiting reactions of the three

routes of NAD synthesis, i.e., F1, F17, and F22, are significantly

different and have higher values in the unstable models compared

to stable models. Further, the NAD-consuming reactions F13 and

F14 are also significantly higher in unstable models. Only the

stable models are included for further analysis. Further, fold

change values of each metabolite and reaction flux were

calculated by dividing their respective steady-state values by the

corresponding values in the NL model for the stable models. In

the distribution of log2FC steady-state metabolites among stable

models, shown in Figure 2C, all metabolites, except NADP, show

high variance, clearly indicating high heterogeneity at the

metabolite level as well (Supplementary Table 8).

A comparison of the steady-state concentrations of

metabolites and the reaction fluxes in the pathway of individual

HCC patients with that of NL revealed that the patients could be

classified into three groups: (a) the pathway, on the whole, is

downregulated, and the NAD pool is low (NAD_low), (b) the

pathway, on the whole, is upregulated and the NAD level is high

(NAD_high) and (c) the pathway does not show any significant

change with respect to NL (NAD_No_change) (Figures 2D, E).

The analysis clearly indicated that (a) the kynurenine pathway

(Route I) was observed to be significantly downregulated or

unchanged [J1, J2, J3, J4, J5, and J6] in all except six patients.

(b) biosynthesis of NAD fromNA (Route II) - [J22, J9, and J7] was

found to be upregulated in one subset and downregulated in

another subset of patients, while it is unchanged in all others (c)

the salvage route of NAD biosynthesis (Route III) - [J18, J19, and

J20] was also found to be upregulated in a subset of patients and

downregulated in the rest (Figure 2D). These changes put together

result in an accumulation of Nam in most patients. (d)

Interestingly Route II and Route III are not upregulated

together in any given patient (in one sub-subset of patients,

Route II is upregulated, while in another Route III is

upregulated), suggesting that upregulation of NAD biosynthesis

occurs through different routes. Hierarchical clustering analysis of

the fluxes and metabolites led to the identification of 4 clusters
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FIGURE 2

HCC patients exhibit heterogeneity in their NAD profiles. (A) Heatmap of NADnet genes log2FC values in tumour tissue calculated with respect to
the normal tissue, rows correspond to genes (n = 29) and columns correspond to patients (n = 371). The red colour represents the upregulation
of gene expression in tumour tissue compared to the normal tissue (log2FC ≥ +1), the blue colour represents a downregulation of gene
expression in tumour tissue compared to the normal tissue (log2FC ≤ -1), yellow colour represents no change of gene expression in tumour
tissue compared to the normal tissue (-1 < log2FC < +1). Rows and columns are arranged based on the complete hierarchical clustering
method. Annotations on the top of the heatmap are Stage, Grade, Gender, and Vital status (refer to the key in the image for more details).
(B) Violin plot of log2 F-factor values of NADnet model. The X-axis shows the F-factors and the Y-axis shows the log2 (fold change) values.
(C) Violin plot of log2FC values of NADnet metabolites. The X-axis shows the Genes, and the Y-axis shows the log2 (fold change) values.
Metabolites are arranged according to the routes mentioned in Figure 1A. (D) Heatmap of reaction Fluxes obtained after steady-state analysis,
rows correspond to reaction flux (n = 21), and columns correspond to patients (n = 168). The red colour represents an increase in flux
compared to the base model, the blue colour represents a decrease in flux compared to the base model, and the yellow colour represents no
change in flux compared to the base model. Rows and columns are arranged based on the complete hierarchical clustering method.
Annotations on the top of the heatmap are Stage, Grade, Gender, and Vital status (refer to the key in the image for more details). (E) Heatmap of
Metabolites obtained after steady-state analysis, rows correspond to metabolites and columns correspond to patients (n=168). The red colour
represents an increase in the concentration of metabolite compared to the base model, the blue colour represents a decrease in the
concentration of metabolite compared to the base model, yellow colour represents no change in concentration of metabolite compared to the
base model. Rows and columns are arranged based on the complete hierarchical clustering method. Annotations on the top of the heatmap are
Stage, Grade, Gender, and Vital status (refer to the key in the image for more details).
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among the genes, largely corresponding to the route of NAD

synthesis and utilisation, the fluxes, and metabolites among each

route correlating positively within the same route (Supplementary

Figures S1C, S1D).
NAPRT levels are suggestive of NAD
biosynthetic status

A steady-state concentration of a metabolite depends not

only on the enzyme concentration but also on various other

parameters such as the concentration of the input metabolite for

the given reaction, Km, and Kcat of the enzymatic step, as well as

on any feedback or feedforward loops for the given reaction.

Therefore, metabolite abundance depends on the gene

expression of the enzyme, metabolite inputs into the system,

product metabolites, and the kinetics of the enzyme. The extent

of correlation between the gene expression of all NADnet genes

and metabolites obtained after steady-state analysis was

estimated for all patients in the TCGA-LIHC cohort using the

Pearson correlation method (Figure 3A). Further, NAPRT was

seen to have the highest correlation, which was statistically

significant. The correlation values for all genes and

metabolites, along with the statistical significance values [p-

value and rho(r2)], are given in Supplementary Table 9. This

study clearly demonstrated that NAD steady-state levels in a cell

are correlated to the NAPRT gene expression (r2 = 0.92)

(Figure 3B), and therefore, NAPRT gene expression can be

used as a readout for NAD biosynthesis in the cell. As NAPRT

levels are indicative of NAD levels, all the patients can be

grouped based on NAPRT levels into three groups a)

NAPRT_Up group, where NAD levels are high as compared

to normal liver, b) NAPRT_Down group, where NAD levels are

low as compared to normal liver, and c) NAPRT_No_change

group, where NAD levels are comparable with the normal liver

(Figures 3C, D). The analysis also clearly shows that Route II is

the critical determinant of NAD status in HCC patients.
NAPRT is a control point in NADnet

Our next goal was to identify reactions that wielded the

highest control on the NADnet, so as (a) to understand how the

pathway dynamics are controlled and (b) to explore possible

intervention points to manipulate the pathway. Further, it was of

interest to investigate if the pathway control points varied

significantly in different individuals in the cohort. Although

the overall topology of the network remains the same, the

weights associated with nodes (metabolites) and edges

(reactions) change based on the gene expression patterns in

different individuals, leading to the possibility of altering the

control structures. To address this, the individual patient-wise

kinetic models were used, and a parameter sensitivity analysis
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was performed on each of them using CoRC (refer to methods

section parameter sensitivity analysis) and those reactions (and

their corresponding genes) that had the highest influence on

NAD levels were identified (Figure 4 and Supplementary Figure

S3). Each model parameter sensitivity was calculated as a

percentage change from the unaltered model, and models

showing greater than one percent are concerned as altered

models. If any parameter had greater than +1 percent change,

it was taken that it positively influences the metabolite

concentrations, whereas parameters with less than -1 percent

have a negative influence on the metabolite concentrations. F22

(NAPRT, (Nicotinate phosphoribosyltransferase)) was observed

to have a positive influence on NaAD, NAD, and Nam

metabolites, and F22 had a negative influence on ADPriboseP

across all patients in the cohort. Therefore, an increase in the

gene expression of the NAPRT gene will lead to enhanced levels

of the NaAD, NAD, and Nam metabolites. F22 has a positive

influence on NaMN, NMN, and NR in only a subset of patients.

F11 (NAD+ Kinase) showed a negative influence on NAD in

only a subset of patients but was not a control point in other

patients. F1 (Tryptophan 2,3 dioxygenase) has a positive

influence on the de novo pathway metabolites across all the

patients in the cohort (Figure 4 and Supplementary Figure S3).

F1 is known to be the rate-limiting step of the de novo pathway

(15), and the same was observed in our analysis. Further, even in

the base model, F1, F17 and F22 were identified as the key factors

controlling metabolite concentrations of their respective routes

(Supplementary Figure S3).
Survival analysis suggests potential
benefits of NAD supplementation in
NAPRT down subgroup

With the previous analysis, we identified NAPRT to be an

indicator of NAD levels. We were interested in testing if there

was any variation in survival in the groups based on NAPRT

levels. For this, we performed a univariate cox-regression

analysis using the predicted NAPRT level of individuals in the

TCGA-LIHC cohort and calculated the extent of association of

NAPRT level with HCC progression. Patients were divided into

three groups based on NAPRT levels, NAPRT_Down (log2FC ≤

-1), NAPRT_No_change (-1 < log2FC < +1) and NAPRT_Up (

log2FC ≥ +1) (Figure 3D). A Kaplan-Meier analysis was

performed, and a log-rank test was used to determine

significant differences in the overall disease progression in all

group pairs. We first tested if NAPRT levels by themselves have

any prognostic value, but the correlation with the risk of patient

mortality was non-significant when compared between NAPRT

UP and Down subgroups (p-value = 0.407 and HR (Up) = 0.783)

(Supplementary Table 10), but NAPRT Down subgroup was

correlated significantly with patient mortality when compared

with NAPRT No_change subgroup (p-value = 0.0158 and HR
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(No_change) = 0.596) (Figure 5A). NAMPT is known to be a

poor prognosis marker and a known drug target for the NAD

pathway in many cancers, and we tested if the levels of this gene

had any prognostic value (49). Here too, we found the

correlation with the risk of mortality to be non-significant

(p-value = 0.451, HR (No_change) = 0.854) (Figure 5B).

Clearly, neither NAPRT nor NAMPT did not have any

survival prognosis by itself. We then tested if pairs of groups

with different NAPRT and NAMPT statuses exhibited any

survival difference. In total, six groups were tested (Figure 5).

NAMPT did not have any upregulated patients in the TCGA-

LIHC cohort; also, Route III was downregulated in most of the

patients. Upon Kaplan-Meier analysis, we found that the

NAPRT_NAMPT Down_Down group has a significantly

poorer prognosis than other groups (Figures 5C, D;

Supplementary Table 10). This suggests that, in the
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NAPRT_NAMPT Down_down group, the prognosis could be

improved by NAD supplementation to improve survival.
Discussion

Nicotinamide adenine dinucleotide (NAD), being an

important cofactor in various biochemical reactions, plays a

pivotal role in enabling and governing essential cellular

activities. The levels of NAD are used by the cell as sensors for

deciding what metabolic state it attains. A systems ’

understanding of the pathways involved in NAD biosynthesis

that provide quantitative insights is therefore important. The

enzymes in the pathway have been well studied individually, and

a wealth of biochemical information is available on each of them,

enabling the reconstruction of a systems model of a NAD
B

C D
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FIGURE 3

NAPRT alone is sufficient to indicate the NAD status in patients. (A) Correlogram between gene log2FC values and metabolite log2FC values.
Rows represent metabolites and columns represent genes. The red colour corresponds to positive correlation, the blue colour corresponds to
negative correlation, the area covered in the square corresponds to the absolute value of the correlation, and the black squares correspond to
significant correlations (p-value < 0.05). Rows and columns are arranged based on the routes mentioned in Figure 1A. (B) Correlation plot
showing the NAPRT and NAD log2FC values. The X-axis represents NAPRT log2FC values and the Y-axis represents NAD log2FC values. The
points are coloured based on the NAD status of the samples. Red points indicate NAD up samples, blue points indicate NAD no change
samples, and green points indicate NAD down samples. (n = 168) (C) Above panel shows the heatmap of NAD log2FC values obtained after
steady-state analysis, rows correspond to NAD groups and columns correspond to patients (n = 168). The Red colour represents up NAD levels
(log2FC ≥ +1), blue colour represents NAPRT down levels (log2FC ≤ -1), yellow colour represents NAD no change levels (-1 < log2FC < +1). The
below panel shows the heatmap of NAPRT log2FC values in tumour tissue calculated with respect to the normal tissue, rows correspond to
NAPRT groups and columns correspond to patients (n = 371). The Red colour represents up NAPRT levels (log2FC ≥ +1), the blue colour
represents NAPRT down levels (log2FC ≤ -1), yellow colour represents NAPRT no change levels (-1 < log2FC < +1). Columns are arranged based
on the complete hierarchical clustering method. Annotations on the top of the heatmap are Stage, Grade, Gender, and Vital status (refer to the
key in the image for more details). (D) Schematic showing the division of patients into three groups based on NAPRT gene levels.
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biosynthetic network (NADnet). We then use a kinetic modelling

approach to study if there is variation in the NAD levels in HCC

patients. Using NADnet as a base model, we then construct

personalised models for each patient by integrating with patient-

specific gene expression values for all the enzymes in the

network. While normal liver cells are known to use de novo

NAD biosynthetic routes to maintain intracellular NAD levels,

our model suggests that cancer cells are primarily dependent on

the Preiss-Handler pathway (Route II in NADnet). NAPRT being

a rate-limiting step of this route, is clearly seen to have altered

gene expression in several HCC patients. While most studies

provide population or cohort-level insights, our modelling

approach of constructing personalised models has a unique

advantage of providing insights at the individual patient level.

The effect of NAD on disease progression presents a complex

picture. The analysis carried out here by studying perturbations at

a patient level provides insights leading to sub-grouping. This, in

turn, serves as a framework to resolve some of the inconsistencies

evident in the literature. A subgroup of HCC patients with high

NAD biosynthetic status responds differently to the subgroup that

has low NAD biosynthetic status. While the first subgroup can be

envisaged to benefit from an inhibitor of NAD biosynthesis, the

latter subgroup will benefit from supplementation. Enhanced

levels of NAD have been shown to support tumour

proliferation. Inhibition of the pathway, specifically with

NAMPT and NAPRT as drug targets, has been suggested as a

strategy for reducing NAD levels (26). Both NAPRT and NAMPT
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are critical enzymes of two different routes of NAD synthesis. A

combination of both gives a better representation of NAD levels.

A group with NAMPT and NAPRT (Down_Down) group, has

low levels of NAD, and they require supplementation; on the

other hand, a group with NAMPT Down and other combinations

of NAPRT (except NAPRT Down) can still maintain NAD levels.

Our study shows that identifying the precise subgroup is essential

for determining whether NAD inhibit ion or NAD

supplementation would be beneficial.

Supplementation using readily available vitamin B3

supplements is an easy intervention to achieve if the subgroup

is correctly identified. There are multiple lines of evidence in

support of the supplementation. First, inhibition of NAD

production has been associated with higher levels of DNA

damage and triggering of hepatocarcinogenesis (28). Boosting

NAD+ levels with supplements has been shown to have

prophylactic effects in a genetically engineered mouse model

of unconventional prefoldin RPB5 interactor (URI) used to

study the mechanism of HCC development (28, 50). Second,

in some other cancers, such as colorectal cancer, NAMPT and

NAPRT high expression are seen to be associated with poor

prognosis for the patient (51). Third, NAD levels were reported

to be declining with age as well as implicated in a few liver

diseases, including NAFLD (30). Due to this, several studies have

proposed supplementation with NAD, and many NAD

precursors are tested as supplements to increase NAD levels

(52, 53). Among the precursors, Na was reported to be one of the
B

C D

A

FIGURE 4

NAPRT is the control point in the NAD biosynthesis pathway in HCC patients. Correlogram between Metabolites and F-factors summarising the
extent of patients affected with changes in the parameter values by -1 % in F-factors (A) by +1 % in F-factors (B) -1 % in K-constants (C), and
+1 % in K-constants (D). The X-axis represents the parameters, and the Y-axis represents the metabolites. The red colour represents an increase
in concentration and the blue colour represents a decrease in concentration. The area occupied by the coloured pie shows percentage of
stable models, with greater than 1 % change in the concentration due to the change in the parameter value, out of 168 stable models.
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best precursors with the least side effects and greater potential of

getting converted into NAD (54).

The reconstructed model has the following three major

limitations- (a) As the model has only biosynthesis reactions

but not all the utilisation reactions of NAD, the model fails to

capture the quantitative level of NAD in the cell, and (b) even

though NAD metabolism is known to have subcellular

compartmentalization of NAD pools both at the metabolite as

well as the enzyme level; the reconstructed model considers the

total NAD pool only, and there is no subcellular compartment in

the model and therefore it cannot capture intracellular

compartmental dynamics of NAD biosynthesis and (c) As
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metabolism is one of the most tightly regulated processes in

the cell, regulatory interactions i.e., transcription factors that

may govern the gene expression of enzymes of the NAD

biosynthesis pathway are not included here, and therefore the

effect of perturbation at transcription regulation cannot be

modelled directly here.

Nevertheless, the model is useful for understanding the

extent of variation in NAD biosynthesis at an individual

patient level. From the correlation analysis, it is evident that

the changes in gene expression are captured at the metabolite

level. NAPRT levels are found to indicate the NAD biosynthetic

status in the sample. Furthermore, NAPRT levels are regulated
B
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FIGURE 5

NAPRT_NAMPT Down_Down status corresponds to poorer survival. The panel on the top shows the distribution of patients into groups based
on the NAPRT and NAMPT gene expression status. Kaplan-Meier Overall survival curve for HCC patients classified based on NAPRT Down and
No_change groups (A) NAMPT Down and No_change groups (B), NAPRT_NAMPT Down_Down versus No_change_No_change groups (C), and
NAPRT_NAMPT Down_Down versus Down_No_change groups (D). HR and p-values reported in the figure panels are for the group
represented in blue colour.
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by MYC and TP53 transcription factors which are involved in

cell growth and proliferation. NAPRT is also involved in

immune and inflammation signalling (55).

In conclusion, we find high levels of heterogeneity in the NAD

levels in HCC patients, and NAPRT gene expression levels are

sufficient to indicate the NAD levels. Based on the NAPRT status,

HCC patients can be subtyped into three categories corresponding

to upregulation, no change, and downregulation of NAPRT with

respect to a healthy liver. The NAPRT_Down group, when

combined with NAMPT_Down, is seen to show poorer survival

as compared to a group of HCC patients where the levels of these

two enzymes are unaltered. Lower NAD levels correlate with

lower levels of NAPRT and suggest that supplementation of NAD

may be beneficial in this group of patients. Our study provides a

rationale, and a means to explore subgrouping in HCC patients,

paving the way for precision diagnosis and intervention.
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