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Introduction: Efforts to develop biomarker-targeted anti-cancer therapies

have progressed rapidly in recent years. With efforts to expedite regulatory

reviews of promising therapies, several targeted cancer therapies have been

granted accelerated approval on the basis of evidence acquired in single-arm

phase II clinical trials. And yet, in the absence of randomization, patient

prognosis for progression-free survival and overall survival may not have

been studied under standard of care chemotherapies for emerging

biomarker subpopulations prior to the submission of an accelerated approval

application. Historical control rates used to design and evaluate emerging

targeted therapies often arise as population averages, lacking specificity to the

targeted genetic or immunophenotypic profile. Thus, historical trial results are

inherently limited for inferring the potential “comparative efficacy” of novel

targeted therapies. Consequently, randomization may be unavoidable in this

setting. Innovations in design methodology are needed, however, to enable

efficient implementation of randomized trials for agents that target biomarker

subpopulations.

Methods: This article proposes three randomized designs for early phase

biomarker-guided oncology clinical trials. Each design utilizes the optimal

efficiency predictive probability method to monitor multiple biomarker

subpopulations for futility. Only designs with type I error between 0.05 and

0.1 and power of at least 0.8 were considered when selecting an optimal

efficiency design from among the candidate designs formed by different

combinations of posterior and predictive threshold. A simulation study

motivated by the results reported in a recent clinical trial studying

atezolizumab treatment in patients with locally advanced or metastatic

urothelial carcinoma is used to evaluate the operating characteristics of the

various designs.
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Results: Out of a maximum of 300 total patients, we find that the enrichment

design has an average total sample size under the null of 101.0 and a total

average sample size under the alternative of 218.0, as compared to 144.8 and

213.8 under the null and alternative, respectively, for the stratified control arm

design. The pooled control arm design enrolled a total of 113.2 patients under

the null and 159.6 under the alternative, out of a maximum of 200. These

average sample sizes that are 23-48% smaller under the alternative and 47-64%

smaller under the null, as compared to the realized sample size of 310 patients

in the phase II study of atezolizumab.

Discussion: Our findings suggest that potentially smaller phase II trials to those

used in practice can be designed using randomization and futility stopping to

efficiently obtain more information about both the treatment and control

groups prior to phase III study.
KEYWORDS

predictive probability, oncology, clinical trial, phase II, randomized, futility
monitoring, two-sample, Bayesian
Introduction

Over the last decade the focus of drug discovery in oncology

has shifted away from cytotoxic treatments and toward

biomarker-targeted agents. For these types of drugs, such as

small molecule inhibitors, antibody drug conjugates, immune

checkpoint inhibitors, and monoclonal antibodies, the

traditional approach to clinical trial design is not always

appropriate. Traditionally, new chemotherapeutic treatments

were evaluated in phase I dose-escalation trials to assess safety

and identify the maximum tolerated dose. Next, the maximum

tolerated dose would be tested for preliminary efficacy in single-

arm phase II trials, with a historical control rate forming the

basis of comparison. Finally, successful drugs would proceed to

phase III, where randomized trials would be used to directly

compare efficacy against a standard of care treatment. But the

historical control rates used in single-arm phase II studies may

not be valid in the context of biomarker-targeted agents.

Historical control rates used to design and evaluate emerging

targeted therapies often arise as population averages, lacking

specificity to the targeted genetic or immunophenotypic profile

of interest. Patient prognosis for objective response, progression-

free survival, and overall survival may not have been studied

under standard of care chemotherapies for emerging biomarker

subpopulations prior to phase III. Other factors, such as patient

population drift or stage shift, add heterogeneity and bias (1).

Consequently, expectations for response and survival for the

current biomarker delineated patient populations may differ

meaningfully from population averages observed in prior

studies of current standard of care therapies. Additionally, in
02
the specific context of biomarker-targeted agents, heterogeneity

of response to standard of care treatments based on the

biomarker of interest is also possible, so that the historical

control rate may represent an averaging of effect across levels

of the biomarker of interest. If the biomarker of interest is

prognostic, then response to standard of care treatment in the

biomarker-targeted subgroup will differ from the population-

averaged response regardless of the treatment being given (2).

Consider the recent clinical trial of atezolizumab for use in

metastatic urothelial carcinoma (NCT01375842). Atezolizumab

is a programmed death-ligand 1 (PD-L1) blocking monoclonal

antibody that was given accelerated approval by the U.S. Food

and Drug Administration in May 2016 for the treatment of

patients with locally advanced or metastatic urothelial

carcinoma who had disease progression following platinum-

containing chemotherapy. The approval was based on the results

of a single-arm phase II study in 310 patients (3). The phase II

study used a hierarchical fixed-sequence testing procedure to test

increasingly broad subgroups of patients based on PD-L1 status,

and found overall response rates of 26% (95% CI: 18-36), 18%

(95% CI: 13-24), and 15% (95% CI 11-19) in patients with ≥5%

PD-L1-positive immune cells (IC2/3 subgroup), in patients with

≥1% PD-L1-positive immune cells (IC1/2/3 subgroup), and in

all patients, respectively (3). All three rates exceeded the

historical control rate of 10%. Then, in March 2021,

the approval in this indication was voluntarily withdrawn by

the sponsor following negative results from a randomized phase

III study (NCT02302807) (4). In the phase III study, 931 patients

were randomly assigned to receive atezolizumab or

chemotherapy in a 1:1 ratio, and the same hierarchical fixed-
frontiersin.org
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sequence testing procedure as in the phase II study was used.

The phase III study found that overall survival did not differ

significantly between the atezolizumab and chemotherapy

groups of the IC2/3 subgroup (median survival 11.1 months

[95% CI: 8.6-15.5] versus 10.6 months [95% CI: 8.4-12.2]), so no

further testing was conducted for the primary endpoint (4).

Further analyses revealed that while the response rates to

atezolizumab were comparable to those seen in the phase II

study, the response rates to chemotherapy were much higher

than the historical control rate of 10%. The overall response rates

to chemotherapy were 21.6% (95% CI: 14.5-30.2), 14.7% (95%

CI: 10.9-19.2), and 13.4% (95% CI: 10.5-16.9) for the IC2/3

subgroup, IC1/2/3 subgroup, and all patients, respectively. The

overall response rates to atezolizumab were 23% (95% CI: 15.6-

31.9), 14.1% (95% CI: 10.4-18.5), and 13.4% (95% CI: 10.5-16.9)

for the IC2/3 subgroup, IC1/2/3 subgroup, and all patients,

respectively. These results indicate that PD-L1 status is a

prognostic biomarker, with higher response rates to both the

standard of care chemotherapies that comprised the control arm

and to atezolizumab treatment in the biomarker-enriched

subgroup (2).

The example of atezolizumab in metastatic urothelial

carcinoma is one of many. Between 2015 and 2021, the U.S.

Food and Drug Administration (FDA) approved six antibodies

against PD-L1 or programmed death 1 (PD-1) for 75 cancer

indications, and 35 of these approvals were accelerated based on

early phase trial results (5). This extremely rapid pace of

development within a single drug class was unprecedented,

and led to ten such “dangling” accelerated approvals, which

are approved indications for which the confirmatory trial

showed no benefit, yet the drug remained on the market for

that indication (5). Other voluntary withdrawals following

confirmatory trial results include durvalumab treatment for

metastatic urothelial carcinoma, and nivolumab and

pembrolizumab treatments for metastatic small-cell lung

cancer (5–9). These failed confirmatory phase III trials

highlight both the need for rapid development of new

treatments in patient populations with few therapeutic options,

and the need for innovations that facilitate more rigorous

designs of phase II trials for targeted therapies. To overcome

many issues, including those associated with the use of historical

control rates, randomization may be unavoidable in this setting.

Arguments for the use of randomization in the phase II setting

have been prominent for over a decade (10–13). In addition to

addressing the inconvenient reality that historical control rates

often used in single arm studies may have limited value for novel

targets, randomized phase II trials can also overcome issues of

selection bias and patient heterogeneity. Randomized designs

that incorporate futility stopping can provide information on

current control rates to the treatment under study while also

stopping inefficacious treatments early. The FDA’s Project

Frontrunner (https://www.fda.gov/about-fda/oncology-center-

excellence/project-frontrunner) encourages the use of
Frontiers in Oncology 03
randomized controlled trials earlier in the drug development

process, especially if accelerated approval is one of the trial goals.

This article proposes three different biomarker-guided

randomized phase II trial designs with optimal efficiency

predictive probability monitoring for futility. Using the trial of

atezolizumab for metastatic urothelial carcinoma as a case study

and motivating example, we compare designs based on their

traditional statistical properties of type I error and power

through simulation study. The designs are also evaluated based

on the number of patients enrolled, the number of patients

treated, the number of patients who undergo biomarker testing,

and accurate estimation of the response rates of interest. Our

findings suggest that potentially smaller phase II trials to those

used in practice can be designed using randomization and

futility stopping to efficiently obtain more information about

both the treatment and control groups prior to phase III study.
Materials and methods

This paper focuses on the setting of a two-sample

randomized trial with a binary outcome. We will refer to the

binary outcome as “response” and use “response rate” to

describe the probability of a response throughout the article,

in line with the motivating example of the phase II study of

atezolizumab in metastatic urothelial carcinoma, which

estimated response rates among biomarker subpopulations and

compared to the historical average in the primary analysis. Any

hypothetical measure of efficacy, however, such as progression-

free survival, could be used with the design methodology

proposed. Each patient enrolled in the trial is denoted by i,

and they either have a response such that xi=1 or do not have a

response such that xi=0. Then X =on
i=1xi represents the total

number of responses out of n currently observed patients, up to a

maximum sample size of N total patients. The probability of

response is denoted p , where p0 represents the null response rate

under the standard of care treatment and p1 represents the

alternative response rate under the experimental treatment. We

wish to test the null hypothesis H0:p1≤p0 versus the alternative

hypothesis H1:p1>p0.

The Bayesian statistical paradigm is based on a mathematical

approach to combine prior distributions, which reflect prior

beliefs about parameters such as the true response rate, with

observed data (e.g., the observed number of responses in a given

trial) to obtain posterior distributions of the model parameters.

Here we assume a beta-binomial model, based on the

computational ease and its popularity for use in the context of

sequential trial monitoring. The prior distribution of the

response rate has a beta distribution Beta(a0, b0). We

specifically use a Beta(0.5, 0.5) prior distribution, which

reflects the effective information of a single patient’s

observation. We also perform sensitivity analyses using Beta

(1, 1), Beta(0, 0), Beta(2, 2), Beta(0.75, 0.25), and Beta(0.25, 0.75)
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priors, to examine the variation in operating characteristics

across a range of priors. Our data X follow a binomial

distribution bin(n, p). We combine the likelihood function for

the observed data Lx(p)∝px(1−p)n−x with the prior to obtain the

posterior distribution of the response rate, which follows the beta

distribution p|x~Beta(a0+x, b0+n−x). Posterior probabilities

represent the probability that the experimental response rate

exceeds the null response rate based on the data accrued so far in

the trial. Posterior decision can be obtained by applying a

clinically relevant threshold, q, to the posterior distribution.

We would declare a treatment efficacious if the posterior

probability exceeded the posterior threshold, i.e. Pr(p>p0|X)>q.
Bayesian predictive probability monitoring has been a

popular approach for designing clinical trials with sequential

futility monitoring (14–17). It is a natural fit for this type of trial,

as it allows for flexibility in both the timing and the number of

looks. In addition, predictive probability is an intuitive interim

monitoring strategy because it tells the investigator what the

chances are of declaring the treatment efficacious at the end of

the trial if enrollment is continued to the maximum planned

sample size. At any given interim look, the posterior predictive

distribution of the number of future responses X* in the

remaining n*=N−n future patients follows a beta-binomial

distribution Beta−binomial(n*, a0+x, b0+n−x). The posterior

predictive probability (PPP) represents the probability that the

experimental treatment will be declared efficacious at the end of

the trial when full enrollment is reached, conditional

on the current ly observed data and the specified

priors. The posterior predictive probability is calculated as PP =

on*
x*=0 Pr (X

* = x*∣x)� I( Pr (p > p0jX,  X* = x*) > q).
A second predictive threshold q* is defined, and we would stop

the trial early for futility if the predictive probability dropped

below the given threshold, i.e. PPP<q* . Predictive thresholds

closer to 0 lead to less frequent stopping for futility whereas

predictive thresholds closer to 1 lead to frequent stopping in the

absence of almost certain probability of success.

When designing a trial with sequential predictive probability

monitoring for futility, it is essential to ensure the trial conforms to

traditional standards for type I error control and power. To do so,

wemust examine the operating characteristics of a variety of designs

based on combinations of the posterior threshold q and the

predictive threshold q* and select a single design for use in the

trial. In earlier work, we proposed two optimization criteria to help

select from among a variety of designs in the setting of a one-sample

study (18). Here we focus on the optimal efficiency design, defined

as the combination of posterior and predictive thresholds with

minimal average sample size under the null and maximal average

sample size under the alternative, subject to constraints on the type I

error and power, and extend the approach to the setting of a two-

sample study for targeted therapy.

The simulation study is based on the phase II trial of

atezolizumab in metastatic urothelial carcinoma. There are

three independent biomarker subgroups based on the
Frontiers in Oncology 04
percentage of PD-L1-expressing immune cells: IC0 (<1%), IC1

(≥1% and<5%), and IC2/3 (≥5%). The subgroups have equal

prevalence of 33% in the study population. We consider a

standard of care arm denoted “chemotherapy” and an

experimental treatment arm denoted “atezolizumab”. The null

response rate was based on the stated historical control rate of

10% (3). As no specific alternative was specified, we examine

subtype-specific alternative rates of 10%, 20%, and 30% in the

IC0, IC1, and IC2/3 subgroups, respectively, in line with what we

expect for a predictive biomarker, for which the treatment effect

differs according to levels of the biomarker of interest (2). We

further investigate a simulation setting where the treatment

effect is a homogeneous 30% across the three biomarker

subgroups. Interim looks for futility are planned after every 10

patients. A random number of responses was generated for every

10 patients up to the maximum sample size, based on a binomial

distribution with the setting-specific response rate. 1000

simulated datasets were generated under the null and 1000

simulated datasets were generated under the alternative. We

considered posterior thresholds q of 0.7, 0.74, 0.78, 0.82, 0.86,

0.9, 0.92, 0.93, 0.94, 0.95, 0.96, 0.97, 0.98, and 0.99, and

predictive thresholds q* of 0.05, 0.1, 0.15, and 0.2. For each

combination of posterior and predictive threshold, the predictive

probability that the experimental treatment arm response rate

exceeds the standard of care arm response rate at the end of the

trial is calculated at each interim look until it either fell below the

given predictive threshold or the end of the trial was reached,

whichever came first. If the end of the trial was reached, the trial

was considered positive if the predictive probability was greater

than the given posterior threshold and negative otherwise. If

halted early for futility, the trial was considered negative. We

propose and compare three strategies for conducting

randomized two-sample biomarker-guided designs that use

optimal efficiency predictive probability monitoring for futility:

a pooled control arm design, a stratified control arm design, and

an enrichment design.

The pooled control arm design is depicted in Figure 1A. In

this design, patients are randomized to atezolizumab or

chemotherapy in a 3:1 ratio. PD-L1 testing is performed only

on patients randomized to receive atezolizumab. The

atezolizumab arm is separated into three biomarker-specific

treatment subgroups. This design has a maximum sample size

of 200: n=50 patients for the pooled chemotherapy control arm

and n=50 for each PD-L1 biomarker-specific atezolizumab arm.

The stratified control arm design is depicted in Figure 1B. In

this design, PD-L1 testing is conducted on all patients. Then,

within each subgroup, patients are randomized to atezolizumab

or chemotherapy in a 1:1 ratio. This design has a maximum

sample size of 300: n=50 for each PD-L1 biomarker-specific

chemotherapy and atezolizumab arm.

The enrichment design is depicted in Figure 1C. This design

is equivalent to the pooled design at stage 1. If all subgroups stop

for futility in stage 1, then the trial is stopped. Otherwise, at the
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end of stage 1, the subgroup with the highest posterior predictive

probability, subject to some lower bound, continues to stage 2.

The lower bound was selected as the 80th percentile of

maximum posterior predictive probability across the three

subgroups at stage 1 under the null. This percentile was used

to target a 20% rate of moving a subgroup forward when all of

the subgroups are truly null. This higher rate of stage 1 type I

error is consistent with the phase objective, which emphasizes
Frontiers in Oncology 05
acquiring more data on safety and efficacy for promising

treatments in early phase trial designs of this type. The actual

type I error at stage 1 was calculated as the proportion of

simulated trials under the global null, i.e. if all three

biomarker-specific subgroups had a true response rate of 10%,

in which the subgroup with maximum posterior predictive

probability exceeded the lower bound and did not stop early

for futility, so was selected to continue to stage 2. The power at
B

C

A

FIGURE 1

Diagrams of the (A) pooled control arm, (B) stratified control arm, and (C) enrichment designs.
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stage 1 was calculated as the proportion of simulated trials under

the alternative in which the IC2/3 subgroup was selected as

having the maximum posterior predictive probability, subject to

the lower bound, and did not stop early for futility. In stage 2,

PD-L1 testing is conducted on all patients. Only those patients

belonging to the subgroup selected in stage 1 are enrolled on the

trial and randomized 1:1 to atezolizumab or chemotherapy. The

stage 1 treatment group results for the selected subgroup, if any,

are carried forward into stage 2. An additional n=100

biomarker-specific patients are enrolled at stage 2, for a total

maximum sample size of 300.

For the pooled and stratified designs, the type I error was

calibrated in the IC0 subgroup null setting as the proportion of

simulated trials in which the IC0 subgroup was declared positive

as compared to the control group. The power was calibrated in

the IC2/3 subgroup alternative setting as the proportion of

simulated trials in which the IC2/3 subgroup was declared

positive as compared to the control group. The IC1 subgroup

was considered an intermediate setting and no results were

calibrated based on this subgroup. For the enrichment design,

the type I error was calibrated based on the stage 2 results as the

proportion of simulated trials under the null in which the

selected subgroup, if any, was declared positive. The power

was calibrated based on the stage 2 results as the proportion of

simulated trials under the alternative in which the selected

subgroup, if any, was declared positive. The stage 2 calibration

occurs in fewer than 1000 simulated trials, as only the specific

trials in which a subgroup was selected to continue to stage 2

were used. The resulting design options were limited to those

that resulted in a type I error rate between 0.05 and 0.1 and a

power of at least 0.8. Then, the efficiency distance metric was

calculated as described in Zabor et al. (18) using total trial-level

sample sizes. The design with the minimal efficiency distance

metric was identified as the optimal design.

All results were generated using R software version 4.2.0 (19)

along with the ‘ppseq’ R package (20).
Results

The accuracy and efficiency results for all 56 possible

posterior and predictive threshold combinations are plotted in

Figure 2. Each point represents the combination of one posterior

threshold and one predictive threshold, and the orange diamond

on each plot indicates the design that was identified to have

optimal efficiency while maintaining type I error between 0.05

and 0.1 and with power of at least 0.8. For the enrichment

design, only threshold combinations that ever proceeded to stage

2 are plotted so there are only 36 points, as 20 threshold

combinations never resulted in designs that continued to stage

2. The optimal efficiency pooled control arm design had

posterior threshold 0.9 and predictive threshold 0.1, the

optimal efficiency stratified control arm design had posterior
Frontiers in Oncology 06
threshold 0.9 and predictive threshold 0.2, and the optimal

efficiency enrichment design had posterior threshold 0.96 and

predictive threshold 0.15. We see that the different threshold

combinations result in a wide range of results, some with low

power < 0.5 or high type I error > 0.2, and some with too low

average sample size under the alternative or too high average

sample size under the null. By applying the optimal efficiency

criteria, we are able to identify a design that seeks to maximize

sample size under the alternative and minimize sample size

under the null, within the pre-specified range of type I error and

minimum power.

The type I error and power for each biomarker-specific

subgroup under the pooled control arm and stratified control

arm designs, and the overall type I error and power for the

enrichment design, are presented in Table 1. We see that both

the pooled control arm and stratified control arm designs result

in reasonable power to detect an effect for the IC2/3 subgroup,

with slightly higher power of 0.82 in the stratified control arm

design as compared to 0.8 in the pooled control arm design. The

pooled control arm design and stratified control arm design both

have type I error of 0.07 for the IC2/3 subgroup. Both the pooled

control arm and stratified control arm designs have very low

power< 0.5 to detect the IC1 subgroup and< 0.1 to detect the IC0

subgroup. Only overall results are available for the enrichment

design, which results in a type I error and power of 0.09 and 0.73,

respectively, for stage 1. The type 1 error rate of 0.09 for stage 1

means that under the null 91% of simulated trials did not

proceed to stage 2; however, 4.2% proceeded to stage 2 with

the IC2/3 subgroup, 2.9% proceeded to stage 2 with the IC1

subgroup, and 1.9% proceeded to stage 2 with the IC0 subgroup.

The power of 0.73 for stage 1 means that under the alternative

73% of simulated trials proceeded to stage 2, and all of them did

so with the IC2/3 subgroup; the remaining 27% of simulated

trials did not proceed to stage 2. The overall type I error rate for

stage 2 of the enrichment design was 0.09 and the overall power

for stage 2 of the enrichment design was 0.86. Since the IC2/3

subgroup was exclusively carried forward to stage 2 of the

enrichment design under the alternative, this could also be

considered the power for the IC2/3 subgroup, and it exceeds

the power of 0.82 of the stratified control arm design and the

power of 0.8 of the pooled control arm design.

The resulting average sample sizes under the null and

alternative for each selected optimal efficiency design are

presented in Table 2. We can directly compare the total

sample sizes between the stratified control arm and

enrichment designs, which can each enroll a maximum of 300

patients. We find that the enrichment design has a lower average

total sample size under the null of 101.0 and a higher total

average sample size under the alternative of 218.0, as compared

to 144.8 and 213.8 under the null and alternative, respectively,

for the stratified control arm design. This occurs because the use

of the pooled control arm design at stage 1 combined with the

low stage 1 type 1 error rate and high stage 2 power means that
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the enrichment design frequently stops after stage 1 under the

null and frequently continues to full enrollment in stage 2 under

the alternative. The pooled control arm design enrolled a total of

113.2 patients under the null and 159.6 patients under the

alternative, out of a maximum of 200. The sample sizes of

patients treated with atezolizumab are directly comparable for

the pooled control arm and stratified control arm designs, which

can each treat a maximum of 150 patients with atezolizumab, 50

per biomarker subgroup. The pooled control arm design treated
Frontiers in Oncology 07
more patients with atezolizumab on average as compared to the

stratified control arm design, 78.2 and 111.7 under the null and

alternative, respectively, as compared to 72.4 and 106.9. The

enrichment design can treat a maximum of 200 patients with

atezolizumab across the two stages, and treats an average of 68.0

patients under the null and 137.0 patients under the alternative.

We find that there is minimal variation in operating

characteristics across the six prior distributions examined in

sensitivity analysis (Supplemental Table 1).
B. 1)

C. 1)

A. 1) A. 2)

B. 2)

C. 2)

FIGURE 2

Plots of design options for (A) the pooled control design, (B) the stratified control design, and (C) the enrichment design (stage 2 results only)
based on 1) accuracy defined as type I error by power and 2) efficiency defined as average total sample size under the null versus average total
sample size under the alternative.
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For the simulation setting where the treatment effect was

homogeneous across the biomarker subgroups, we find that both

the pooled control arm and stratified control arm designs

perform well, with consistent type I error, power, and sample

size across the three subgroups (Supplemental Tables 2 and 3).

The enrichment design, however, has low stage 1 power

(Supplemental Table 2). This is because there is no distinction

between the three biomarker subgroups with respect to which

should be the winning subgroup, so it is easy for the method to

make the “wrong” choice, as we defined power in this setting

based on a predictive biomarker as the proportion of simulated

trials under the alternative in which the IC2/3 subgroup was

selected as having the maximum posterior predictive probability,

subject to the lower bound, and did not stop early for futility.

However, the enrichment design performs well at stage 2, since

any subgroup selected to continue would have equal chance of

success in the second stage of the trial, given the homogeneous

true response rates (Supplemental Table 2).

The enrichment design requires testing the largest number

of patients, with 450 patients requiring PD-L1 testing if the

design proceeds to stage 2, whereas the pooled design only tests

150 patients and the stratified design tests 300 patients. The

pooled control arm and enrichment designs cannot address the

question of whether the biomarker is predictive of response to

the standard of care treatment, since they do not estimate

response rates separately within each biomarker subgroup,
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though the enrichment design can fully characterize the

response rate to standard of care treatment within the selected

stage 2 biomarker subgroup. Only the stratified control arm

design fully characterizes the response rates to standard of care

treatment within each biomarker subgroup, and can therefore

address the question of whether the biomarker is predictive of

response for both standard of care and targeted therapies.
Discussion

This article presented three different optimal efficiency

predictive probability designs for randomized biomarker-

guided oncology clinical trials. A simulation study was

conducted to demonstrate that posterior and predictive

thresholds can be selected to maintain appropriate levels of

type I error between 5% and 10% and power of at least 80% in all

three designs. This work was motivated by the case study of

atezolizumab for the treatment of patients with locally advanced

or metastatic urothelial carcinoma who had disease progression

following platinum-containing chemotherapy. In the phase II

trial that led to accelerated approval, 310 patients were enrolled

and treated. The trial did not include any futility stopping rules

and planned for a total sample size of 300 patients, expecting

about 100 patients in each biomarker subgroup. So in practice

the realized and expected sample sizes are broadly equivalent. By
TABLE 1 Type I error and power for each biomarker-specific subgroup under the pooled control arm and stratified control arm designs, and the
overall type I error and power for the enrichment design.

Pooled Stratified Enrichment

Stage 1 Stage 2

Type I error Power Type I error Power Type I error Power Type I error Power

IC0 0.05 0.05 0.05 0.08 – – – –

IC1 0.05 0.40 0.08 0.45 – – – –

IC2/3 0.07 0.80 0.07 0.82 – – – –

Overall – – – – 0.09 0.73 0.09 0.86
frontie
TABLE 2 Average sample size under the null (“Avg N Null”) and average sample size under the alternative (“Avg N Alt”) by design and treatment
subgroup.

Pooled Stratified Enrichment

Avg N Null Avg N Alt Avg N Null Avg N Alt Avg N Null Avg N Alt

Control 35.0 48.0 72.4 106.9 33.1 81.3

IC0 25.9 26.7 23.6 23.8 – –

IC1 26.3 38.8 24.4 37.5 – –

IC2/3 26.1 46.2 24.3 45.6 – –

Total Atezolizumab 78.2 111.7 72.4 106.9 68.0 137.0

Total Enrolled 113.2 159.6 144.8 213.8 101.0 218.0
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comparison, the three proposed designs, which incorporate

futility stopping and randomization, result in average phase II

sample sizes that are 23-48% smaller under the alternative and

47-64% smaller under the null, and therefore represent a more

efficient use of both human and financial resources.

At the same time, the three proposed designs provide

additional information about response rates to standard of

care treatment in the control arms, thus potentially avoiding

the pitfall of the atezolizumab trial, in which the historical

control rate used to show efficacy in the phase II trial proved

to be far below the actual response rate to standard of care

treatment in the biomarker-targeted subgroup of patients. The

stratified control arm design results in the most information,

allowing one to determine if the biomarker of interest is

predictive of response to either the standard of care treatment

or the experimental treatment or both. The enrichment design

only characterizes the response rate to the standard of care

treatment in the biomarker subgroup that is selected to continue

to stage 2. But both the pooled control arm design and stage 1 of

the enrichment design are superior to use of a historical control

rate, since the patient population of the control group is identical

to that of the treatment group in both timing and characteristics

as a result of randomization. So these designs not only have

lower average expected sample sizes than the 310 used in the

atezolizumab phase II trial, but also have properties such as

control groups and sequential futility monitoring that facilitate

valid inference of comparative effectiveness and improve

decision-making for continuation to phase III. The phase III

trial of atezolizumab for this patient population randomized 931

patients who could have been available to enroll in trials of more

promising treatments, or could have avoided the rigors of a

clinical trial altogether in favor of the established standard of

care treatment.

The decision of which design to select will depend on a

number of factors. One is the costs of biomarker testing,

including invasiveness of the testing procedure, turnaround

time, and actual financial cost. The enrichment design tests

the most patients whereas the pooled control arm design tests

the fewest patients. So in the case of extremely invasive or

expensive tests, the pooled control arm design may be

preferred. Another consideration is the prevalence of the

biomarker in the population. The enrichment design in stage 2

requires testing all patients in order to identify and enroll only

patients with the biomarker of interest, which could be

prohibitively expensive or time consuming in the setting of a

rare biomarker. In that case, the pooled control arm design may

be preferable since all patients are enrolled and the control group

will more easily reach full enrollment by containing a mix of

patients regardless of biomarker status. But any of the proposed

designs could result in a more efficient use of resources in the

setting of a rare biomarker, considering both the ability to stop

the trial early for futility, and the potential to avoid embarking
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on a confirmatory trial without adequate information about the

population under study. A third consideration is clinical

evidence for the biomarker being prognostic in nature, leading

to differential response rates across biomarker subgroups on

even standard of care therapies. If there is preliminary evidence

or biological plausibility that such an effect might exist, the

stratified control arm design may be preferable since it fully

characterizes the response rates of the control groups within

each biomarker subgroup. While the trial would “fail” in this

setting, since it would find no difference between the control and

treatment arms within the biomarker subgroups, the

information from the stratified control arm design would be

useful for planning future studies. And a final consideration is

clinical evidence for the biomarker being predictive of

experimental treatment response. If there is a strong belief that

only biomarker positive patients will benefit from the treatment

under study, then the enrichment design may be best as it enrolls

more patients in only the selected subgroup at stage 2.

Additional sample size savings could be achieved by

eliminating the control group at stage 1 of the enrichment

design, though the properties of such a design were not

investigated in detail here.

The main limitation to the use of these designs is the

computational intensity required to perform calibration across

a variety of posterior and predictive thresholds for the setting of

interest in order to identify a design with the desired operating

characteristics of type I error and power. While we have

developed open-source R software for the design of single-arm

and two-arm optimal sequential predictive probability designs,

specialized programming using the functions from the ‘ppseq’ R

package would be required to design a pooled control arm,

stratified control arm, or enrichment design of the type

presented here. Moreover, a large memory server is needed to

complete the computations in any reasonable time span.

However, once the thresholds have been selected, decision rule

tables for early stopping can be generated so that no mid-trial

computations would be necessary.

As rapid development of biomarker-targeted agents in

oncology continues, new implementations of existing statistical

methods such as those presented here will represent the most

nimble way for the statistical design of trials to keep up with the

changing context of cancer treatment. Randomization is an old

statistical tool that has not traditionally been employed in early

phase oncology clinical trials due to the sample size

requirements. But in the context of increasingly large early

phase clinical trials that can include hundreds of patients

across multiple cancer types or multiple biomarker levels or

both, randomization is no longer the constraint that it once was.

This kind of efficient design also stresses the importance of

mandating that all patients enrolled to biomarker-targeted trials

have the biomarker of interest tested at enrollment (as opposed

to only a subset of those with tissue available) so that the most
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accurate information about efficacy within biomarker groups

can be obtained. Here we have demonstrated that it is possible to

conduct randomized phase II trials with smaller sample sizes

than those being used in practice for single-arm trials. Moreover,

Bayesian sequential design with predictive probability yields

more efficient and informative early phase clinical trial results

than the standard frequentist approaches commonly

implemented in practice.
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