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Metformin-induced AMPK
activation promotes cisplatin
resistance through PINK1/Parkin
dependent mitophagy in
gastric cancer
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Gastric cancer (GC) is one of the most common tumors worldwide, and

cisplatin is a standard chemotherapeutic reagent for GC treatment. However,

chemoresistance is an inherent challenge which limits its application and

effectiveness in clinic. This study aims to investigate the mechanism of

metformin-induced cisplatin resistance in GC. Intriguingly, the upregulation

of mitophagy markers, mitochondrial fission, autophagy and mitophagosome

were observed in SGC-7901/DDP cells compared to those in the SGC-7901

cells. Treatment with metformin significantly increased mitochondrial fission

and mitophagy in both AGS and SGC-7901 cells, resulting in decreased ATP

production, which unexpectedly protected GC cells against the cytotoxicity of

cisplatin. In contrast, application of Chloroquine and 3-methyladenine, two

inhibitors of autophagy, significantly alleviated the protective effect of

metformin on SGC-7901 and AGS cells against cytotoxicity of cisplatin.

Moreover, metformin also stimulated the phosphorylation of AMPK (Thr172)

and increased the expression of mitophagy markers including Parkin and PINK1

in the AMPK signaling-dependent manner. Consistently, the cell viability and

cell apoptosis assay showed that metformin-induced cisplatin resistance was

prevented by knockdown of AMPKa1. Taken together, all data in this study

indicate that metformin induced AMPK activation and PINK1/Parkin dependent

mitophagy, which may contribute to the progression of cisplatin resistance

in GC.
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Introduction

Gastric cancer is a fatal disease with low survival rate

worldwide. It is reported that there are over one million new

cases every year, and gastric cancer is the fifth largest diagnosed

malignant tumor in the world (1). Unfortunately, gastric cancers

usually are not sensitive to immune checkpoint inhibitor

monotherapies, which makes surgery and chemotherapy the

principal approaches for treatment of GC. Cisplatin (DDP) is the

first-line reagents for GC chemotherapy. However, cancer cells

often develop resistance in the long-term use of cisplatin, which

inevitably lead to primary or acquired drug resistance, an obstacle of

successful cancer therapy (2). Therefore, re-sensitizing gastric

cancer cells to chemotherapy and investigating the mechanism of

drug resistance is of clinical significance.

Mitophagy controls mitochondrial quality by degrading

superfluous and damaged mitochondria, which helps

maintaining cellular homeostasis in response to stress (3).

Mitochondrial fission is a prerequisite for mitophagy to

remove damaged organelles, whereas mitochondrial fusion

neutralizes mitophagy (4). In addition, mitochondrial oxidative

stress, apoptotic factor and ATP generation are also related to

the mitophagy (5). PTEN-induced putative kinase 1 (PINK1)/

Parkin axis is a key regulator if mitophagy under cell stress (6).

Normally, full-length PINK1 enters mitochondria, where it is

cleaved by protease PARL for degradation. Under stressed and

mitochondrial depolarization, PINK1 locates the mitochondrial

outer membrane, and phosphorylates an E3 ubiquitin ligase

Parkin. Activated Parkin induces ubiquitination of multiple

mitochondrial outer membrane proteins, which are then

degraded by autophagosomes. AMPK is recognized as a key

sensor of cell nutrition and AMPK/ULK1 axis modulate Parkin,

revealing close connections between AMPK and mitophagy (7).

It is reported that mitophagy plays a central role in cancer

progression and tumorigenesis (8, 9), but the role of mitophagy

in cisplatin resistance of gastric cancer remains largely unknown.

Metformin (1,1-dimethylbiguanide hydrochloride), an

effective hypoglycemic drug, is first reported as an antidiabetic

drug in 1957 (10). Metformin is an antihyperglycemic drug for

type 2 diabetes (T2D) due to its minimal side effects (11). Recent

studies show that metformin has a promising role in cancer

therapy. Metformin mediates anti-tumor effect may occur

through several mechanisms, including inhibition of cancer

cell proliferation (12), enhanced apoptosis (13), reduced

angiogenesis (14), inhibition of EMT (15), regulating immune

response (16) and targeting cancer stem cells (17). In contrast, it

is also reported that metformin alleviates chemosensitivity to

cisplatin in different cancer cells (18–20). However, the role of

mitophagy in metformin-induced cisplatin-resistance in GC and

its underlying mechanism remains to be elucidated.

Here, we showed that mitochondrial fission and mitophagy

were enhanced in cisplatin-resistant GC cells. Intriguingly,
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metformin increased mitochondrial fission and mitophagy and

protected GC cells against the cytotoxicity of cisplatin. In the

term of mechanism, metformin activated AMPK signaling and

upregulated the expression of mitophagy related proteins,

including PINK, Parkin and LC3B. Further, application of

mitophagy inhibitors alleviated metformin-induced cisplatin

resistance. These results illustrate that metformin may

facilitate cisplatin resistance of GC cells by promoting

mitophagy via AMPK-PINK1/Parkin signaling axis. Our data

also warrant caution over metformin treatment in diabetes

patients with GC.
Materials and methods

Cell culture

Human gastric cancer AGS, SGC-7901 cells and cisplatin‐

resistant SGC-7901/DDP cells were purchased from the Cell

Biology of Institute of Chinese Academy of Sciences (Shanghai,

China). SGC-7901 and SGC-7901/DDP cells were cultured in

RPMI 1640 (BI, Israel) and AGS cells were grown in DMEM/F12

medium (BI, Israel) supplemented with 1% penicillin/streptomycin

(Solarbio, China) and 10% fetal bovine serum (FBS, BI, Israel) at 37°

C with 5% CO2 in a humidified atmosphere.
Reagents

Antibody against b-actin (#AC004,1:100000) was purchased

from ABclonal Technology (Wuhan, China). Antibodies against

PINK1 (#ab23707, 1:1000) and Parkin (#ab77924, 1:2000) were

purchased from Abcam (Cambridge, UK). Antibodies against

LC3B (#2775S, 1:1000), PINK1 (#6946S, 1:1000), AMPKa
(#5832S,1:1000), Phospho-AMPKa (Thr172) (#2535S,1:1000)

were purchased from Cell Signaling Technology (Danvers,

MA, USA). Horseradish peroxidase (HRP)-conjugated goat

anti-rabbit IgG secondary antibody (1:5000) was obtained

f r om P r o t e i n t e c h (Wuh a n , C h i n a ) . E n h a n c e d

chemiluminescence (ECL) detection kit (#KF005) was

purchased from Affinity. Cisplatin and metformin were

obtained from MCE (Shanghai, China). 3-Methyladenine

(#S2767) was purchased from Selleck (Houston, TX, USA),

and Chloroquine (#REVG1006) was obtained from Genechem

(Shanghai, China).
Cell proliferation assay

SGC-7901 and AGS cells were seeded into 96-well plates and

treated with metformin for indicated time. Subsequently, Cell

proliferation was measured by CCK8 kit, following the
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manufacturer’s instructions. Absorbance at 450 nm was

recorded using an optical density reader.
Measurement of mitochondrial DNA

Total DNA was isolated from SGC-7901 and SGC-7901DDP

cells using the Universal Genomic DNA Purification Mini Spin

Kit (#D0063, Beyotime, China) according to manufacturer’s

instructions. The amount of mitochondrial DNA was

determined by quantitative real-time PCR using following

primers : mtDNA-F 5’-CGCCTCACACTCATTCTCAACC-3’

and mtDNA-R 5’-CAAGGAAGGGGTAGGCTATGTG-3’,

nDNA-F 5’- AGTCCCCCACAACACTGAGA-3’ and nDNA-R

5’-AATGGCACACGACAAGGTGG-3’. Relative mitochondrial

DNA levels were calculated based on the threshold cycle (Ct)

as 2−D(DCt).
Mtphagy dye staining

SGC-7901 and SGC-7901/DDP cells were washed with

serum-free medium twice and incubated with Mtphagy Dye

working solution (#MDO1, Dojindo, Japan) at the final

concentration of 100 nM for 30 min at 37°C. Cells were then

washed with serum-free medium twice. Mitophagy in live cells

was detected through tracking the fluorescence Mtphagy Dye

under fluorescence microscope (Olympus, Tokyo, Japan).
Cell apoptosis assay

Cell apoptosis was detected with Annexin V-FITC/PI

Apoptosis kit (#556547, BD Biosciences, San Jose, CA, USA)

following manufacturer’s instruction. Cells were washed with

PBS and resuspended in 300 ml binding buffer. Next, cells were

double-stained with 5 µl PI and 5 µl Annexin V-FITC at RT in

the dark. Cells were analyzed using a flow cytometer equipped

with a laser emitting at 488 nm and an optical filter FL1 (530/30

nm). Data was processed with the Follow JO software

(BD Biosciences).
siRNA transfection

SGC-7901 cells were transfected with siRNA targeting

PINK1 subunit (ChemShine Biotechnology Inc, Shanghai,

China), AMPK-a1 subunit (GenePharma, Shanghai, China) or

scrambled siRNA (GenePharma, Shanghai, China) as a control.

The targeting sequences were as follows: PRKAA1-homo-825 5’-

GGGAACAUGAAUGGUUUAATT-3 ’(sense) and 5 ’-

UUAAACCAUUCAUGUUCCCTT-3’ (antisense), PRKAA1-

homo-477 5’-GCUUGAUGCACACAUGAAUTT-3’ (sense)
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and 5’-AUUCAUGUGUGCAUCAAGCTT-3’ (antisense),

PRKAA1-homo-1132 5’-CCAUUCUUGGUUGCUGAAATT-

3’ (sense) and 5’-UUUCAGCAACCAAGAAUGGTT-3’

( an t i s en s e ) . P INK1 - s i - 1 5 ’ -CGAAGCCAUCUUG

AACACAAUdTdT-3’(sense) and 5’-AUUGUGUUCAAGAU

GGCUUCGdTdT-3 ’ ( an t i s en s e ) , P INK1 - s i - 2 5 ’ -

GCCGCAAAUGUGCUUCAUCUAdTdT-3’ (sense) and 5’-

UAGAUGAAGCACAUUUGCGGCdTdT-3’ (antisense),

PINK1-si-3 5’-GUUCCUCGUUAUGAAGAACUAdTdT-3’

(sense) and 5’-UAGUUCUUCAUAACGAGGAACdTdT-3’

(antisense). siRNAs were transfected intosiRNAs were

transfected into SGC-7901 cells with ribo-FECT CP

Transfection Kit (#C10511-05, ribo, Guangzhou, China)

following the manufacturer’s instructions.
Western blot analysis

Cells were lysed in RIPA buffer [20 mM Tris (pH 7.4), 10

mM sodium orthovanadate, 20 mM sodium fluoride, 150 mM

NaCl, 1 mM dithiothreitol, 0.25 mM sucrose, 500 nM okadaic

acid, and 0.5% Tween 20] and whole cell extracts were put to

SDS-PAGE and transferred to PVDF membranes. The

membranes were blocked with 5% skim milk and then

incubated with primary antibodies anti-PINK1(Abcam, UK),

anti-Parkin (Abcam, UK), anti-LC3B (CST, USA), anti-AMPKa
(CST, USA), anti-phospho-AMPKa-Thr172 (CST, USA), anti-

Tom20 (Santa Cruz Biotechnology, United States) or anti-b-
actin (ABclonal Technology, China) for 1 h at room

temperature. Next, the membranes were incubated with

horseradish peroxidase (HRP)-conjugated anti-mouse or anti-

rabbit secondary antibodies for 1 h at room temperature.

Western blot bands were detected with a chemiluminescence

kit. Densitometric analysis was carried out with ImageJ software

(NIH, Bethesda, MD, United States). Protein levels were

normalized to b-actin.
Measurement of intracellular ATP level

SGC-7901 and AGS cells were seeded into a 96-well plate.

The ATP levels were detected with commercial ATP assay kit

(Beyotime Biotechnology, China) following manufacturer’s

protocol. Each well was added with mixed reagent and

incubated for 15 min. ATP levels were detected with

Fluorescence/Multi-Detection Microplate Reader.
Transmission electron microscopy

SGC-7901/DDP and SGC-7901 cells were seeded at 5×105

cells/culture dish (35mm) and treated with indicated reagents.

Then cells were collected and fixed by 3% glutaraldehyde at 4°C
frontiersin.org

https://doi.org/10.3389/fonc.2022.956190
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xiao et al. 10.3389/fonc.2022.956190
followed by 1% osmium tetroxide. Next, cells were dehydrated in

30%~100% acetone, embedded with Epox 812 and cut to

semithin sections. After stained with methylene bule, the

ultrathin sections (60 nm~90 nm) were prepared by EM UC7

(Leica, Germany) and stained with lead citrate and uranyl

acetate. The sections were detected by transmission electron

microscope (JEM-1400FLASH, Electronics Co., Ltd, Japan).
Confocal microscopy

Cells were seeded in glass-bottom culture dishes at 50-60%

confluence. To label mitochondria, SGC-7901 and AGS cells

were transfected with pDsRed2-Mito with Lipofectamine 2000

(Invitrogen) following manufacturer’s instructions. Then, cells

were treated with 10mM metformin for 24h, Fluorescence

images were acquired with confocal microscope (Olympus,

FV3000D, Tokyo, Japan). Mitochondrial length was measured

and analyzed in each group.
Statistical analysis

The results were analyzed by unpaired Student’s t-test or

one-way ANOVA. Statistical analysis was performed with

GraphPad software. Data from three independent experiments

are presented as mean ± SD. p<0.05 was considered to be

statistically significant.
Results

Mitochondrial fission and mitophagy
were increased in the cisplatin resistant
SGC-7901/DDP cells

In this study, the cisplatin resistant SGC-7901/DDP and its

parental SGC-7901 cells were used. First, the IC50 of two cell

lines to cisplatin was determined by CCK8 assay. As shown in

Figure S1, SGC-7901/DDP and SGC-7901 cells were treated with

different concentrations of cisplatin and dose-response curves of

cell viability were generated. IC50 values for cisplatin were

calculated as 3.85 and 18.88 mg/ml in SGC-7901 and SGC-

7901/DDP cells, respectively. Compared to SGC-7901 cells, the

IC50 value for cisplatin against SGC-7901/DDP cells was

increased 5-fold. To investigate whether mitochondrial

dynamics was involved in cisplatin resistance, pDsRed2-Mito

was transfected into SGC-7901 and SGC-7901/DDP cells for

mitochondrial imaging. As shown in Figures 1A, B,

mitochondria in SGC-7901 cells appeared as tubular, thread-

like network, and the average mitochondrial length in SGC-7901
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cells (4.9 ± 0.26 µm) was longer than that in SGC-7901/DDP

cells (2.4 ± 0.09 µm). To explore the role of mitophagy in

cisplatin resistance, expression of PINK, Parkin and LC3B were

examined. As shown in Figures 1C, D, expression of PINK,

Parkin and the ratio of LC3B-II/I was higher in SGC-7901/DDP

cells than those in SGC-7901 cells in the presence or absence of

chloroquine (CQ). Further results showed that the content of

mitoDNA was decreased in SGC-7901/DDP cells compared with

those in SGC-7901 cells (Figure 1E). The expression of TOM20,

component of the TOM (translocase of outer membrane)

receptor complex, was slightly down-regulated in SGC-7901/

DDP cells, but it showed no significant difference between SGC-

7901 and SGC-7901/DDP cells (Figures S2A, B). This result is

consistent with previous finding that the change of mitoDNA

proceeds that of mitochondrial mass (21). Then, cells were

stained with Mtphagy Dye, and the fluorescence indicates the

occurrence of mitophagy. As shown in Figure S2C, the

fluorescent intensity of Mtphagy Dye is stronger in SGC-7901/

DDP cells than that in the SGC-7901 cells. In accordance with

western blot results, confocal imaging showed that LC3B puncta

formation increased in SGC7901/DDP cells (Figure 1F). Finally,

mitophagy in SGC-7901 and SGC-7901/DDP cells was detected

by TE microscopy and the appearance of double membranes

associated with mitochondria was observed in SGC-7901/DDP

cells, but not in SGC-7901 cells (Figure 1G). These results

indicate that mitochondrial fission and mitophagy are

increased in the cisplatin resistant SGC-7901/DDP cells, also

suggest that mitochondrial dynamics and mitophagy is involved

in the cisplatin resistance in gastric cancer.
Metformin protects GC cells from
cisplatin toxicity

The effect of metformin on sensitivity of SGC-7901 and AGS

cells to cisplatin was examined. The proliferation of SGC-7901

and AGS cells was inhibited in dose-dependent manner at 24 h

or 48 h after cisplatin (Figures 2A, B). To evaluate the effect of

metformin on the sensitivity of GC cells to cisplatin, both SGC-

7901 and AGS cells were pretreated with different

concentrations of metformin. CCK-8 results showed that

metformin significantly alleviated cisplatin-induced growth

inhibition in SGC7901 and AGS cells (Figures 2C, D).

Furthermore, cell apoptosis was examined in SGC-7901 and

AGS cells treated with cisplatin and/or metformin. As shown in

Figures 3A, B, 5 mg/mL cisplatin induced approximately 53%

apoptosis in SGC7901 cells, and pretreatment with 10 mM

metformin efficiently inhibited cisplatin-induced apoptosis in

SGC7901 cells. The similar outcomes were obtained in AGS cells

(Figures 3C, D). All these results indicate that metformin may

promote the resistance of GC cells against cisplatin.
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FIGURE 1

Mitochondrial fission and mitophagy were increased in the cisplatin resistant SGC-7901/DDP cells. (A, B) Mitochondrial morphology in SGC-
7901 and SGC-7901/DDP cells. Cells were transfected with pDsRed2-Mito. Scale bar of top figures is 10 mm. Scale bar of bottom figures is 2
mm. Mitochondria length in each group was measured. (C, D) Expression of PINK1, Parkin and LC3B in SGC-7901 and SGC-7901/DDP cells.
SGC-7901 and SGC-7901/DDP cells were treated with or without 10 µM CQ for 24 h. Whole cell lysates were collected for western blot assay.
(E) Changes of mitochondrial DNA content. Total DNA were isolated from SGC-7901 and SGC-7901/DDP cells and the amount of
mitochondrial DNA was determined by real-time PCR. (F) SGC7901 and SGC7901/DDP cells were transfected with pEGFP-LC3B for 24 h and
then analyzed by confocal microscope. Scale bar=10 µm. Circled images at higher magnification are shown in the below panels. Scale bar= 2
µm. (G) SGC7901 and SGC7901/DDP cells were processed by transmission EM. Asterisk represents mitophagy vesicles. Circled images at higher
magnification are shown in the below panels. Scale bar=0.5 µm. Data were presented as the means ± SD. The experiments were repeated three
times independently. **p<0.01, ***p<0.001.
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Metformin promoted cisplatin resistance
via PINK1/Parkin-dependent mitophagy
in GC

As motioned in Figures 1C~F, PINK1/Parkin-dependent

mitophagy was increased in cisplatin-resistant SGC7901/DDP

cells. Thus, the mechanism of PINK1/Parkin-dependent

mitophagy in metformin-induced cisplatin resistance was

further explored. It was found that the expression of PINK1,

Parkin and the ratio of LC3BII/I in both SGC7901 and AGS cells

treated with cisplatin was decreased in dose-dependent manner

(Figures 4A, B; Figures S3A, B). Furthermore, the effect of

metformin on PINK1/Parkin signaling was examined in two

GC cell lines. As shown in Figures 4C, D and Figures S3C, D,

metformin significantly elevated the expression of Parkin,

PINK1 and the ratio of LC3BII/I, indicating that metformin

might activate PINK1/Parkin signaling. Then, SGC7901 cells

were treated with cisplatin and/or metformin. Western blot

results showed that metformin attenuated cisplatin-induced

downregulation of PINK1, Parkin and the ratio of LC3B-II/I

in the SGC-7901 cells (Figure 4E and Figure S3E). To examine

whether the increased expression of PINK1 and ratio of LC3BII/

I protect gastric cancer cells from cisplatin, SGC7901/DDP cells

were transfected with PINK1 siRNAs to knockdown the

expression of PINK1 or treated with PIK-III to down-regulate

the ratio of LC3BII/I. PINK1 siRNA#1 showed best knockdown

efficiency and was used in following experiments (Figure S4). As
Frontiers in Oncology 06
shown in Figures 4F, G, treatment with 5 µM PIK-III for 24 h or

PINK1 knockdown alone had no effect on cell viability in

SGC7901/DDP cells. However, combination of PIK-III or

PINK1 knockdown with cisplatin showed more efficiency in

inhibiting cell viability than cisplatin alone, although the

inhibitory efficacy was weaker than AMPKa knockdown.

These data suggest that cisplatin-resistance in gastric cancer

cells is partially related to increased expression of PINK1 and

up-regulated ratio of LC3BII/I, and AMPK might affect cisplatin

resistance through other pathways.

To observe the autophagosome formation in live cells,

SGC7901 cells were transfected with GFP-LC3B plasmid. The

punctate aggregates of GFP-LC3B were decreased in SGC7901

cells treated with cisplatin, which could be reversed by

metformin (Figure 5A). Moreover, the results of TEM also

indicated that autophagic vacuoles were detected in SGC7901

cells treated with metformin (Figure 5B). These results suggested

that mitophagy was involved in metformin-induced cisplatin

resistance. To furthermore confirm our speculation, AGS and

SGC-7901 cells were pretreated with 3-methyladenine (3-MA)

or Chloroquine (CQ) prior to cisplatin. As shown in Figures 5C,

D, CQ significantly alleviated the inhibitory effect of metformin

on cisplatin-induced growth inhibition in SGC-7901 and AGS

cells. Similar outcomes were obtained when SGC7901 cells were

pretreated with 3-MA (Figure 5E). These data suggest that

metformin may promote cisplatin resistance in GC cells via

PINK1/Parkin dependent mitophagy.
B

C D

A

FIGURE 2

Metformin alleviates cisplatin-induced growth inhibition in GC cells. (A, B) SGC-7901 and AGS cells were treated with cisplatin for 24 or 48 h,
followed by CCK8 assay. (C, D) SGC-7901 and AGS cells were pre-treated with metformin for 4 h followed with cisplatin treatment for 24 h.
Cell viability was determined by CCK8 assay. Data were presented as the means ± SD. The experiments were repeated three times
independently. *p<0.05, **p<0.01, ***p<0.001, ****p<0.0005.
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Metformin stimulated mitochondrial
fission and decreased the intracellular
ATP level in GC cells

As the increased mitochondrial fission was detected in

SGC7901/DDP cells (Figures 1A, B), the influence of

metformin on mitochondrial dynamics in GC cells was

examined. To label mitochondria in live cells, two GC cell

lines were transfected with transfected with pDsRed2-Mito

plasmid. As shown in Figures 6A, B, mitochondria in GC cells

appeared as the tubular networks or thread-like structures. In

contrast, mitochondria were changed into punctate structures in

GC cells treated with metformin, and metformin shortened the

average length of mitochondria in GC cells (Figures S5A, B).

Mitochondria are the major source for ATP production.

Therefore, intracellular ATP level was detected in SGC-7901
Frontiers in Oncology 07
and AGS cells. As expected, metformin significantly decreased

the intracellular ATP levels in two GC cell lines (Figures 6C, D).

All these results indicated that metformin regulated

mitochondrial dynamics, which might contribute to mitophagy

and prevent ATP generation.
Metformin induced mitophagy
and cisplatin resistance through
AMPK in GC cells

It is well-known AMPK acts as an upstream regulator of

PINK1/Parkin dependent mitophagy and mitochondrial

homeostasis. Hence, we examined if AMPK participated in

metformin-induced cisplatin resistance via mitophagy. It was

found that metformin up-regulated the expression of phos-
B

C D

A

FIGURE 3

Metformin alleviates cisplatin-induced apoptosis in GC cells. (A, B) SGC-7901 cells were treated with metformin (10 mM), DDP (5 mg/mL), or the
combination of metformin (10 mM) and DDP (5 mg/mL) for 24 h. (C, D) AGS cells were incubated with metformin (10 mM), DDP (10 mg/mL), or
combination of metformin (10 mM) and DDP (10 mg/mL) for 24 h. Cell apoptosis was analyzed by Annexin V/PI staining. Bar diagram represents
percentage of apoptotic cells. Data were presented as the means ± SD. The experiments were repeated three times. *p<0.05, ***p<0.001.
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FIGURE 4

Metformin promoted cisplatin resistance via PINK1/Parkin axis in GC cells. (A, B) SGC7901 and AGS cells were treated with cisplatin and western
blot was performed to determine the expression of PINK1, Parkin, LC3B. (C, D) SGC7901 and AGS cells were treated with indicated
concentrations of metformin and western blot was performed to determine the expression of PINK1, Parkin, LC3B. (E) SGC7901 cells were pre-
treated with 10 mM metformin for 4 h, followed by co-treating with 5 µg/mL cisplatin for 24h. The lysates were collected for western blot
assay. (F) SGC7901/DDP cells were transfected with PINK1 siRNA or scramble siRNA (NC) for 24h and then treated with cisplatin. Cell
proliferation was analyzed by CCK8 assay. (G) SGC7901/DDP cells were treated with cisplatin in the presence or absence of 5 µM PIK-III for 24
h. Cell proliferation was analyzed by CCK8 assay. Data were presented as the means ± SD. The experiments were repeated three times
independently. **p<0.01, ***p<0.001.
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FIGURE 5

Metformin promoted cisplatin resistance via mitophagy in GC cells. (A) SGC7901 cells were transfected with pEGFP-LC3B for 24 h. Then cells
were treated with indicated drug and analyzed by fluorescence microscopy. Scale bar=5 µm. (B) SGC7901 cells were treated with metformin
and analyzed by transmission EM. Asterisk represents mitophagy vesicles. Circled images at higher magnification are shown in the below panels.
Scale bar=0.5 µm. (C, D) SGC7901 and AGS cells were pre-treated with 10 mM metformin followed by co-treating with DDP in the absence or
presence of 10 mM CQ for 24 (h) Cell viability was analyzed by CCK8 assay. (E) SGC7901 cells were pre-treated with 10 mM metformin followed
by co-treating with cisplatin in the absence or presence of 5 mM 3-MA for 24 h. Cell proliferation was analyzed by CCK8 assay. Data were
presented as the means ± SD. The experiments were repeated three times independently. **p<0.01, ***p<0.001.
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AMPKa (Thr172), but not total AMPK expression in SGC7901

cells (Figure 7A and Figure S6A). However, cisplatin down-

regulated the expression of phos-AMPKa (Thr172), which was

attenuated by pretreatment with metformin (Figure 7B and

Figure S6B). To examine the role of AMPK in metformin-

mediated mitophagy and cisplatin resistance, RNAi of

AMPKa1 was conducted in SGC7901 cells using siRNAs. As

shown in Figure 7C and Figure S6C, siRNA #2 showed the best

knockdown efficiency on AMPKa1 expression. Thus, siRNA #2

was used for AMPKa1 silencing in the subsequent experiments.

Intriguingly, knockdown of AMPKa1 by siRNA down-regulated

the expression of PINK1, Parkin and LC3BII/I ratio in SGC7901

cells (Figure 7D and Figure S6D). In addition, AMPKa1 siRNA
alleviated metformin-induced up-regulation of PINK1, Parkin

and ratio of LC3BII/I in SGC7901 cells treated with cisplatin

(Figure 7E and Figure S6E). Importantly, metformin mediated

suppression on cisplatin-induced growth inhibition and

apoptosis was also significantly prevented by AMPKa1 siRNA

in SGC7901 cells (Figures 8A–C). In conclusion, all these data

suggest that AMPK signaling may participate in the metformin-
Frontiers in Oncology 10
induced mitophagy, and metformin facilitates cisplatin

resistance through AMPKa/PINK1/Parkin axis in gastric

cancer cells.
Discussion

Gastric cancer is the third most common cause of cancer

death globally. Primary or acquired drug resistance is the major

challenge to GC therapy, which inevitably leads to recurrence

and poor prognosis in clinic. Previous studies demonstrated that

metformin exhibited anti-cancer properties, especially in

patients with diabetes (22, 23). Mitophagy acts as a double-

edged sword in the chemotherapy for gastric cancer (24, 25).

However, the role of metformin-induced mitophagy in cisplatin

resistance in GC remains unknown.

Combined application of metformin and cisplatin had

shown controversial results in the treatment of various tumors.

It has been reported that metformin could promote the

anticancer effect of cisplatin in breast cancer (18), NSCLC
B

C D

A

FIGURE 6

Metformin stimulated mitochondrial fission and decreased the intracellular ATP level in GC cells. (A, B) Mitochondrial morphology was shown.
SGC7901 and AGS cells were transfected with pDsRed2-Mito and treated with or without 10 mM metformin for 24 h. Scale bar=10 µm. Circled
images at higher magnification are shown in the below panels, scale bar=2 µm. (C, D) SGC7901 and AGS cells were incubated with 10 mM
metformin for 24 h, then ATP levels were detected by ATP assay kit. Data were presented as the means ± SD. The experiments were repeated
three times independently. *p<0.05; **p<0.01.
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(26), nasopharyngeal carcinoma (20), liver cancer (27). On the

contrary, metformin reduced the anti-proliferative effects of

cisplatin through mTOR/AKT signaling pathways in the

MKN-45 cells (28). Metformin could also protect OSCC cells

from cisplatin toxicity by increasing glycolysis and intracellular

NAD(P)H production (29). Additionally, metformin can reduce

cisplatin sensitivity in cancer cells through the activation of Akt

(30). In this study, we found that metformin alleviated cisplatin-

induced growth inhibition in GC cells. Moreover, cisplatin-

induced apoptosis was reversed by metformin. These data

indicate that metformin promotes the development of cisplatin

resistance in GC.

Mitophagy is a mitochondrial quality control system, which

promotes tumorigenesis and cell survival by removing abnormal

or damaged mitochondria (31). The PINK1/Parkin signaling is a

canonical pathway that regulates mitophagy. Previous studies

demonstrated that PINK1/Parkin dependent mitophagy can

facilitate chemotherapy resistance in ovarian cancer (32),
Frontiers in Oncology 11
hepatic carcinoma (33, 34), breast adenocarcinoma (35) and

lung cancer (36). The regulatory mechanism underlying

metformin regulates PINK and Parkin expression and the

ratio of LC3BII/I has been explored previously. It was reported

that metformin protects against osteoarthritis through PINK1/

Parkin-dependent mitophagy by up-regulating SIRT3

expression (37). Metformin alleviated renal oxidative stress

and tubulointerstitial fibrosis via activating mitophagy through

a p-AMPK-PINK1-Parkin pathway (38). In addition, metformin

up-regulated the ratio of LC3BII/I and induced autophagy via

AMPK/mTOR signaling pathway in hepatocellular carcinoma

(39). Similar mechanism might also be involved in metformin-

induced cisplatin resistance. Here, we showed that mitophagy

was enhanced in cisplatin-resistant GC cells. Metformin

activated PINK1/Parkin pathway, which resulted in mitophagy

and cisplatin resistance in GC cells. Furthermore, pretreatment

with mitophagy inhibitors, CQ and 3-MA, effectively attenuated

metformin-induced cisplatin resistance in GC cells. AMPK is a
B C

D E

A

FIGURE 7

AMPK was involved in the metformin-induced up-regulation of mitophagy-related proteins in GC cells. (A) SGC7901 cells were treated with
metformin for 24 h. The expression of AMPKa and phos-AMPKa (Thr172) was examined by western blot. (B) SGC7901 cells were pre-treated
with 10 mM metformin followed by co-treating with 5 µg/mL cisplatin for 24 h. Then, cell lysates were collected for western blot using AMPKa-
and phos-AMPKa (Thr172)-specific antibodies. (C) Expression of AMPK was determined by western blot in SGC-7901 cells transfected with
siRNA-1~3 at 50nM or scramble siRNA (NC). (D) SGC7901 cells were transfected with control siRNA or AMPK siRNA#2 and the expression of
PINK1, Parkin and LC3B was determined by western blot. (E) SGC7901 cells were transfected with scramble siRNA (NC) or AMPK siRNA#2 for 24
h. Then, cells were pre-treated with 10 mM metformin followed by co-treating with 5 µg/mL cisplatin for 24 h. The expression of PINK1, Parkin
and LC3B was determined by western blot.
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key regulator of PINK1/Parkin dependent mitophagy. Previous

studies showed that metformin could activate AMPK by

facilitating the phosphorylation at Thr172 on AMPK a (40,

41). Consistent with previous reports, up-regulation of phos-

AMPKa (Thr172) was observed in GC cells following

metformin treatment. Additionally, metformin-induced

cisplatin resistance in GC cells could be counteracted by

knockdown of AMPKa1 using siRNA. In conclusion, our

results indicate that metformin may facilitate cisplatin

resistance in GC cells by AMPK-PINK1/Parkin axis-

mediated mitophagy.

On the other hand, mitochondrial dynamics is coordinated

by balance between fusion and fission (42). Previous studies have

suggested that mitochondrial dynamics could influence

chemotherapy sensitivity in cancer cells. In our previous

studies, it was found that mitochondrial dynamics participate
Frontiers in Oncology 12
in cisplatin resistance in ovarian cancer, and the level of

mitochondrial fusion was higher in cisplatin resistant ovarian

cancer cells (43). However, the contrary results were obtained in

GC cells, as increased mitochondrial fission was observed in

SGC-7901/DDP cells compared with that in SGC-7901 cells.

Interestingly, increased mitochondrial fission and lower ATP

level were detected in GC cells after metformin treatment. Since

mitochondrial fission facilitates the occurrence of mitophagy,

our results suggested that metformin-induced mitochondrial

dynamics might also contribute to cisplatin resistance in

GC cells.

In conclusion, we demonstrate metformin can promote

resistance of GC cells to cisplatin through mitochondrial

dynamics and AMPK-PINK/Parkin axis-mediated mitophagy

(Figure 8D). It suggests mitochondrial dynamics as a promising

target to overcome cisplatin resistance and improve the
B

C D

A

FIGURE 8

AMPK was involved in the metformin-induced mitophagy in GC cells. (A) SGC7901 cells were transfected with AMPK siRNA#2 or scramble
siRNA (NC) for 24 h. Then, cells were pre-treated with 10 mM metformin followed by co-treating with 5 µg/mL cisplatin for 24 h. Cell viability
was detected by CCK8 kit. (B, C) SGC7901 cells were transfected with scramble siRNA (NC) or AMPK siRNA#2 for 24 h. Then, cells were pre-
treated with 10 mM metformin followed by co-treating with 5 µg/mL cisplatin for 24 h. Cell apoptosis was analyzed by Annexin V/PI staining.
Bar diagram represents percentage of apoptotic cells. Data were presented as the means ± SD. The experiments were repeated three times
independently. **p<0.01, ***p<0.001. (D) A working model depicting the mechanism of metformin-induced cisplatin resistance in GC cells.
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chemotherapy efficacy in cancer treatment. Further, our findings

warrant caution when considering metformin for treatment of

diabetic patients with GC.
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