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Purpose: To develop a cascaded deep learning model trained with apparent

diffusion coefficient (ADC) and T2-weighted imaging (T2WI) for fully automated

detection and localization of clinically significant prostate cancer (csPCa).

Methods: This retrospective study included 347 consecutive patients (235

csPCa, 112 non-csPCa) with high-quality prostate MRI data, which were

randomly selected for training, validation, and testing. The ground truth was

obtained using manual csPCa lesion segmentation, according to pathological

results. The proposed cascaded model based on Res-UNet takes prostate MR

images (T2WI+ADC or only ADC) as inputs and automatically segments the

whole prostate gland, the anatomic zones, and the csPCa region step by step.

The performance of the models was evaluated and compared with PI-RADS

(version 2.1) assessment using sensitivity, specificity, accuracy, and Dice

similarity coefficient (DSC) in the held-out test set.

Results: In the test set, the per-lesion sensitivity of the biparametric (ADC + T2WI)

model, ADC model, and PI-RADS assessment were 95.5% (84/88), 94.3% (83/88),

and 94.3% (83/88) respectively (all p > 0.05). Additionally, the mean DSC based on

the csPCa lesions were 0.64 ± 0.24 and 0.66 ± 0.23 for the biparametric model

and ADC model, respectively. The sensitivity, specificity, and accuracy of

the biparametric model were 95.6% (108/113), 91.5% (665/727), and 92.0% (773/

840) based on sextant, andwere 98.6% (68/69), 64.8% (46/71), and 81.4% (114/140)

based on patients. The biparametric model had a similar performance to PI-RADS

assessment (p > 0.05) and had higher specificity than the ADCmodel (86.8% [631/

727], p< 0.001) based on sextant.
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Conclusion: The cascaded deep learning model trained with ADC and T2WI

achieves good performance for automated csPCa detection and localization.
KEYWORDS

deep learning, prostatic neoplasms, magnetic resonance imaging, detection, localization
Introduction

Prostate cancer (PCa) is one of the most common malignant

tumors in men worldwide. The clinical behavior of PCa ranges

from low-grade indolent that is generally considered to be non-

life-threatening to high-grade aggressive tumors with a Gleason

of Score 7–10, i.e. clinically significant PCa (csPCa), that may

progress rapidly to metastatic disease and may be life-

threatening (1). Multiparametric magnetic resonance imaging

(mpMRI) has adopted an increasingly significant role in the

detection and localization of csPCa, as well as in guiding targeted

biopsy (2). Recent large-scale clinical trials have demonstrated

that the use of mpMRI before biopsy increases the detection of

csPCa, while reducing the detection of those deemed clinically

insignificant (3, 4). Furthermore, using mpMRI to triage male

patients may enable a quarter to half of them to avoid the need

for biopsy (3, 5). To standardize and improve the interpretation

of prostate mpMRI, the use of the Prostate Imaging Reporting

and Data System (PI-RADS) has been recommended and

updated (2, 6). However, the interobserver agreement for

subjective evaluation using PI-RADS (version 2) is moderate

and influenced by the readers’ experience (7, 8). Additionally,

PI-RADS (version 2.1) has shown no significant improvements

in overall diagnostic performance compared to PI-RADS

(version 2.0) (9, 10). As there is arguably a trend in more

people with clinically suspected csPCa undergoing prostate

mpMRI, it is clinically desirable to develop more accurate and

automated methods for prostate mpMRI interpretation.

In the recent years, artificial intelligence (AI) methods,

particularly deep learning, have achieved promising results in

automated csPCa diagnosis of mpMRI (11–14). A range of

proposed deep learning algorithms were trained based on

prior annotated regions of interest (ROIs) to classify them as

cancerous or noncancerous lesions (11, 15), or slices, in which

each individual image was classified as cancerous or not (16, 17).

These methods were unable to precisely detect and locate csPCa,

and such predicted results may not be directly applied to clinical

practice. Some computer-aided diagnosis (CAD) systems

developed for csPCa were based on the manual or semi-

automatic segmentation of the prostate gland (13, 18), which

also limits their direct clinical use. With the development of the

deep convolutional neural network (CNN), some approaches for
02
csPCa detection have been fully automatic with an area under

the receiver operator characteristics curve of 0.75–0.86 (12, 19,

20). More studies are needed to improve and optimize these

models. Although many generalized AI models have been

developed, few studies have reported on how to integrate AI-

based prediction into the clinical workflow. More explorations

are demanded to move the prostate AI systems from the

laboratory to the clinic with perfect output.

Our study aimed to develop a fully automated cascaded deep

learning model for the detection and localization of csPCa using

apparent diffusion coefficient (ADC) maps and T2-weighted

imaging (T2WI), as well as to seamlessly integrate these AI

predictions into the radiological workflow using the

structured report.
Materials and methods

Study subjects

Our institute’s review board approved this retrospective

study and waived the need for informed consent. The

inclusion criteria for the study were mpMRI scans performed

on a GE 750 3.0T MRI scanner at Peking University First

Hospital from March 2017 to February 2020 on consecutive

patients who underwent mpMRI before a biopsy, with a clinical

suspicion of PCa due to an elevated serum prostate-specific

antigen (PSA) level, abnormal digital rectal examination (DRE),

and/or abnormal transrectal ultrasound (TRUS) results.

Exclusion criteria were patients without a subsequent biopsy

performed within 3 months after mpMRI examination, a

negative biopsy for csPCa without clinical follow-up >1 year,

or showing potential csPCa during the clinical follow-up

(progression of PSA or MR findings), as well as images with

severe artifacts or incomplete pathology results which could not

be matched with MR images. In total, 347 patients were

included. Figure 1 displays the flow diagram for the inclusion

of patients in the study. In this study, csPCa was defined as the

International Society of Urological Pathology Gleason grade

group ≥2, i.e., Gleason Score ≥7. The characteristics of the 235

patients with csPCa included are shown in Table 1. The other

112 patients without csPCa (labeled non-csPCa with a mean age
frontiersin.org
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of 64.1 ± 7.5 years) had a median PSA level of 8.0 ng/ml, with an

interquartile range of 6.6–13.1 ng/ml. The patients were

randomly selected to populate the datasets for training (145

csPCa, 35 non-csPCa), validation (21 csPCa, 6 non-csPCa), and

testing (69 csPCa, 71 non-csPCa).
MRI sequences

All of the mpMRI examinations were performed on a 3-T

MR machine (Discovery MR750, GE Medical Systems). A 32-

channel abdominal phased array coil was used as the receiving

coil. All patients were scanned following the unified prostate

mpMRI protocol. The main sequence parameters are

summarized in Table 2. The ADC map was automatically

generated by the MR vendor software based on diffusion-

weighted imaging (DWI) data with different b values.

Concerning the patients included in this study, anonymized

images were exported in the Digital Imaging and

Communication in Medicine (DICOM) format.
PI-RADS assessment

All of the mpMRI cases in the dataset of the test were

retrospectively interpreted according to PI-RADS (version 2.1)
Frontiers in Oncology 03
by a urogenital radiologist with 10 years of experience in prostate

MRI diagnosis. The radiologist was informed of the clinical

information of the patients, such as age, biopsy history, PSA, etc.,

but was blinded to the pathology results and the previous MRI

reports. The lesions detected were delineated on a prostate

sector map.
Reference standard and annotation

All of the patients in this study underwent TRUS-guided

systematic and targeted biopsy using 12- or six-core needles. For

cognitive targeting, lesions suspected of malignancy on mpMRI

had been marked on a prostate sector map (6) using structured

reports by five dedicated urogenital radiologists during the

clinical routine. Before the biopsy, MR images would be

reviewed by at least one urogenital radiologist and one

urologist at a multidisciplinary meeting to ensure the accuracy

of suspicious lesions localization. The urologists obtained

additional needle cores (two- to five-core needles) for each of

the suspicious lesions during the TRUS-guided biopsy.

Histopathology analysis of each specimen was performed by a

urogenital pathologist with 11 years of experience.

Two experienced urogenital radiologists (X and Y with 7 and

13 years of experience in prostate MRI diagnosis, respectively)

retrospectively reviewed all csPCa cases and mapped the detailed
FIGURE 1

Flow diagram for inclusion of patients into the study.
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pathology results of the csPCa foci to the MR images with

consensus. The ground truth of the csPCa lesion segmentation

was obtained using manual delineation by the urogenital

radiologist (X), in consensus with and under the supervision

of the other urogenital radiologist (Y), using the open-source

segmentation software ITK-SNAP (version 3.6 2015; available at

www.itksnap.org) (21). The format of ADC and T2WI was

converted from DICOM to NIFTI. Three-dimensional

volumes of interest (VOIs) were manually drawn along the

boundaries of the csPCa lesions on consecutive axial sections

of ADC images.
Image preprocessing

After collecting the mpMRI data, the first step of image

preprocessing is T2WI and DWI/ADC image registration.

Patient motion is minimal and the two sequences are

temporally close to each other during the scanning. T2WI and

DWI/ADC images were registered via rigid transformation
Frontiers in Oncology 04
using the coordinate information stored in the DICOM image

headers. B-spline interpolation to the third order was employed

for all MR image interpolation tasks, while Gaussian label

interpolation was used for the csPCa and prostate

segmentation masks. Following this, a coarse segmentation of

the prostate was obtained by K-means clustering in DWI high b

value images to localize the prostate region. Once the prostate

region was identified, the images were cropped to a patch of size

128 × 128. The prostate region of interest was then normalized

into the range of [0, 1]. We augmented the data in the training

set by mirroring, random rotation (rotation angle within 10°),

and adding noise (within 0.001, which means each pixel value

randomly fluctuates within one thousandth).
Deep learning framework

The base architecture for the deep learning framework used

in this study is a CNN inspired by the 2D U-Net (22) and Res-

Net (23) architectures and is termed Res-UNet. U-Net is one of

the end-to-end methods of deep learning, which is also a pixel-

to-pixel method and, with long skip connections, considers

feature maps of the encoder path to obtain good segmentation

performance in medical images. Res-Net (23) proposed a

residual connection architecture to make the network deeper

and avoid gradient vanishing and take advantage of strengths

from both architectures by modifying the original U-Net

architecture and adding residual blocks into the contracting

and symmetric expanding paths of the U-Net architecture. In

building the Res-UNet, we define a basic convolution operator

by a 3 × 3 convolution (Conv) followed by a batch normalization

(BN) and a rectified linear unit (ReLu). The residual block was

designed by using a 1 × 1 Conv layer, plus an addition operation

and ReLU function. Figure 2 depicts the Res-UNet architecture.

Following McNeal’s criterion (24), the prostate is typically

partitioned into two distinct zones: the Central Gland (CG,

including both the transition zone and the central zone) and the

Peripheral Zone (PZ). PCa lesions vary in frequency and

malignancy depending on the zone, and there are different

evaluation criteria for different regions in the PI-RADS.
TABLE 1 Characteristics of patients with csPCa.

Characteristics Patients with csPCa (n = 235)

Mean age (years) 70.2 ± 8.6

Median PSA (ng/mL) 16.3 (9.7–32.6)

Per-patient maximum Gleason score

3 + 4 76

4 + 3 59

3 + 5, 5 + 3, 4 + 4 46

4 + 5, 5 + 4 54

No. of csPCa lesions per patient

One lesion 173

Two lesions 49

Three lesions 10

Four lesions 3

Zone distribution of csPCa lesions

Peripheral zone 212

Transition zone 101
csPCa, clinically significant prostate cancer; PSA, serum prostate-specific antigen.
TABLE 2 The main sequence parameters in this study.

T2WI DWI DCE

Field of view (mm) 240 × 240 240 × 240 260 × 260

Acquisition Matrix 320 × 256 96 × 96 320 × 192

Repetition time (ms) 3200 3000 4

Echo time (ms) 85 60 1.3

Flip angle (degrees) 111 90 13

Slice thickness (mm) 4 4 3

Additional information … b values: 0–1400 s/mm2 Temporal resolution = 13 s;18 phases
T2WI, T2-weighted imaging; DWI, diffusion-weighted imaging; DCE, dynamic contrast material enhancement.
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Therefore, just like a radiologist, a model for automated PCa

detection and classification will invariably benefit from having

both CG and PZ mask priors provided as inputs, in addition to

the mpMRI. Accordingly, a cascading system of a three-

segmentation Res-UNet which was previously developed in

our institution (25) was developed for automatic prostate CG

and PZ segmentation and PCa lesion segmentation. The cascade

is designed to decompose the multi-task segmentation problem

into a sequence of three smaller binary segmentation problems

according to the subregion hierarchy. As can be seen in Figure 2,

the first Res-UNet model takes prostate MR images (T2WI +

ADC or only ADC) as inputs and produces a prostate

segmentation mask as an output. Then, the second model

takes the MR images and the prostate segmentation mask

which were obtained in the previous step as inputs and

produces a PZ segmentation mask. The CG segmentation

mask can be computed by subtracting the PZ mask from the

prostate mask. Finally, the last model takes the MR images, the

PZ mask, and the CG mask as inputs and segments to the csPCa.
Training setup

All of the training steps were performed using a GPU

NVIDIA Tesla P100 16G at Peking University First Hospital,

using the operating system Ubuntu 16.04. The software and

packages used included Python 3.6, Pytorch 0.4.1, Opencv

3.4.0.12, Numpy 1.16.2, and SimpleITK 1.2.0. The input data

were 128 × 128 images of ADC alone and ADC combined with

T2WI, respectively, with an annotation of the csPCa lesions. The

automated segmentation of the whole prostate gland and its
Frontiers in Oncology 05
different zones was completed using the previously developed

and described method (25). For training the architectures for

csPCa segmentation, the batch size was set as 20 with a learning

rate of 0.0001. The networks were trained for 120 epochs. The

pixel classification threshold was 0.5, while Adam was used as a

training optimizer. The Dice similarity coefficient (DSC) was used

to evaluate the performance of the networks in the segmentation

of the csPCa, which is calculated as

DSC =
2=X ∩​ Y=
  =X= + =Y=

here X is the pixel set of csPCa segmented manually as the

ground truth and Y is the pixel set of csPCa prediction by

the model.
Prediction results integrated into the
structured report

Initially, the prediction results were “csPCa” or “non-

csPCa” depending on the patient concerned. When “csPCa”

was the output, the three-dimensional diameter of the

suspicious csPCa lesions and the whole prostate gland would

be filled into the structured report, as well as the key image of

the suspicious csPCa lesions (Supplementary Figure S1).

Furthermore, sextant localization of the suspicious csPCa

lesions would be labeled in the prostate sector map. The

prostate sextant is defined according to the standard sextant

biopsy (26), based on the automatic segmentation of the

prostate gland.
FIGURE 2

The briefarchitecture of the proposed weighted Res-Unet and the overall pipeline of our approach.
frontiersin.org

https://doi.org/10.3389/fonc.2022.958065
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhu et al. 10.3389/fonc.2022.958065
Statistical analysis

Statistical analysis was carried out using SPSS 20.0 and

MedCalc 15.8. We evaluated the performance of the

biparametric (ADC + T2WI) model, ADC model, and PI-

RADS assessment using the testing set. For PI-RADS

assessment, PI-RADS ≥3 was considered positive for csPCa.

For per-lesion analysis, to limit the influence of very small

overlap regions, only the predicted lesions of the model

overlapping ≥50% of the manual csPCa segmentation lesions

in at least one slice were considered as true positive. Otherwise,

the predicted lesions were considered to be false positives. For

sextants analysis, only sextants overlapping at least 50% of an

MRI lesion, or being occupied at least 50% by an MRI lesion,

were considered to contain the MRI lesion (13). For per-patient

analysis, if a patient had one or more than one csPCa lesions, the

prediction of the model or PI-RADS assessment, was considered

as true positive when at least one csPCa lesion was detected. On

the other hand, for a patient without csPCa, the prediction was

considered as false positive as long as one lesion was predicted.

The performance of the models and PI-RADS assessment for

csPCa detection and localization were evaluated based on the

lesions, sextants, and patients, respectively. The sensitivity,

specificity, and accuracy of the models and PI-RADS were

evaluated and compared using the McNemar test. A p value of

less than 0.05 was considered statistically significant.
Results

Based on lesions

In the test set, 88 csPCa lesions were included and the mean

greatest dimension was 1.6 ± 0.7 cm. Table 3 depicts the

sensitivity of the models and PI-RADS assessment on the per-

lesion analysis. The per-lesion sensitivity of the biparametric

model, ADC model, and PI-RADS assessment was 95.5% (84/

88), 94.3% (83/88), and 94.3% (83/88), respectively, with all p >

0.05. For the csPCa lesions with the greatest dimension ≥1.5cm,

the sensitivity of the biparametric model was 100%, and the

sensitivity of the ADC model and PI-RADS assessment was

97.6% (40/41, with p > 0.05). The sensitivity showed no
Frontiers in Oncology 06
significant difference between the models and PI-RADS

regardless of whether the csPCa lesions were in the PZ or the TZ.

In addition, the mean DSC based on csPCa lesions in the test

were 0.64 ± 0.24 and 0.66 ± 0.23 for the biparametric model and

the ADC model, respectively. Figure 3 demonstrates examples of

the csPCa segmentation of the biparametric model.
Based on sextants

A total of 840 sextants from the test set were analyzed,

including 113 sextants of csPCa and 727 sextants of non-csPCa.

The diagnostic efficacy and comparisons of the models and the PI-

RADS assessment based on sextants are summarized in Tables 4

and 5. The biparametric model and PI-RADS assessment both

had relatively high sensitivity, specificity and accuracy, i.e., 95.6%

(108/113) vs. 92.9% (105/113), 91.5% (665/727) vs. 92.2% (670/

727), and 92.0% (773/840) vs. 92.3% (775/840), respectively, all

with p > 0.05. The ADC model demonstrated a comparable

sensitivity of 91.2% (103/113) when compared with the

biparametric model where p = 0.125, while the ADC model had

a specificity of 86.8% (631/727) and accuracy of 87.4% (734/840),

which were both lower than the biparametric model (all p< 0.001).

Considering all the mpMRI sequences and detailed pathological

results, 61.5% (59/96) of the false-positive sextants from the ADC

model were hyperplastic nodules and asymmetric central zone,

which is shown in Figure 4, while the ratio was 45.2% (28/62) for

the biparametric model.
Based on patients

For the 140 patients (csPCa, 69; non-csPCa, 71) in the test

set, the performance and comparisons of the models and the PI-

RADS assessment based on patients are shown in Tables 4 and 5.

Biparametric model and PI-RADS assessment had comparable

per-patient sensitivity, specificity, and accuracy, i.e. 98.6% (68/

69) vs. 98.6% (68/69), 64.8% (46/71) vs. 66.2% (47/71) and 81.4%

(114/140) vs. 82.1% (115/140), respectively (all p > 0.05). ADC

model had a similar sensitivity of 97.1% (67/69) compared with

the combined model and PI-RADS assessment. The specificity
TABLE 3 Per-lesion sensitivity of the models and PI-RADS assessment.

Biparametric model (%) ADC model (%) PI-RADS (%) p

Total 95.5 (84/88) [88.8, 98.8] 94.3 (83/88) [87.2, 98.1] 94.3 (83/88) [87.2, 98.1] >0.05

Peripheral zone 95.0 (57/60) [86.1, 99.0] 93.3 (56/60) [83.8, 98.2] 96.7 (58/60) [88.5, 99.6] >0.05

Transition zone 96.4 (27/28) [81.7, 99.9] 96.4 (27/28) [81.7, 99.9] 89.3 (25/28) [71.8, 97.7] >0.05

Dimension 0.4-1.5cm 91.5 (43/47) [79.6, 97.6] 91.5 (43/47) [79.6, 97.6] 91.5 (43/47) [79.6, 97.6] >0.05

Dimension ≥1.5cm 100.0 (41/41) [96.4, 100] 97.6 (40/41) [87.1, 99.9] 97.6 (40/41) [87.1, 99.9] >0.05
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and accuracy of the biparametric model were slightly higher

than those of the ADC model (specificity, 54.9%; accuracy,

75.7%); however, the statistical significance was not reached

(p = 0.118, 0.077).
Discussion

Our approach using cascaded CNNs could automatically

detect and segment the suspicious csPCa lesions on MR images
Frontiers in Oncology 07
without any human intervention. The whole prediction process

could be completed within a few seconds per case, which was

much faster than human interpretation using PI-RADS, which

normally takes several minutes. There are several benefits of

using a cascaded framework for the segmentation of hierarchical

structures. First, many proposed methods try to solve the

segmentation problem using a single neural network.

Considering the great variability in the shape, size, texture,

and appearance of the prostate gland and PCa, we suggest

using cascaded CNNs for the segmentation task to improve
TABLE 4 Performance of the models and PI-RADS assessment based on sextants and patients.

Sensitivity (%) Specificity (%) Accuracy (%)

Based on sextant

Biparametric model 95.6 (108/113) [90.0, 98.6] 91.5 (665/727) [89.2, 93.4] 92.0 (773/840)

ADC model 91.2 (103/113) [84.3, 95.7] 86.8 (631/727) [84.1, 89.2] 87.4 (734/840)

PI-RADS 92.9 (105/113) [86.5, 96.9] 92.2 (670/727) [90.0, 94.0] 92.3 (775/840)

Based on patient

Biparametric model 98.6 (68/69) [92.2, 99.9] 64.8 (46/71) [52.5, 75.8] 81.4 (114/140)

ADC model 97.1 (67/69) [89.9, 99.7] 54.9 (39/71) [42.7, 66.8] 75.7 (106/140)

PI-RADS 98.6 (68/69) [92.2, 99.9] 66.2 (47/71) [54.0, 77.0] 82.1 (115/140)
PI-RADS, Prostate Imaging Reporting and Data System.
Data in brackets are 95% CIs.
A B

D E F

C

FIGURE 3

(A–F) Examples of the csPCa lesion segmentation performance of the biparametric model. The prediction results (A–F), yellow line on the ADC
map were highly consistent with the manual annotation (A–F), blue line on ADC map by experienced urogenital radiologists according to
pathological results.
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the segmentation accuracy, and each network can focus on one

segmentation problem. Thus, they are easier to train and can

reduce over-fitting. Second, in consideration of the PCa lesions,

these can vary in frequency and malignancy depending on the

zone; the hierarchical pipeline follows the anatomical structures

of the prostate and uses them as spatial constraints. Thus, the

model for automated csPCa detection and classification will

likely benefit.
Frontiers in Oncology 08
The results demonstrated that the biparametric model had

high sensitivity (95.5%, 95.6%, and 98.6% based on lesions,

sextants, and patients respectively) and acceptable specificity

(64.8%, 91.5%; based on patients and sextants) and had

comparable performance to PI-RADS evaluation by an

experienced radiologist, which is consistent with Schelb’s

findings (13). The preliminary results of our study add to the

evidence that fully automated deep learning models for csPCa
A B

D E F

C

FIGURE 4

(A–C) Axial MR images obtained in a 56-year-old patient with a PSA level of 4.2 ng/ml and with negative biopsy findings. T2WI (A) showed a
heterogeneous encapsulated nodule in the left transition zone (arrow) and the ADC map (B) showed hypointensity (arrow). The ADC model (C)
appeared false positive (red region). (D–F) Axial MR images obtained in a 64-year-old patient with a PSA level of 5.9 ng/ml and with negative
biopsy findings. T2W (D) and ADC (E) showed a normal left central zone, while the ADC model (F) appeared false positive in this area (red mark).
The biparametric model gave negative predictive values for both cases.
TABLE 5 Comparisons of the models and PI-RADS assessment based on sextants and patients.

Sensitivity Specificity Accuracy

Based on sextants

Biparametric model vs. ADC model 0.125 <0.001 <0.001

Biparametric model vs. PI-RADS 0.508 0.630 0.910

ADC model vs. PI-RADS 0.754 <0.001 <0.001

Based on patients

Biparametric model vs. ADC model 1.000 0.118 0.077

Biparametric model vs. PI-RADS 1.000 1.000 1.000

ADC model vs. PI-RADS 1.000 0.077 0.064
fro
PI-RADS, Prostate Imaging Reporting and Data System.
Bold characters indicate that the difference was statistically significant (p< 0.05).
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detection have now even reached the level of an experienced

radiologist (13, 27). Further prospective studies based on large

consecutive data are needed for clinical validation. Furthermore,

our model could also determine the boundary of csPCa precisely.

The DSC based on csPCa lesions was 0.64 and 0.66 for the

biparametric model and ADC model, respectively, which was

higher than that in similar studies on csPCa detection that

reported 0.35–0.58 (13, 28, 29). The good segmentation

performance would facilitate the 3D prostate MRI-TRUS

fusion targeted biopsy. Additionally, a 3D model for the

visualization of csPCa and the adjacent vital structures, based

on accurate segmentation, may be helpful for the urologist in the

surgery, as well as for patient education (30). However, DSC as a

voxel-level metric remains limited for lesion-level PCa detection

and can misrepresent the accuracy for evaluating the localization

of multifocal PCa (31, 32). Therefore, our study based on the

actual clinical practice mainly used sensitivity and specificity at

the lesion, sextant, and patient levels to comprehensively

evaluate the performance of the model.

T2WI and ADC derived from DWI are recommended by PI-

RADS as the most important sequences for the evaluation of TZ

and PZ lesions, respectively. Many studies demonstrated that the

diagnostic performance of biparametric MRI without DCE was

similar to those of mpMRI (33, 34). Therefore, this study mainly

used those two parameters to develop the model. Additionally,

the ADC of DWI is considered to be the current best

monoparametric sequence of prostate MRI assessment, which

is reported to have a strong relationship with the Gleason scores

(GS) of PCa and is even superior to TRUS-guided prostate

biopsy for the assessment of PCa aggressiveness (35–37). For this

reason, the proposed model trained with monoparametric ADC

was evaluated specifically. The results of our study demonstrated

that the monoparameter ADC model had a high sensitivity for

csPCa detection (94.3% [83/88] and 97.1% [67/69], based on

lesions and patients, respectively), which showed no significant

difference (p > 0.05) with the biparametric model and PI-RADS

assessment, regardless of whether the csPCa lesions were located

on the PZ or TZ. Zabihollahy et al.’s study also showed that deep

learning using only ADC was highly sensitive and could even

reach a 100% sensitivity at the level of dominant PZ tumor

detection (12), which is slightly higher than ours. The reason

may be that their study only considered the most dominant

lesion on PZ, which was easily identifiable, while our study

detected all the csPCa on the MR images. Further research with

larger volumes of testing data is needed to verify the performance

of the ADC model. The specificity of the biparametric model in

our study was higher than that of the ADC model based on

sextants (p< 0.001). When compared with the ADC model, the

biparametric model outputted fewer false-positive lesions such as

hyperplastic nodules and the central zone. Nevertheless, the high

sensitivity of the ADC model using a single parameter instead of

time-consuming mpMRI may facilitate the promotion of prostate

MRI screening.
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In contrast with studies that were trainingmodels using public

data (15, 38), the data in our study were collected consecutively

based on real-world clinical scenarios, which would allow the

model to be more easily integrated into a clinical setting. The

amount of data in the training and validation sets (145 and 21

csPCa cases, including 1204 slices and 173 slices, respectively, after

automatic prostate segmentation) was comparable to that used in

some studies (11, 12), and was larger than that in other studies (19,

20). Therefore, we put more data in the testing set (69 csPCa, 71

non-csPCa cases) to better evaluate and verify the generalization

ability of the model. Our proposed biparametric model yielded

high sensitivity of 98.6% for csPCa detection based on patients, as

well as other studies with the sensitivity ranging from 82.9% to

97% (13, 14, 39–41). However, it is worth noting that the

specificity was not as high as expected in our study (64.8%) and

in other studies (47%–76%) (12–14, 39). That is to say, the success

of the AI came at the cost of a high false-positive rate of even 50%

(42). Yu et al. (43)proposed a cascaded approach to reduce the

false positive for PCa detection, where the second-stage classifier

was able to reduce false positives at the expense of nearly an 8%

decrease in detection sensitivity. Saha et al. (29) present a multi-

stage 3D CAD model for csPCa localization in biparametric MRI

with the addition of a residual patch-wise 3D classifier to improve

the model specificity. The results demonstrated that up to 12.89%

less false positives were generated per patient, while retaining the

same sensitivity (92.29%) as before. Min et al. (44) explored the

feasibility of controlling the false positives/negatives during

training by incorporating the cost-sensitive classification losses.

More studies are needed to further explore how to improve the

specificity of the prostate CAD.

An optimal AI model should not only have good

performance for csPCa diagnosis but should also have a

perfect output form facilitating clinical practice. One

advantage of the proposed approach is that it had a perfect

output and added AI into the radiological workflow seamlessly

by automatically integrating the prediction results into

structured reports, which makes this approach more

convenient for clinical application. At present, our model can

output whether a patient has csPCa or not and the size of the

prostate gland. If csPCa lesions were found, it would further

output the size of csPCa lesions and also mark the area of csPCa

on MR images. These prediction results could be automatically

transferred into a structured report before radiologists open the

reporting system. However, a complete structured report

includes many other contents, such as whether the csPCa

lesions invade the prostate capsule and adjacent structures, as

well as lymph node condition, bone metastasis, etc. Our

institution is now exploring each of the above, and some of

them have achieved good performance (45). Our ultimate goal

was to develop a fully automatic intelligent structured report,

thereby freeing radiologists from heavy clinical paperwork.

When radiologists open structured reports, they just need to

check the accuracy of each item.
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Several limitations of our study were as follows. First, all of

the images were from a single MR machine in a single

institution. Multi-center and multi-machine data functionality

should be added to improve the generalization ability of the

model in further studies. Secondly, this U-Net model was trained

only using ADC and T2WI. Future research involving the

addition of more MRI sequences and/or clinical information

may be investigated to improve the performance of the model.

On the other hand, the model in this study achieved good results

with biparametric MRI, so streamlining MRI sequences with an

advanced algorithm may be another possible research direction.

Thirdly, even though the reference standard using TRUS-guided

systematic and targeted biopsy had high sensitivity for csPCa, it

still has a false-negative rate when compared with radical

prostatectomy. Nevertheless, our cohorts may be optimal, for

radical prostatectomy cohorts would exclude many patients who

only had a prostate biopsy and could lead to bias. Finally, this

model was only applicable to the detection and localization of

csPCa instead of staging and active surveillance.
Conclusion

In conclusion, our study demonstrated that a cascaded deep

learning model trained with ADC and T2WI achieved good

performance for the fully automated detection and segmentation

of csPCa and demonstrated comparable performance with an

experienced radiologist using PI-RADS (version 2.1). The

proposed approach can automatically integrate prediction

results into the radiological workflow seamlessly by using a

structured report. As a preliminary exploration, this study

provided a reference for future AI clinical implementation.

Further studies are needed to explore the optimal paradigm of

AI clinical integration.
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