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Precis: The exclusion of unmatched observations in propensity score matching

has implications for the generalizability of causal effects. Machine learning

methods can help to identify how the study population differs from the

unmatched subpopulation.

Background: There has been widespread use of propensity scores in evaluating

the effect of cancer treatments on survival, particularly in administrative

databases and cancer registries. A byproduct of certain matching schemes is

the exclusion of observations. Borrowing an analogy from clinical trials, one

can view these exclusions as subjects that do not satisfy eligibility criteria.

Methods: Developing identification rules for these “data-driven eligibility

criteria” in observational studies on both population and individual levels

helps to ascertain the population on which causal effects are being made.

This article presents a machine learning method to determine the

representativeness of causal effects in two different datasets from the

National Cancer Database.

Results: Decision trees reveal that groups with certain features have a higher

probability of inclusion in the study population than older patients. In the first

dataset, younger age categories had an inclusion probability of at least 0.90 in

all models, while the probability for the older category ranged from 0.47 to

0.65. Most trees split once more on an even higher age at a lower node,

suggesting that the oldest patients are the least likely to be matched. In the

second set of data, both age and surgery status were associated with inclusion.
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Conclusion: The methodology presented in this paper underscores the need

to consider exclusions in propensity score matching procedures as well as

complementing matching with other propensity score adjustments.
KEYWORDS

propensity score (PS) matching (PSM), exclusion criteria, machine learning,
nonrandomized studies, tree based models
Introduction

As identified in a recent review article, a major analytical

challenge in oncology-based health services research is the

development and application of causal inference methods (1).

While databases, such as SEER, SEER-Medicare, and other

claims-based datasets exist to answer treatment questions in

radiation oncology, the lack of randomization presents a

significant obstacle. Thus, a critical step in the analysis is to

properly adjust for confounders that might obfuscate the

association between treatment and outcome. A variety of

methods are available to address this issue, including

multivariate regression adjustment, instrumental variables, and

propensity score modeling; these are further detailed in Jagsi (1).

More generally, it is important to understand how to reconcile

evidence from the analyses observational studies versus

randomized trials in cancer; several authors have shown

evidence of discordance between these disparate sources of

information (2, 3).

Recently, there has been much work on the use of propensity

score methods in the evaluation of treatments in radiation

oncology using the databases mentioned previously. The

propensity score is defined as the probability of treatment

conditional on confounders (4). For binary treatments,

the propensity score is typically modeled using logistic

regression, although newer methods based on machine

learning techniques also exist (5). Given the estimated

propensity score, the treatment effect of interest can be

estimated using a variety of approaches, including inverse

probability weighting, subclassification, regression adjustment,

and matching (6).

This article focuses on matching, the premise of which is that

for every treated subject, one or more untreated subjects exist

with similar propensity scores. Since scores fall on a continuum,

the advice of Rosenbaum and Rubin (7) is to match within a

certain caliper distance. Typically, a 1:1 matching scheme or

more generally, a K:1 matching scheme, where K denotes the

number of control subjects, is used in practice. Thus, by

definition, observations that do not satisfy the matching

criteria are discarded from the dataset.
02
This article takes the complementary view that unmatched

observations represent subjects for whom causal inferences

cannot be made based on the observed data. By contrast,

matched observations represent what we term treatment-

relevant individuals. These are the subjects for whom it is

possible to estimate treatment effects. We argue that the study

and identification of treatment-relevant individuals is important

in its own right for the following reasons:
1. It can identify violations of assumptions typically used in

causal inferential analyses;

2. It can target the subpopulation in our data for which it is

appropriate to make inferences;
Regarding (2), an underappreciated point in the literature is

that the exclusion of subjects during matching effectively defines

a data-adaptive causal estimand. This is contrary to how causal

effects are typically formulated in the statistical literature,

wherein a causal estimand is defined for the entire study

population (6). More recently, given the importance of

increasing the representation of communities that have been

historically under-represented in clinical trials and medical

studies, (2) could help to identify gaps in representation.

Additionally, modeling treatment relevancy as a function

allows us to see how variables in the original dataset

systematically differ from those in the matched dataset. This is

performed using recursive-partitioning analysis (RPA) (8),

which was initially used in radiation oncology by Gaspar (9)

for identification of prognostic factors in brain metastasis

clinical trials conducted by the Radiation Therapy Oncology

Group, though the goal of RPA here is different.

Our aim is to understand what factors make the matched

dataset different from the original dataset not only at the

population level, but also at the individual level. Using

interpretable machine learning (10), a recently developed

procedure from the data mining community, we identify

factors that explain treatment relevance on an individual level.

We apply the proposed methodology to data previously analyzed

by Amini (11) and Rusthoven (12) from the National Cancer

Database (NCDB).
frontiersin.org

https://doi.org/10.3389/fonc.2022.958907
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ghosh et al. 10.3389/fonc.2022.958907
Materials and methods

Data source and patient selection

The NCDB is a joint project of the Commission on Cancer of

the American College of Surgeons and the American Cancer

Society. It is a hospital-based registry that represents 70% of all

cancer cases in the US, drawing data from more than 1,500

commission-accredited cancer programs. The American College

of Surgeons and the Commission on Cancer have not verified

and are not responsible for the analytic or statistical

methodology employed, or the conclusions drawn from these

data by the investigator. The NCDB has established criteria to

ensure the data submitted meet specific quality benchmarks. The

following NCDB analysis was performed with the approval of

our local institutional review board.

We apply our methodology to two separate NCDB datasets.

The first, which was originally analyzed in Amini (11), is

comprised of head and neck squamous cell carcinoma patients

over 70. With this data, we examine the study population after

matching patients on propensity scores for starting

chemotherapy (CT) within 14 days of beginning radiation

therapy (RT). Scores were calculated given age, sex, race,

Charlson-Deyo comorbidity score, tumor stage, nodal stage,

and cancer site (oropharynx, larynx, or hypopharynx). Missing

data were coded as missing. Table A in the Supplementary

Materials section provides descriptive statistics for this study.

Figure 1 shows a flow diagram detailing the exclusion criteria for

these data.

The second dataset, first examined in Rusthoven (12), is

comprised of patients over the age of 65 with newly diagnosed

glioblastoma who underwent one of three treatments – CT, RT,
Frontiers in Oncology 03
or combined modality therapy (CMT). The NCDB was

queried for patients who were 65 years of age with newly

diagnosed GBM from 2005 onwards. Exclusions were

made for the following reasons: palliative care, deaths within 1

month of diagnosis. Observations with missing data were

excluded. Complete data sets for RT, CT, surgery, Charlson-

Deyo comorbidity score, age, sex, and year of diagnosis.

Molecular data including MGMT status were not available for

analysis. Subjects were matched on the probability of receiving

each treatment compared to each of the other two separately.

Propensity scores were calculated given age, sex, race, Charlson-

Deyo comorbidity score, year of diagnosis, and an indicator

for surgery.
Statistical analysis

Proposed algorithm
We let the T denote the treatment variable and Z the vector

of confounders. Mathematically, the propensity score (4) is

given by

eðZÞ  ¼  PðT  ¼  1jZÞ
Based on the observed data (Ti,Zi), i=1,…,n, we typically

estimate e(Z) using logistic regression. In this article, we

used logistic regression in conjunction with several machine

learning methods. Once we estimated the propensity scores, a

matching algorithm was used to match observations with T = 1

to those with T = 0 with similar values of e(Z). This was done

using a convex relaxation of the matching problem, which

involves formulation of a bipartite graph and network flow

optimization algorithms in order to identify matched sets (13).
FIGURE 1

Flow diagram for exclusion criteria in study by Amini et al.
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An intuitive overview of propensity score matching with a 1-1

scheme can be found in Box 1.

Note that we can modify step 3 in Box 1 in order to perform

variants of 1-1 matching; these include k:1 matching, variable

matching, frequency matching and greedy matching. As

described by Traskin and Small (14), evaluation of treatment-

relevant observations and unmatched subjects has the potential

to be informative. Using classification and regression trees

(CART) (8), we propose a tree-based approach for modelling

the probability of being in the matched set. A tree classifier

works as follows: beginning with the initial dataset, it repeatedly

splits nodes based on one covariate in Z. This continues until the

algorithm stops splitting by some stopping criterion. Each

terminal node is then assigned a class label by the majority of

subjects that fall in that terminal node. Once a test data point

with a covariate vector Z is introduced, it is run from the top of

the tree until it reaches one of the terminal nodes. The class label

of the terminal node will then make the prediction. Compared to

parametric algorithms, tree-based algorithms have several

advantages. First, they tend to be much more flexible than

parametrically specified regression models. Second, the

algorithm for tree construction only requires criteria for

splitting and termination. Third, by splitting a tree based on

different covariates at different nodes, the algorithm

automatically includes higher-order interaction terms. Finally,

they can be nicely visualized.

One major issue in fitting tree-based classifiers is their

tendency to overfit. An overfit tree will have strong predictive

performance on the original dataset but yield high prediction

errors for new data. To solve this problem, Breiman et al. (8)

proposed pruned CART in which a tree is fully grown and then

pruned back using a cross-validated error criterion. Compared

to a standard tree classifier, the pruned tree is smaller in size and

yields lower prediction errors on future datasets. Here, we used a

cost-complexity measure, implemented in the R package rpart,

as a criterion on which to determine tree size.

Our algorithm thus consists of the following steps: (a)

determine using a matching algorithm which observations are

included in the final sample and which are not; denote these

observations as “in”/”out” observations; (b) fit a model for the

probability of being an “in” observation using the existing

covariates with CART; (c) Prune the tree minimizing the cost

complexity measure.

We began by estimating propensity scores for the probability

that chemotherapy started within 14 days of the RT start date

using six methods: logistic regression, rpart, random forest,

covariance balancing score estimation (CBPS), support vector

machines (SVM) and the Toolkit for Weighted Analysis of

Nonequivalent Groups (TWANG). The same was applied to

the second study (11) with the goal of estimating the probability

of receiving each treatment (CMT, RT, or CT) over each of the

others individually. We then matched propensity scores using

K:1 nearest neighbors with replacement using the MatchIt
Frontiers in Oncology 04
package in R, which employs the nonparametric matching

methods suggested by Ho, Imai, King and Stuart (13).

After matching, decision trees were grown for each set of

propensity scores with the goal of identifying the features that

best explain treatment relevance. Each tree was then pruned

using the complexity parameter equal to its minimum cross

validated error.
Population versus individual-level
explainers

The proposed methods are capable of detecting variables

that correlate with inclusion in the matched sample. We can thus

think of this as a population-level explainer. However, it is also

important to understand the factors associated with inclusion at

a subject-specific level. To construct individual-level explainers,

we employed the Local Interpretable Model-Agnostic

Explanation (LIME) algorithm (10), which assumes a linear

model in the neighborhood of the predicted value. This allows

us to gain a better sense of the importance of a given feature in

the model’s decision of whether or not an observation

was matched. LIME works by predicting n permutations

of an observation with the model of interest and then

calculates a similarity score for each permutation. Based on

the similarity score, LIME selects the features with the most

explanatory power and fits a simple model to calculate

weights for each feature. Weights are then presented in an

interpretable graphic to clarify how the model reached its

classification decision.
Results

Head and neck cancer data

Patient characteristics
A total of 4,042 patients were included in the first dataset:

1,504 (37%) received RT alone and 2,538 (63%) received CMT.

The median follow-up occurred at 23 months (range: 2-126

months). Median age of patients undergoing RT alone was

79 years (71-90) vs. 75 years (71-90) for CMT. The majority

of CMT cases were larynx (50.4%), followed by oropharynx

(35.5%), and hypopharynx (13.1%). More basel ine

characteristics are available in the supporting material.

Population-level explainer
Patient characteristics by treatment relevance are presented

in Table 1. Among the various propensity score methods, the

number of unmatched observations varies from 431 to 650. The

mean age for matched observations is consistently lower at 77

years compared to the mean for the unmatched group, which

ranges between 82-84.
frontiersin.org
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TABLE 1 Head and neck cancer patient characteristics by match status for given propensity score method.

Characteristic (%) or (mean (sd)) Logistic regression CART decision tree Random forest

out in p out in p out in p

n 585 3457 431 3611 570 3472

Age 83 (6) 77 (5) < .001 84 (5) 77 (5) < .001 82 (6) 77 (5) < .001

Sex

Male 337 (57.6) 2390 (69.1) < .001 260 (6.3) 2467 (68.3) .001 340 (59.6) 2387 (68.8) < .001

Female 248 (42.4) 1067 (3.9) 171 (39.7) 1144 (31.7) 230 (4.4) 1085 (31.2)

Race

White 462 (79.0) 2989 (86.5) < .001 373 (86.5) 3078 (85.2) .722 455 (79.8) 2996 (86.3) < .001

Black 108 (18.5) 391 (11.3) 48 (11.1) 451 (12.5) 102 (17.9) 397 (11.4)

Other 15 (2.6) 77 (2.2) 10 (2.3) 82 (2.3) 13 (2.3) 79 (2.3)

Facility type

CCP 82 (14.0) 423 (12.2) .446 62 (14.4) 443 (12.3) .343 80 (14.0) 425 (12.2) .385

CCCP 314 (53.7) 1865 (53.9) 234 (54.3) 1945 (53.9) 295 (51.8) 1884 (54.3)

Academic/research 189 (32.3) 1169 (33.8) 135 (31.3) 1223 (33.9) 195 (34.2) 1163 (33.5)

Charlson-Deyo comorbidity score

0 416 (71.1) 2461 (71.2) .002 313 (72.6) 2564 (71.0) .528 414 (72.6) 2463 (7.9) .024

1 100 (17.1) 722 (2.9) 79 (18.3) 743 (2.6) 96 (16.8) 726 (2.9)

2 69 (11.8) 274 (7.9) 39 (9.0) 304 (8.4) 60 (1.5) 283 (8.2)

Cancer site

Oropharynx 137 (23.4) 1183 (34.2) < .001 94 (21.8) 1226 (34.0) < .001 137 (24.0) 1183 (34.1) < .001

Larynx 246 (42.1) 1799 (52.0) 198 (45.9) 1847 (51.1) 253 (44.4) 1792 (51.6)

Hypopharynx 202 (34.5) 475 (13.7) 139 (32.3) 538 (14.9) 180 (31.6) 497 (14.3)

Tumor stage

T1 28 (4.8) 244 (7.1) < .001 20 (4.6) 252 (7.0) < .001 26 (4.6) 246 (7.1) < .001

T2 97 (16.6) 829 (24.0) 60 (13.9) 866 (24.0) 99 (17.4) 827 (23.8)

T3 254 (43.4) 1539 (44.5) 213 (49.4) 1580 (43.8) 267 (46.8) 1526 (44.0)

T4 206 (35.2) 845 (24.4) 138 (32.0) 913 (25.3) 178 (31.2) 873 (25.1)

Nodal stage

N0 327 (55.9) 1261 (36.5) < .001 246 (57.1) 1342 (37.2) < .001 303 (53.2) 1285 (37.0) < .001

N1 157 (26.8) 810 (23.4) 102 (23.7) 865 (24.0) 149 (26.1) 818 (23.6)

N2 87 (14.9) 1276 (36.9) 76 (17.6) 1287 (35.6) 97 (17.0) 1266 (36.5)

N3 14 (2.4) 110 (3.2) 7 (1.6) 117 (3.2) 21 (3.7) 103 (3.0)

Characteristic (%) or (mean (sd)) CBPS SVM TWANG

out in p out in p out in p

n 578 3464 650 3392 647 3395

Age 83 (6) 77 (5) < .001 82 (6) 77 (5) < .001 83 (6) 77 (5) < .001

Sex

Male 320 (55.4) 2407 (69.5) < .001 374 (57.5) 2353 (69.4) < .001 383 (59.2) 2344 (69.0) < .001

Female 258 (44.6) 1057 (3.5) 276 (42.5) 1039 (3.6) 264 (4.8) 1051 (31.0)

Race

White 460 (79.6) 2991 (86.3) < .001 508 (78.2) 2943 (86.8) < .001 520 (8.4) 2931 (86.3) < .001

Black 105 (18.2) 394 (11.4) 118 (18.2) 381 (11.2) 106 (16.4) 393 (11.6)

Other 13 (2.2) 79 (2.3) 24 (3.7) 68 (2.0) 21 (3.2) 71 (2.1)

Facility type

CCP 94 (16.3) 411 (11.9) .007 93 (14.3) 412 (12.1) .249 102 (15.8) 403 (11.9) .016

CCCP 287 (49.7) 1892 (54.6) 336 (51.7) 1843 (54.3) 327 (5.5) 1852 (54.6)

Academic/research 197 (34.1) 1161 (33.5) 221 (34.0) 1137 (33.5) 218 (33.7) 1140 (33.6)

(Continued)
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Figure 2 displays decision trees for each method. Pruned

trees did not differ from the originals except in the cases of CBPS

and TWANG. The results strongly suggest that younger patients

are more likely to be included in the study population. Across all

trees, the first (and most explanatory) nodes split at ages 80 and

above. Although most trees assign the older group a chance of

inclusion of greater than 0.5, the probability of this group being

matched is still consistently lower than that of the younger group

with probabilities of 0.9 and above. The inclusion probability

continues to lessen as age increases, which can be seen from the

fact that most trees split a second time at age 88, often after

accounting for other factors.

Subject-specific explainer
To examine the specific features that contribute to the

predicted outcome for each subject, Figure 3 compares LIME

explanations for matched and unmatched individuals that were

correctly classified from each tree. LIME further highlights the

importance of age in the classification decision, picking out “81<

age” as one of the more representative features for going

unmatched. Likewise, it labels age categories between 73-77 as

associated with being matched. For example, Figure 3A shows

case 3454, who is 90 years old and unmatched, while matched

case 3425 is 77. For both, age is identified as the feature most

responsible for the tree’s prediction, while little weight is

assigned to other features.
Frontiers in Oncology 06
Notably, LIME’s explanation fit (the R-squared of the simple

model fit with the similarity-weighted permuted data) is low for

the matched cases listed in Figure 3. This pattern continues

across all observations and methods with an average explanation

fit of 0.16 for unmatched and 0.55 for matched. In this scenario,

LIME appears to perform fairly well at describing why patients

are excluded, but does less well on predictions for treatment

relevance. Likewise, weights of the most representative features

are higher in unmatched cases with mean 0.29 across methods

compared to matched cases with mean weight 0.06. Alternative

analyses can be found in the Supplementary Information.
Glioblastoma data

Patient characteristics
This analysis focuses on 11,146 patients with newly diagnosed

glioblastoma from a study by Rusthoven (12). A total of 8,435

patients (76%) underwent CMT, 1,693 (15%) received RT alone,

and 1,018 (9%) received CT. Using the same techniques employed

previously, we estimated the probability of receiving CT alone

over RT, CT alone over CMT, and RT alone over CMT. Again,

pruned CART trees were grown for each method to identify

characteristics that explain treatment relevance.

Table 2 shows patient characteristics by treatment relevance

for logistic regression propensity scores only. Similar results with
TABLE 1 Continued

Characteristic (%) or (mean (sd)) CBPS SVM TWANG

out in p out in p out in p

Charlson-Deyo comorbidity score

0 394 (68.2) 2483 (71.7) .001 442 (68.0) 2435 (71.8) .012 441 (68.2) 2436 (71.8) .047

1 111 (19.2) 711 (2.5) 134 (2.6) 688 (2.3) 136 (21.0) 686 (2.2)

2 73 (12.6) 270 (7.8) 74 (11.4) 269 (7.9) 70 (1.8) 273 (8.0)

Cancer site

Oropharynx 133 (23.0) 1187 (34.3) < .001 153 (23.5) 1167 (34.4) < .001 138 (21.3) 1182 (34.8) < .001

Larynx 255 (44.1) 1790 (51.7) 274 (42.2) 1771 (52.2) 286 (44.2) 1759 (51.8)

Hypopharynx 190 (32.9) 487 (14.1) 223 (34.3) 454 (13.4) 223 (34.5) 454 (13.4)

Tumor stage

T1 40 (6.9) 232 (6.7) < .001 33 (5.1) 239 (7.0) < .001 35 (5.4) 237 (7.0) < .001

T2 86 (14.9) 840 (24.2) 109 (16.8) 817 (24.1) 114 (17.6) 812 (23.9)

T3 261 (45.2) 1532 (44.2) 270 (41.5) 1523 (44.9) 283 (43.7) 1510 (44.5)

T4 191 (33.0) 860 (24.8) 238 (36.6) 813 (24.0) 215 (33.2) 836 (24.6)

Nodal stage

N0 317 (54.8) 1271 (36.7) < .001 347 (53.4) 1241 (36.6) < .001 341 (52.7) 1247 (36.7) < .001

N1 153 (26.5) 814 (23.5) 164 (25.2) 803 (23.7) 176 (27.2) 791 (23.3)

N2 96 (16.6) 1267 (36.6) 121 (18.6) 1242 (36.6) 115 (17.8) 1248 (36.8)

N3 12 (2.1) 112 (3.2) 18 (2.8) 106 (3.1) 15 (2.3) 109 (3.2)
frontiers
CCP, Community cancer program; CCCP; Comprehensive community cancer program; CART, Classification and Regression Trees; CBPS, Covariate balancing propensity scores; SVM,
support vector machines; TWANG, Toolkit for Weighting and Analysis of Nonequivalent Groups.
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other algorithms are available in Tables B and C of the

Supporting Information. The number of excluded subjects

varies widely between the three datasets, ranging from 963 to

7,473. Matched and unmatched subjects differ in almost every

category. In particular, the majority of matched cases in the CT

vs. RT set have had surgery, while the majority of those matched

in RT vs. CMT have not. Also, those in the 80+ age category

make up a large proportion of the unmatched group in CT vs.

RT (38.1%), while making up a large portion of the matched

group in RT vs. CMT (29.4%). Further, white patients are the

only group more likely than not to be matched in CT vs. RT

whereas the opposite is true in RT vs. CMT.

Population explainer
Decision trees classifying treatment relevance can be found

in Figure 4. Trees for CT vs. RT suggest that those that
Frontiers in Oncology 07
underwent surgery were more likely to be included with

probabilities ranging between 0.65-0.73 than those that did not

with probabilities 0.46-0.48. The trees also classify patients 75+

as somewhat less likely to be included with probabilities 0.36-

0.38 versus 0.6-0.65 for younger patients.

No tree attempting to explain treatment relevance for the CT

vs. CMT set grew for any propensity score method. In other

words, the trees assigned the same probability of inclusion in the

study population (0.21) to all subjects based on the observed

characteristics. Additionally, CART estimated the same

propensity score for all subjects within sets – 0.38 for CT vs.

RT; 0.11 for CT vs. CMT; and 0.17 for RT vs. CMT. Hence the

explainer is inapplicable for these scores.

Finally, Figure 5 shows decision trees from RT vs. CMT data.

The majority of these trees classified the 80+ age category as

more likely to be included with probability 0.59-0.6 compared to
A B

D

E F

C

FIGURE 2

Population-level explainer decision trees for head and neck cancer data classify subjects as matched (“in”) or unmatched (“out”) given observed
features using propensity scores estimated by (A) logistic regression; (B) CART decision tree; (C) random forest; (D) covariate balancing
propensity scores; (E) support vector machines; and (F) the Toolkit for Weighting and Analysis of Nonequivalent Groups. Each node lists the
probability of the corresponding classification for the set of features listed above it and the percentage of subjects that exhibit that set.
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younger ages at 0.26-0.28. The tree modeling CBPS for this set

also assigns patients in the 80+ age category who have not had

surgery with probability 0.59, compared to 0.26 for younger ages.

Subject-specific explainer
Figure 6 compares LIME explanations for matched and

unmatched observations that were correctly classified from

logistic regression propensity score only. The remaining

subject-level explanations can be found in supporting material.

LIME identifies no surgery as being one of the most

deterministic features of going unmatched for the CT vs. RT

outcome, while having had surgery was the feature that most

contributed to the classification of being matched. The

explanation also identifies a Charlson-Deyo comorbidity score

of ≤1 as indicative of exclusion, though the weight is

comparatively much less than the influence of surgery. For RT

vs. CMT, LIME determines age to be the most representative

feature for individual-level explanations. Being in a younger age
Frontiers in Oncology 08
category is one of the most predictive features of going

unmatched, while the opposite is true for subjects 80+.

In CT vs. RT, the difference in explanation fits between

matched and unmatched are not as large as that in the first

study. The average explanation fit across methods for matched

subjects is 0.85 versus 0.86 for unmatched. The RT vs. CMT set,

however, has and mean explanation fit across methods of 0.83

for matched and 0.11 for unmatched. Weights follow a similar

pattern with mean weights 0.24 and 0.29 for matched and

unmatched respectively in the CT vs. RT set and 0.31 and 0.06

in RT vs. CMT. Alternative analyses can be found in the

Supplementary Information.
Discussion

In this paper, we have proposed a new methodology for

interpreting the results from matching algorithms in which
A B

D

E F

C

FIGURE 3

Subject-level Local Interpretable Model-Agnostic Explanations for head and neck cancer data for propensity scores estimated by (A) logistic
regression; (B) CART decision tree; (C) random forest; (D) covariate balancing propensity scores; (E) support vector machines; and (F) the
Toolkit for Weighting and Analysis of Nonequivalent Groups. Each graphic identifies the most deterministic individual-level features in classifying
matched (“in”) or unmatched (“out”) status and notes whether this trait supports or contradicts the probability ascribed by the decision tree.
Weights indicate how strongly representative each feature is of the classification.
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observations are discarded from the sample. While there is a lot

of work on how to estimate causal effects using matching

methods, we view our methodology as a `meta-modeling’

strategy, which has not explored in the literature, with the

exception of the of Traskin and Small (14). The focus is not

on estimating a causal effect using the matched sample but rather

in understanding what factors contribute to inclusion in the

matched sample itself. In addition, we take the view that

matching is a `black-box’ algorithm whose decisions about

matching are unlocked using explainable machine learning.
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We now point some limitations in the methodology. First, if

the proportion of observations in the treatment group represents

a small fraction of the total population, then much of the control

population will be discarded. This will lead to explainable

machine learning models that are built on imbalanced data,

which can pose problems in practice. Our advice in those

situations is to eschew 1:1 matching in favor of alternative

matching schemes, such as k:1 matching or optimal matching.

Another limitation of the methodology is the fact that the

explainable machine learning models are only as good as the
TABLE 2 Glioblastoma patient characteristics by treatment and match status based on logistic regression propensity scores.

Characteristic (%) CT vs. RT CT vs. CMT RT vs. CMT

out in p out in p out in p

n 963 1748 7473 1980 6995 3133

Age

65-69 152 (15.8) 513 (29.3) < .001 3085 (41.3) 607 (30.7) < .001 3041 (43.5) 696 (22.2) < .001

70-74 215 (22.3) 465 (26.6) 2176 (29.1) 544 (27.5) 2085 (29.8) 761 (24.3)

75-79 229 (23.8) 424 (24.3) 1390 (18.6) 473 (23.9) 1273 (18.2) 755 (24.1)

80+ 367 (38.1) 346 (19.8) 822 (11.0) 356 (18.0) 596 (8.5) 921 (29.4)

Sex

Female 450 (46.7) 934 (53.4) .001 4290 (57.4) 1064 (53.7) .004 4083 (58.4) 1565 (50.0) < .001

Male 513 (53.3) 814 (46.6) 3183 (42.6) 916 (46.3) 2912 (41.6) 1568 (50.0)

Race

White 840 (87.2) 1646 (94.2) < .001 6988 (93.5) 1859 (93.9) .716 6568 (93.9) 2857 (91.2) < .001

Black 75 (7.8) 57 (3.3) 278 (3.7) 66 (3.3) 241 (3.4) 167 (5.3)

Other/unreported 48 (5.0) 45 (2.6) 207 (2.8) 55 (2.8) 186 (2.7) 109 (3.5)

Charlson-Deyo comorbidity score

0 640 (66.5) 1133 (64.8) .64 5241 (70.1) 1295 (65.4) < .001 4913 (70.2) 2068 (66.0) < .001

1 180 (18.7) 351 (20.1) 1460 (19.5) 391 (19.7) 1369 (19.6) 603 (19.2)

2 143 (14.8) 264 (15.1) 772 (10.3) 294 (14.8) 713 (10.2) 462 (14.7)

Year diagnosed

2005-2008 628 (65.2) 962 (55.0) < .001 3796 (50.8) 1057 (53.4) .043 3427 (49.0) 1924 (61.4) < .001

2009-2011 335 (34.8) 786 (45.0) 3677 (49.2) 923 (46.6) 3568 (51.0) 1209 (38.6)

Surgery

No 467 (48.5) 448 (25.6) < .001 1695 (22.7) 463 (23.4) .528 1395 (19.9) 1192 (38.0) < .001

Yes 496 (51.5) 1300 (74.4) 5778 (77.3) 1517 (76.6) 5600 (80.1) 1941 (62.0)
frontiers
CT, chemotherapy; RT, radiation therapy; CMT, combined-modality therapy (RT and CT).
BOX 1 Explanation of propensity score matching.

In propensity score matching, the following steps are performed:
1. A propensity score model is fit to all subjects, i=1,…,n. The propensity score fits a regression model with treatment as the outcome model and confounders

as the independent variables.
2. Estimate propensity scores for all n subjects.
3. For each subject in the treatment group, the subject in the control group with the closest propensity score is found. The closeness is determined using a

caliper metric.(13) Once the control is found, it is removed from the dataset. This is known as 1-1 matching.
4. Step 3 is repeated for each of the treated subjects in the dataset.
5. If there are any treated subjects without controls, they are removed from the dataset.
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quality of the input variables used in the analysis. A tree-based

methodology was used for population-level explanations, which

offered several advantages, two of which are incorporation of

interactions and intuitive visualization.

The exclusion of unmatched observations in propensity

score matching may have consequences beyond just loss of

information. Within datasets in this analysis, decision trees

consistently identified particular features as more likely to be

matched across multiple estimation methods, including age

groups and surgery status. By applying these results to the

population without regard to age or prior treatment,

researchers make the assumption that there is no difference in

treatment response between older and younger patients or

patients who have and have not had surgery. If these groups of

patients tend to respond to treatment differently, the results may

not be applicable and therefore beneficial to the subgroup less

likely to be included. With the current emphasis on

understanding health disparities in vulnerable populations, it is

precisely these groups for which matching might be difficult so

that they get excluded from matching procedure.

Our results raise a few questions for potential further study.

First, when all subjects are given the same probability of inclusion,
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as with the CART-generated propensity scores for the Rusthoven

data, what are the implications for generalizability? How does this

scenario compare to the representativeness of the Amini data in

which age was clearly correlated with being unmatched, but

treatment relevance could not be so easily predicted?

Determining the specific outcomes that imply generalizability or

lack thereof is necessary to guide the application of this method.

We have argued that describing the subpopulation of

treatment relevant individuals is an important stage in

propensity score matching. If the matched population is

assumed to reflect the population as a whole, inference could

be unintentionally generalized to a subpopulation that was not

actually analyzed. Ignoring this step is akin to extrapolating the

results of a randomized trial to individuals that did not meet the

inclusion criteria.

Finally, this study represents a novel application of

explainable machine learning methods, which have recently

received much attention in the data mining community. Our

philosophy has been to view matching as a `black-box’modeling

akin to deep learning and to then use explainable machine

learning to better understand the decisions on what subjects

get matched.
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FIGURE 4

Population-level explainer decision trees for glioblastoma data comparing chemotherapy vs. radiation therapy outcomes. Trees classify subjects
as matched (“in”) or unmatched (“out”) given observed features using propensity scores estimated by (A) logistic regression; (B) CART decision
tree; (C) random forest; (D) covariate balancing propensity scores; (E) support vector machines; and (F) the Toolkit for Weighting and Analysis of
Nonequivalent Groups. Each node lists the probability of the corresponding classification for the set of features listed above it and the
percentage of subjects that exhibit that set.
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Note: R code for the methods discussed in this paper is

a v a i l a b l e on G i tHub : h t t p s : / / g i t hub . c om/v z s t e /

ExplainerCode.git
Data availability statement

The data can be obtained from SK and BJ provided that the

requestor give a description about the intended use of the dataset.
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Requests to access these datasets should be directed to SK,

sana.karam@cuanschutz.edu; BJ, Bernard.jones@cuanschutz.edu.
Ethics statement

Ethical review and approval were not required for the study

on human participants in accordance with the local legislation

and institutional requirements. Written informed consent for
A B

FIGURE 6

Subject-level Local Interpretable Model-Agnostic Explanations for propensity scores estimated by logistic regression from glioblastoma data
comparing both (A) chemotherapy vs. radiation and (B) radiation vs. combined modality therapy. Each graphic identifies the most deterministic
individual-level features in classifying matched (“in”) or unmatched (“out”) status and notes whether this trait supports or contradicts the
probability ascribed by the decision tree. Weights indicate how strongly representative each feature is of the classification.
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FIGURE 5

Population-level explainer decision trees for glioblastoma data comparing radiation vs. combined modality therapy. Trees classify subjects as
matched (“in”) or unmatched (“out”) given observed features using propensity scores estimated by (A) logistic regression; (B) CART decision tree;
(C) random forest; (D) covariate balancing propensity scores; (E) support vector machines; and (F) the Toolkit for Weighting and Analysis of
Nonequivalent Groups. Each node lists the probability of the corresponding classification for the set of features listed above it and the
percentage of subjects that exhibit that set.
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