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Objective: The objective of this study is to evaluate the expression of different

nicotinic acetylcholine receptors (nAChRs), programmed death ligand-1 (PD-

L1), and dopamine receptor D2 (DRD2) as prognostic factors in lung cancer and

any correlation among them. Since all of the above genes are typically

upregulated in response to smoking, we hypothesized that a correlation

might exist between DRD2, PD-L1, and nAChR expression in NSCLC patients

with a smoking history and a prediction model may be developed to assess the

clinical outcome.

Methods: We retrospectively analyzed samples from 46 patients with primary

lung adenocarcinoma who underwent surgical resection at Mayo Clinic

Rochester from June 2000 to October 2008. The expression of PD-L1,

DRD2, CHRNA5, CHRNA7, and CHRNA9 were analyzed by quantitative PCR

and correlated amongst themselves and with age, stage and grade, smoking

status, overall survival (OS), and relapse-free survival (RFS).

Results: Only PD-L1 showed a statistically significant increase in expression in

patients older than 65. All the above genes showed higher expression in stage

IIIB than IIIA, but none reached statistical significance. Interestingly, we did not

observe significant differences among never, former, and current smokers, but

patients with pack years greater than 30 showed significantly higher expression

of CHRNA9. We observed a strong positive correlation between PD-L1/DRD2,

PD-L1/CHRNA5, and CHRNA5/CHRNA7 and a weak positive correlation
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between DRD2/CHRNA5 and DRD2/CHRNA7. Older age was independently

associated with poor OS, whereas lower CHRNA7 expression was

independently associated with better OS.

Conclusions: We observed strong positive correlations among PD-L1, DRD2,

and some of the nAChRs. We investigated their prognostic significance in lung

cancer patients and found CHRNA7 to be an independent prognostic factor.

Overall, the results obtained from this preliminary study warrant a large cohort-

based analysis that may ultimately lead to potential patient-specific

stratification biomarkers predicting cancer-treatment outcomes.
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Introduction

Lung cancer is the leading cause of cancer-associated

mortalities irrespective of gender in the United States and

worldwide (1, 2). Approximately 85% of lung cancer falls

under non-small-cell lung cancer (NSCLC), while the rest is

categorized as small-cell lung cancer (SCLC) (3). Tobacco

smoking is the primary risk factor for lung cancer; SCLC is

exclusively seen among smokers, whereas approximately 80-90%

of NSCLC is smoking-related (4, 5). Traditionally, nicotine has

been considered addictive only and not carcinogenic. However,

studies have shown that nicotine promotes proliferation,

migration, invasion, and survival in vitro and tumor growth

and metastasis in vivo in cancers of different origins, including

lung cancer (6–15). The primary underlying mechanism behind

the tumor-promoting activity of nicotine is exerted through the

upregulation and activation of nicotinic acetylcholine receptors

(nAChR) (10, 16–18). Acetylcholine (Ach) is the endogenous

ligand of nAChRs, but nicotine can displace Ach due to its

higher affinity towards these receptors, thereby activating

downstream tumor-promoting signaling cascades (19–21).

The nAChRs consist of five subunits spanning the plasma

membrane and are organized symmetrically around a central ion

pore (22, 23). They act as ligand-gated ion channels facilitating

calcium flux and release of neurotransmitters in neuronal cells

and neuromuscular junctions or growth factors such as VEGF in

epithelial and endothelial cells (23–25). To date, 17 nAChR

subunits (a1-a10, b1-b4, d, ϵ, and g) have been identified in

vertebrates, although only a few of them (a3-a7, a9, b2, and b4)
have been studied in the context of cancer (26).

Dopamine receptors (DRD1–5) are typically observed in the

brain (27, 28), but have also been shown to express in the tumor

microenvironment, where they play vital roles in tumorigenesis

and cancer progression (29–34). We initially unveiled that
02
DRD2 is essential for dopamine-mediated selective inhibition

of VPF/VEGF-induced vascular permeability and angiogenesis

(35). DRD2 is implicated in lung cancer (36–39), and DRD2

agonists demonstrate significant growth inhibition in both

NSCLC and SCLC (29, 31, 40, 41). Interestingly, some DRD2

variant genotypes have been associated with a higher affinity to

smoking and a lower likelihood of smoking cessation, which has

been proposed to be a probable cause behind the familial

aggregation of smoking-related cancers (42, 43). DRD2 genetic

polymorphisms have been associated with reduced

bioavailability of dopamine and a higher risk of NSCLC

among smokers (36). We also showed that DRD2 expression

in tumors of lung cancer patients demonstrates a positive

correlation with the extent of cigarette smoke exposure and

the histological grade of the tumor (29). Several studies

suggested potential cross-talk between DRD2 with nAChRs

within the brain (44–49), but no conclusive evidence of their

interaction in cancer has been observed till now.

The interaction of programmed cell death protein-1 (PD-1)

with its ligands, namely programmed cell death ligand-1 and -2

(PD-L1, PD-L2), act as immune checkpoints by reducing

functionality of effector T-cells in peripheral tissues, and

preventing them from attacking the host cells during

inflammatory response (50, 51). Cancer cells hijack this

mechanism to evade immune surveillance and induce immune

suppression by expressing PD-L1 or PD-L2 on their surface (52,

53). Immune checkpoint inhibition via antibodies against PD-1

or PD-L1 demonstrated improved therapeutic response in

several types of cancer, including NSCLC (54–58). Although

patient stratification based on PD-L1 expression improved the

response rate compared to non-stratified patients (59–61), a

response is not always dictated by their expression (62–66).

Interestingly, recent studies demonstrated a strong correlation

between PD-L1 expression and smoking status in NSCLC
frontiersin.org
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patients, where smokers with higher pack-years demonstrated a

higher intensity of PD-L1 expression (67–69). However, the

correlation between PD-L1 and nAChRs have not been well

studied in NSCLC patients.

The primary goal of the present study is to determine

whether the expression pattern of PD-L1, DRD2, and the

genes encoding different nAChR subunits in NSCLC are

affected by the age, stage, grade, and smoking status and

whether they could explain the variability of the influence of

tobacco smoking in response to therapy and survival in NSCLC.

Towards this end, we have used real-time quantitative

polymerase chain reaction (qPCR) to examine normalized

mRNA expression levels of the above genes in surgical tumor

samples from 46 NSCLC patients and examined their correlation

with the said parameters as well as with every other gene in

our study.
Materials and methods

Sample collection

We collected flash-frozen samples of lung tumor tissues

surgically removed from 46 patients with primary lung

adenocarcinoma. The patients were admitted to and

underwent surgery at Mayo Clinic Rochester from June 2000

to October 2008. Detailed demographic analyses of the patients

are provided in Table 1. To avoid the potential confounding

impact of the treatment, none of the selected patients received

neoadjuvant treatment before the surgery, although some of the

patients were treated with chemotherapy or radiotherapy or

both post-surgeries. Tumor grading was abstracted from chest

pathologists’ diagnosis documented in Mayo Clinic medical

records and categorized as well-differentiated, moderately

differentiated, poorly differentiated and undifferentiated.

Tumor staging was based on the TNM staging system 7th

edition (70). The Mayo Clinic Institutional Review Board

reviewed the study protocol, and all patients signed written

informed consent forms.
Total RNA isolation from tumor tissues

Total RNA was isolated from the flash frozen lung tumor

tissues using Allprep DNA/RNA Mini Kit (Qiagen), as per

manufacturer’s protocol. Briefly, five 10 µm sections of tumor

tissue were homogenized in RLT plus buffer supplemented with

1% b-mercaptoethanol. The lysed mixture was centrifuged at

13000 rpm for 10 minutes to precipitate any remaining tissue

debris. The clear supernatant was carefully collected, transferred

to the AllPrep DNA spin column, and centrifuged for 30 s at

13,000 rpm. The flow-through was collected for RNA isolation,

and the AllPrep DNA spin column was used for DNA isolation
Frontiers in Oncology frontiersin.org03
to be used elsewhere. For RNA isolation, flow-through was

mixed with an equal volume of 70% ethanol, and the mixture

was filtered through an RNAeasy column by centrifugation at

10000 rpm for 30 seconds. The flow-through was discarded, and

the column was further washed using two changes of 700 µL RW

wash buffer, and once with 500 µL RPE wash buffer. Finally, the
TABLE 1 Patient characteristics.

Characteristics Patients (n=46)

Age at diagnosis (years) 65 (41–84)

PD-L1 11.3 (3-21.2)

DRD2 15.5 (8.9-25.9)

CHRNA5 10.2 (2.6-20.8)

CHRNA7 15.9 (6.7-26.8)

CHRNA9 17.8 (2.8-26.7)

Gender

Female 22 (47.8%)

Male 24 (52.2%)

Smoking status

Never 5 (10.9%)

Former 25 (54.3%)

Current 14 (30.4%)

Ever 2 (4.3%)

Current status

Alive 15 (32.6%)

Dead 31 (67.4%)

Recur

No 30 (65.2%)

Yes 16 (34.8%)

Stage

IIB 1 (2.2%)

IIIA 35 (76.1%)

IIIB 8 (17.4%)

IV 2 (4.3%)

Grade

Well 8 (17.4%)

Moderate 28 (60.9%)

Poor 10 (21.7%)

Surgery

No 2 (4.3%)

Yes 44 (95.7%)

Chemotherapy

No 19 (41.3%)

Yes 27 (58.7%)

Radiation therapy

No 27 (58.7%)

Yes 19 (41.3%)

Treatment groups

Chemotherapy 14 (30.4%)

Radiation 6 (13.0%)

Chemoradiation 13 (28.3%)

None 13 (28.3%)
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column-bound RNA was eluted using 30 µL RNAse free water.

The eluted RNA was stored at -80°C until further use.
Quantitative Polymerase Chain Reaction

Total RNA obtained from the above step was transcribed

into complementary DNA (cDNA) using SuperScript™ III

First-Strand Synthesis System (Invitrogen) following the

manufacturer’s protocol. Briefly, 1 µg of total RNA from each

sample was mixed with 50 µM oligo[dT]20 primer and 10 mM

dNTP mix. The mixture was incubated at 65°C for 5 min

followed by 1 min at 4°C. Next, 10 µl of cDNA synthesis mix

was added to each RNA/primer mixture and was incubated at

50°C for 50 min, and the reaction was terminated by heating at

85°C for 5 min followed by cooling the sample at 4°C. Finally, 1

µL of the cDNA was amplified using probe-specific primers

(Table 2), and Power SYBR Green mastermix in an ABI 7500

real-time PCR system using the following protocol: 1x 10 min at

95°C, 40x (30 sec at 95°C, 1 min at 60°C) and hold at 4°C. DCt

values were calculated by subtracting Ct values for b-actin from

each sample’s respective genes.
Statistical analysis

We used R (version 3.6.0) and Graphpad Prism (version 9) for

data analyses and presentation. We did not perform sample size

calculation for this retrospective study due to its descriptive nature.

Categorical data were summarized as frequency counts and

percentages, and were compared using Fisher’s exact test.

Continuous data were summarized as mean, standard deviation,

or median and interquartile ranges (IQR), compared using the

Wilcoxson rank-sum test. Time‐to‐event data were summarized
Frontiers in Oncology 04
using the Kaplan‐Meier method and compared using log‐rank tests.

We used Cox proportional hazards model for multivariable

analyses of potential prognostic indicators with p<0.05 in

univariate analysis. All Cox proportional hazards regression

results are presented as hazard ratios (HRs), 95% confidence

intervals (95% CI) for the HR, and corresponding p values. The

proportionality assumption was assessed graphically using log

(−log) plots and quantitatively using the Z statistic. All statistical

tests were two-sided. P<0.05 was considered statistically significant.
Results

Patient characteristics

Forty-six NSCLC patients were included in the study and

their demographic and clinical characteristics are summarized in

Table 1. The median age of the patients was 65. Patients were

grouped according to their gender, smoking status, vital status,

recurrence, tumor stage, histologic grade, and treatment

post-surgery. Ever smokers were those who were not clearly

identified as current or former smokers at the time of lung

cancer diagnosis.
PD-L1, DRD2, and nAChR expression and
selected patient characteristics

The expression of PD-L1, DRD2 and three nAChR genes

encoding a5, a7, and a9 nAChR respectively (CHRNA5,

CHRNA7, and CHRNA9) were analyzed against selected

patient characteristics such as age, stage, smoking status, and

pack-years (Figures 1A–D). For the graphical presentation, the

patients were divided based on their median age of diagnosis,
TABLE 2 Primer sequences used in this study.

PD-L1 Forward GGCATCCAAGATACAAACTCAA

Reverse CAGAAGTTCCAATGCTGGATTA

DRD2 Forward AGACCATGAGCCGTAGGAAG

Reverse GCAGCCAGCAGATGATGA

CHRNA5 Forward CTGCTAGGCTGAGGCTGCT

Reverse ACAAAACGAGGGCAGACG

CHRNA7 Forward CCAATGACTCGCAACCACT

Reverse TGTTGGTGGTTAAAACTTGGTTC

CHRNA9 Forward GGCCATGACTGTATTTCAGCTA

Reverse GGCCATCGTGGCTATGTAGT

ACTB Forward CATGTACGTTGCTATCCAGGC

Reverse CTCCTTAATGTCACGCACGAT
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which was 65 years. Interestingly patients with an age of

diagnosis greater than or equal to 65 showed a statistically

significant (p = 0.022) lower mean DCt value (and hence a

higher mean expression) for PD-L1 than patients with an age of

diagnosis less than 65 (Figure 1A). DRD2, CHRNA5, CHRNA7,

or CHRNA9 did not show any significant difference between

these patient cohorts. Stage IIIB patients showed lower mean

DCt values or higher mean expressions than stage IIIA patients
Frontiers in Oncology 05
for each of the genes; however only PD-L1 (p = 0.0556) and

CHRNA9 (p=0.0596) were close to reaching statistical

significance (Figure 1B). Similarly, we did not observe a

significant difference in expressions among never, former, and

current smokers (Figure 1C). However, patients with pack-years

greater than or equal to 30 showed a highly significant lower

mean DCt value or higher mean expression of CHRNA9 than

patients with PY less than 30 (p = 0.0061) (Figure 1D).
A

B

D

C

FIGURE 1

Expression of PD-L1, DRD2, CHRNA5, CHRNA7, and CHRNA9 mRNAs represented as DCt values in patients stratified based on age (A), Stage (B),
Smoking status (C), and pack years (D). A lower DCt value means the gene expression is higher. * and ** denote p<0.05 and p<0.01 respectively.
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Correlation among PD-L1, DRD2, and
nAChR expression

PD-L1 expression showed strong positive correlation with

DRD2 (p = 0.0034) and CHRNA5 (p = 0.0012) and was close to

reaching statistical significance with CHRNA7 (p = 0.0581)

(Figures 2A–C). In addition to PD-L1, DRD2 also showed

positive correlation with CHRNA5 (p = 0.0194) and CHRNA7

(p = 0.0288) (Figures 2D, E). Furthermore, CHRNA5 and

CHRNA7 showed strong positive correlation (p = 0.0094)

(Figure 2F). We also checked the association between the above

genes in The Cancer Genome Atlas Lung Adenocarcinoma

(TCGA-LUAD) database using the TIMER portal (https://

cistrome.shinyapps.io/timer/). Interestingly, there we found

statistically significant correlation between CHRNA5/CHRNA9

(p = 1.02e-06), CHRNA5/PD-L1 (p = 3.64e-03), CHRNA7/PD-

L1 (p = 3.72e-05), CHRNA7/DRD2 (p = 2.09e-05), and

CHRNA9/DRD2 (p = 4.11e-05) (Supplementary Figure 1).

However, it is to be noted that expression of these genes may be

affected by the stage, population, or treatment which may

significantly vary between our study and TCGA-LUAD database.

But more importantly, the notion that the expression of the
Frontiers in Oncology 06
nAChRs, DRD2, and PD-L1 might have some level of

correlation was certainly substantiated from these data.
Prognostic values of PD-L1, DRD2, and
nAChR expression

We further evaluated the association of PD-L1, DRD2, and

nAChR expression with Overall survival (OS) and Relapse-free

survival (RFS). OS was defined as the time interval between the

date of diagnosis and the date of death or last follow-up

(censored). RFS was defined as the time interval between the

date of surgical resection and the date of recurrence, or the date

of death or last follow-up if no recurrence occurred (censored).

We excluded three extreme outliers (one in CHRNA5 and two in

CHRNA9) from the analyses. We excluded patients with stage

IIB and IV disease (n=3) from the survival analysis. Due to the

small sample size, we regrouped treatment categories for survival

analysis to avoid overfitting. Ever smokers were combined with

current and former smokers for survival analysis. Here, we

treated age and expressions of the genes as continuous

variables instead of dichotomized for the analyses since it
A B

D E F

C

FIGURE 2

Pearson’s correlation analysis was performed to analyze the correlation between PD-L1, DRD2, CHRNA5, CHRNA7, and CHRNA9 mRNA
expression represented as DCt values. Only those reaching or close to reaching statistical significance were included. r, Pearson’s correlation
coefficient. (A) PD-L1 vs DRD2, (B) PD-L1 vs CHRNA5, (C) PD-L1 vs CHRNA7, (D) DRD2 vs CHRNA5, (E) DRD2 vs CHRNA7, and (F) CHRNA5
vs CHRNA7.
frontiersin.org

https://cistrome.shinyapps.io/timer/
https://cistrome.shinyapps.io/timer/
https://doi.org/10.3389/fonc.2022.959500
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Pal et al. 10.3389/fonc.2022.959500
provides a higher statistical power. As shown in Table 3, older

age was associated with poor OS (HR 1.05, 95% CI 1.00-1.09,

p=0.038); lower DRD2 expression (HR 0.91, 95% CI 0.84-1.00,

p=0.040) and lower CHRNA7 expression (HR 0.92, 95% CI 0.85-

0.99, p=0.037) were associated with better OS. Lower CHRNA9

expression seemed to be associated with better OS, but did not

reach statistical significance (HR 0.95, 95% CI 0.89-1.01,

p=0.093). Based on model selection criteria and the significant

correlation between DRD2 and CHRNA7, we include age and

CHRNA7 for multivariable survival analysis. Older age was

independently associated with poor OS (HR 1.05, 95% CI

1.01-1.10, p=0.014); lower CHRNA7 expression was

independently associated with better OS (HR 0.90, 95% CI
Frontiers in Oncology 07
0.82-0.98, p=0.017). Lower CHRNA7 expression seemed to be

associated with better RFS, but did not reach statistical

significance (HR 0.94, 95% CI 0.87-1.01, p=0.08).
Discussion

The implications of different nAChR expression and their

polymorphisms in lung cancer cell proliferation, apoptosis,

angiogenesis, and invasion have been previously reported by

several groups (18, 71–76). Among them, homomeric a7
nAChR (composed of five identical a7 subunits expressed

from the CHRNA7 gene) is the most widely implicated in
TABLE 3 Prognostic values of biomarkers, clinical factors, histopathological factors, and treatment in overall survival (OS) and relapse-free
survival (RFS).

Variables HR
(univariate for OS)

HR
(multivariable for OS)

HR
(univariate for RFS)

Age at diagnosis 1.05 (1.00-1.09), p=0.038 1.05 (1.01-1.10), p=0.014 1.03 (0.99-1.07), p=0.116

PD-L1 expression 1.03 (0.91-1.17), p=0.612 – 1.05 (0.94-1.17), p=0.383

DRD2 expression 0.91 (0.84-1.00), p=0.040 – 0.95 (0.88-1.03), p=0.202

CHRNA5 expression 0.93 (0.86-1.01), p=0.096 – 0.96 (0.90-1.03), p=0.286

CHRNA7 expression 0.92 (0.85-0.99), p=0.037 0.90 (0.82-0.98), p=0.017 0.94 (0.87-1.01), p=0.080

CHRNA9 expression 0.95 (0.89-1.01), p=0.093 – 0.97 (0.91-1.03), p=0.280

Gender female – – –

male 0.85 (0.42-1.76), p=0.670 – 1.17 (0.59-2.31), p=0.650

Smoking status never – – –

former 3.12 (0.72-13.64), p=0.130 – 1.47 (0.49-4.39), p=0.494

current 3.24 (0.70-14.92), p=0.131 – 1.44 (0.45-4.55), p=0.539

ever 7.50 (1.02-55.05), p=0.048 – 6.63 (1.12-39.21), p=0.037

Smoking status never – – –

ever 3.28 (0.78-13.86), p=0.106 – 1.51 (0.53-4.32), p=0.443

Stage IIIA – – –

IIIB 1.60 (0.71-3.60), p=0.259 – 1.34 (0.60-2.96), p=0.472

Grade well differentiated – – –

moderately differentiated 2.05 (0.69-6.07), p=0.195 – 1.65 (0.62-4.43), p=0.317

poorly differentiated 1.97 (0.57-6.77), p=0.282 – 1.32 (0.43-4.04), p=0.632

Chemotherapy no – – –

yes 1.09 (0.52-2.30), p=0.816 – 1.57 (0.77-3.19), p=0.214

Radiation therapy no – – –

yes 0.90 (0.43-1.86), p=0.776 – 1.18 (0.60-2.33), p=0.625

Treatment group none – – –

chemotherapy 1.22 (0.45-3.28), p=0.698 – 1.44 (0.56-3.67), p=0.445

radiation therapy 1.00 (0.29-3.47), p=0.995 – 0.98 (0.29-3.29), p=0.971

chemotherapy and radiation therapy 1.00 (0.38-2.64), p=1.000 – 1.67 (0.68-4.09), p=0.264

Treatment group none – – –

Radiation therapy 1.00 (0.29-3.48), p=0.999 – 0.98 (0.29-3.29), p=0.969

Chemotherapy with or without radiation therapy 1.09 (0.46-2.60), p=0.842 – 1.56 (0.69-3.51), p=0.286

Treatment group none + radiation therapy – – –

Chemotherapy with or without radiation therapy 1.09 (0.52-2.30), p=0.816 – 1.57 (0.77-3.19), p=0.214
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nicotine-mediated proliferation, angiogenesis, and metastasis in

NSCLC (77–81). Additionally, both a5 and a9 nAChRs

(encoded by CHRNA5 and CHRNA9 genes, respectively) have

been associated with NSCLC (77, 82–85). A recent study using

lung adenocarcinoma (ADC) patient samples revealed that a5-
nAChR expression is correlated with the clinicopathological

parameters such as T and N stages but not with age or sex

(82). Another study with lung squamous cell carcinoma (SQCC)

and ADC showed that a5-nAChR expression is significantly

higher in tumors than in adjacent normal lung tissue (86).

Interestingly a7-nAChR was significantly higher in SQCC

than normal tissue but not in ADC in this study. However,

another study had shown that a7-nAChR expression was

significantly higher in both SQCC and ADC (87). Both a5-
and a7-nAChR were significantly associated with unfavorable

prognosis in ADC, but only a7-nAChR showed a significant

correlation with prognosis in SQCC. Unfortunately, several

important factors, including treatment modalities such as

chemotherapy and radiation therapy, were missing in these

studies, making the conclusion challenging to interpret.

The correlation of nAChRs and PD-L1 has been shown by in

vitro studies in several human cell lines, including bronchial

epithelial cells, HepG2 cells, melanoma and breast cancer cells

(88–91). Furthermore, an in vitro study showed that chronic

nicotine exposure could increase a1-nAChR and PD-L1

expressions in a lung adenocarcinoma cell line (92). Another

recent study showed that coexpression of a5-nAChR and PD-L1

are associated with a worse prognosis in patients with lung

adenocarcinoma (93). However, the correlation between PD-L1

and DRD2 has not been well-investigated in context to human

cancer except for one recent study where Paliperidone (a DRD2

antagonist) reduced PD-L1 expression in glioblastoma cells and

increased survival in a mouse model of glioblastoma (94).

Nicotine typically induces the release of dopamine in the brain

via activation of the nAChR receptors in the central nervous

system, but the released dopamine cannot cross blood-brain

barrier (71). Interestingly, dopamine can also be synthesized in

the peripheral nerves and released into circulation in response to

stress, exercise, or hypovolemia (95). Nonetheless, a plausible role

of nicotine or nAChRs in peripheral dopamine synthesis may not

be ruled out, especially since correlative analyses from our data as

well as TCGA database showed positive correlation between some

of the nAChRs and DRD2 in lung adenocarcinoma patients

(Figure 2 and Supplementary Figure 1).

Nicotinic acetylcholine receptors such as a5, a7, or a9 have

been shown to express in various immune cells where they

regulate the secretion of immunomodulatory cytokines and

immune response (96). Interestingly, nicotine-mediated

activation of both a5 and a9 nAChRs have been shown to

upregulate PD-L1 expression in cancer cells via STAT3

signaling pathways (90, 93), so a positive correlation of
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nAChRs with PD-L1 may be expected (Supplementary

Figure 2). Surprisingly, the nAChRs correlated with DRD2 or

PD-L1 are different between our study and TCGA database, but

the difference may be attributed to the difference in stages,

patient population, or tumor-infiltrating immune cells. For

instance, differential tumor infiltration of immune cells having

varied expression of nAChRs or DRD2 can affect their

correlation in the tumor samples.

DRD2 is also expressed on the surface of a variety of

immune cells and has been implicated in the regulation of

immune cell activity (97). DRD2 antagonism has been

reported to induce immune cell proliferation and activation in

preclinical studies, whereas DRD2 activation suppressed the

function of natural killer cells. DRD2 stimulation has also

been shown to inhibit proliferation and cytokine production in

activated T cells. DRD2 antagonists could also induce M1-

polarization of macrophages and decrease PD-L1 expression in

cancer cells via inhibition of ERK and STAT3 signaling

pathways (94, 98). Consequently, a positive correlation

between DRD2 and PD-L1 may not be improbable after all

(Supplementary Figure 2).

Our study demonstrated positive correlations among PD-L1,

DRD2, and nAChR in tumor samples from 46 NSCLC patients at

our institution. Our study indicates a possible underlying

mechanism that DRD2 and nAChR involved pathways may

affect the tumor immune microenvironment, leading to the

expression of PD-L1. It remains unknown whether DRD2 and

nAChR share the same signaling pathways or play a synergetic

role in tumorigenesis and therefore requires further investigation.

In addition, given the increased roles of anti-PD-1/anti-PD-L1

immunotherapies in early-stage and advanced-stage NSCLC, our

data imply that DRD2 and nAChR might be potential molecular

biomarkers along with PD-L1 to guide treatment decisions in

NSCLC patients in the future. Furthermore, targeting nAChR or

DRD2 may be a potential therapeutic strategy to alter PD-1/PD-

L1 pathway that can benefit those NSCLC patients who are

refractory to immunotherapy.

We found that lower expressions of DRD2 and CHRNA7 are

associated with a slightly better OS. Previous studies showed that

a high expression of CHRNA7 is associated with an unfavorable

prognosis in NSCLC (45). Of note, most patients studied in this

cohort are stage I and II. We observed a similar result in our

cohort of stage III NSCLC patients, in which lower CHRNA7

expression is independently associated with better OS, although

the difference is small (HR = 0.90). Whether similar trend can be

observed in stage IV NSCLC patients and this is associated with

any clinical significance needs to be further evaluated. We did

not observe statistically significant differences in RFS regarding

the expression of each gene tested. This may be due to the small

size of our cohort. Whether DRD2 or nAChR affects or has

predictive value of the response to systemic therapy, such as
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chemotherapy or immunotherapy, remains unknown and

warrants further investigation.

We did not observe a significant difference in PD-L1, DRD2,

and nAChR expressions among never, former, and current

smokers. Nevertheless, patients with more pack-year (>30)

smoking history have significantly higher CHRNA9 expression,

but not CHRNA5 or CHRNA7 expression. This indicates a

possible unique smoking-related upregulating mechanism on

CHRNA9 gene expression, which requires further elucidation.

Although our study suggests a probable connection of DRD2

with nAChR and PD-L1 in lung cancer for the first time, there

are several limitations in our study. First, we only examined gene

expression at the mRNA level by using qPCR due to the limited

availability of tumor tissues. Whether the observed trends hold

true at the protein level needs further validation. Additionally,

immunohistochemistry data would have been potentially useful

in determining the spatial expression of these markers in the

tumor microenvironment. This is important since it would

delineate the effect of different tumor-infiltrating immune cell

populations with varied nAChR, DRD2 or PD-L1 expression on

the prognosis. Second, our cohort has a relatively small size. This

limits the statistical power to detect the difference in targeted

gene expression between subgroups, such as smoking status.

Furthermore, our study only includes localized NSCLC patients

who received surgery. It is important to extend our analysis to a

large-scale study that includes patients who are not surgical

candidates or at stage IV to evaluate DRD2 and nAChR’s role in

systemic therapy.
Conclusion

In conclusion, we investigated the expression pattern and

prognostic value of PD-L1, DRD2, and three nAChR family

members in NSCLC using surgical samples obtained from 46

patients. We found strong positive correlations between PD-L1/

DRD2, PD-L1/CHRNA5, and CHRNA5/CHRNA7 and a weak

positive correlation between DRD2/CHRNA5 and DRD2/

CHRNA7 at the mRNA level. CHRNA7 was an independent

prognostic factor in surgically resected stage III NSCLC patients.

Further studies using large-scale cohorts including patients at

different stages and receiving various treatments are warranted.
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SUPPLEMENTARY FIGURE 1

Pearson’s correlation analysis was performed to analyze the correlation
between PD-L1 (CD274), DRD2, CHRNA5, CHRNA7, and CHRNA9 mRNA

expression from TCGA-LUAD database.

SUPPLEMENTARY FIGURE 2

A schematic diagram depicting plausible connection between nAChR, DRD2,

and PD-L1. Both nAChR and DRD2 activation by their respective ligands
induce PD-L1 expression via STAT3 signaling mechanism. However, it is not

clear how nAChRs are involved in peripheral DRD2 signaling, although they

are known to be involved in dopamine synthesis in the brain. Created with
BioRender.com.
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