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Clinical and experimental evidence suggested that anesthesia choice can influence

cancer progression and patients ’ outcomes by modulat ing tumor

microenvironment and tumorigenic pathways. Curative resection is the mainstay

of therapy for hepatocellular carcinoma (HCC), which is an intractable disease due

to high recurrence and poor prognosis. However, different anesthetics may play

different roles in alleviating surgery-induced stress response and inflammatory

cytokines release that are considered to be closely associated with proliferation,

invasion and metastasis of tumor cells. Propofol, sevoflurane, non-steroidal anti-

inflammatory drugs and local anesthetics have shown to exert anti-tumor effect on

HCC mainly through regulating microRNAs or signaling pathways, while other

inhalational agents, dexmedetomidine and opioids have the potential to promote

tumor growth. In terms of anesthetic methods and analgesia strategies, propofol

based total intravenous anesthesia and thoracic epidural analgesia could be

preferred for HCC patients undergoing open liver resection rather than

inhalational anesthesia. Local anesthesia techniques have great potential to

attenuate perioperative stress response, hence they may contribute to more

favorable outcomes. This review summarized the relations between different

anesthesia choices and HCC patients’ long-term outcomes as well as their

underlying mechanisms. Due to the complexity of molecules interactions and

signaling pathways, further studies are warranted to confirm these results so as to

optimize anesthesia strategy for HCC patients.
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Introduction

Anesthetic methods and agents can alter immune function and

postoperative cancer recurrence (1, 2). There is a large body of

literature suggesting the choice of anesthesia could exert either pro

or anti-tumor effect on cancer patients (3). Growing evidence from

animal and tumor cell line studies have suggested that volatile agents

are more likely to enhance cancer progression through suppression of

immune cell function and modulation of cancer cell signaling

pathways (4–6). In contrast, propofol appears to suppress tumor

growth and reduce the risk of migration via regulation of non-coding

RNAs (e.g., microRNAs), signaling pathways and restoration of

tumor microenvironment (7–9). Meanwhile, local anesthetics

induce cancer cell apoptosis and reduce the methylation of tumor

suppressor genes to hamper tumor cell proliferation (10, 11).

Hepatocellular carcinoma (HCC) is a lethal disease with poor

prognosis and high recurrence rate (12). Although some noble

therapies have constantly emerged in recent years, open liver

resection has still been the safe choice for patients with risk factors,

large tumors or with tumors located in the posterior segments of the

liver (13). The postoperative analgesia approach for open

hepatectomy seems to be less effective if the incision needs to be

extended to the upper-level dermatomes of the abdomen. Insufficient

analgesia can cause pulmonary dysfunction, especially with large

incisions close to the diaphragm (14). In addition, postoperative

coagulopathy is frequently seen following liver resection, hence the

time to place and remove the epidural catheter should be within

discretion of the anesthesia providers (15). Analgesic strategies for

patients undergoing hepatectomy include epidural analgesia,

peripheral nerve block (e.g., thoracic paravertebral block, quadratus

lumborum block, transversus abdominis plane block, erector spinae
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plane block etc.) and local wound infiltration. Clinical evidence

suggested the combination of epidural and general anesthesia could

better attenuate immunosuppression related to stress response than

general anesthesia and improve cancer patients’ outcomes (16).

This article reviewed the long-term effects (Table 1) and the

relevant mechanisms (Table 2) of commonly used volatile,

intravenous, local anesthetic agents and techniques as well as other

anesthetic adjuncts (e.g. NSAIDS etc.) on HCC patients.
Volatile anesthetic agents

Inhalational anesthetics like isoflurane, desflurane, halothane

have already been proved to reduce the number of natural killer

(NK) cells or NK cell tumor cytotoxicity (4, 59), which are closely

involved in cancer immunosurveillance and immunoediting (60).

Isoflurane and sevoflurane also suppressed the release of

interleukin-1b (IL-1b) and tumour necrosis factor a (TNF-a)
stimulated by tumor cells in peripheral blood mononuclear cells

(PBMCs), thus promoting tumorigenesis (61). A retrospective study

indicated the inhalational anesthetics were associated with higher

recurrence rate compared with propofol in HCC patients receiving

laparoscopic hepatic resection (17).
Sevoflurane

The influence of sevoflurane on cancer is controversial since it has

both anti-tumor and pro-tumor effects (62, 63). MicroRNA (miR)-

29a, a potential prognostic biomarker, was down-regulated in HCC

patients according to the previous studies (64). The exposure of
TABLE 1 The effects of anesthesia and analgesia choices on the prognosis of HCC patients.

Study
Type

Cancer Type Surgery A versus B Long-term outcomes
(B compare to A)

References

A B

Retrospective Early- and intermediate-
Stage HCC

Laparoscopic hepatic
resection

INHA Propofol Lower recurrence rate (17)

Retrospective HCC Hepatectomy INHA
(sevoflurane)

Propofol based TIVA No difference in OS and RFS (18)

Retrospective HCC Elective hepatectomy INHA
(Desflurane)

Propofol based TIVA Better OS (19)

Retrospective Digestive Cancer
(including HCC)

Hepatectomy INHA Propofol based TIVA No difference in OS and RFS (20)

Retrospective HCC with PVTT Aggressive
hepatectomy

INHA
(sevoflurane)

Propofol based TIVA Better OS and RFS (21)

Retrospective HCC HCC resection EA with
morphine

IA with fentanyl Better long-term survival, no
difference in RFS

(22)

Retrospective HCC Hepatectomy PCIA with
fentanyl

Parecoxib sodium +PCIA
with fentanyl

Better DFS, no difference in OS (23)

Retrospective HCC HCC resection IA EA No difference in OS and RFS (24)

Retrospective HCC Curative resection GA GA+EA Better DFS and OS (16)

Summary of studies comparing anesthesia and analgesia choices on HCC patients’ prognosis. Light color = anesthesia choices, dark color = analgesia choices; HCC, hepatocellular carcinoma;
INHA, inhalational anesthesia; TIVA, total intravenous anesthesia; OS, overall survival; RSF, recurrence-free survival; PVTT, portal vein tumor thrombus; EA, epidural analgesia; IA, intravenous
opioid analgesia; PCIA, patient-controlled intravenous analgesia; DFS: disease-free survival; GA, general anesthesia.
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TABLE 2 The impact and mechanisms of different anesthesia agents on HCC cells.

Agents Study
type

Mechanisms Functions References

Proliferation Apoptosis Invasion Migration EMT

Sevoflurane

in vitro

miR-29a↑!Dnmt3a↓!PTEN↑!PI3K/
AKT↓

↓ ↑ ↓ ↓ – (25)

miR-29a-3p↑!CBX3↓ ↓ ↑ ↓ ↓ – (26)

miR25-3-p↓!PTEN↑!Akt/GSK-3b/b-
catenin↓, c-Myc↓, MMP-9↓

↓ – ↓ ↓ – (27)

in vivo/
in vitro

miR-148a-3p↑!ROCK1 ↓
↓ ↑ ↓ ↓ – (28)

Isoflurane in vitro SUMO2/3↑ ↑ – ↑ ↑ – (29)

in vitro PI3K/AKT↓!NF-kB↓ ↓ ↑ ↓ ↓ – (30)

Propofol in vitro miR-199a↑!MMP-9↓ – – ↓ – – (31)

miR-199a↑!caspase-8,9↑ – ↑ – – – (32)

miR-134↑!BCL-2↓, cleaved caspase-3↑ – ↑ – – – (33)

NORAD↓!miR-556-3p↓!MIEN1↓ ↓ – – – ↓ (34)

miR-105↑!JAK2/STAT3↓ ↓ ↑ – – – (35)

NET1↓!ERK/VEGF↓ ↓ – ↓ ↓ – (8)

HMGA2↓!Wnt/b-catenin↓ ↓ ↑ ↓ – – (36)

Twist1↓!MMP-2, MMP-9↓, E-cadherin↑ ↓ – ↓ ↓ – (37)

in vivo/
in vitro

miR-219-5p↑!glypican-3/Wnt/b-catenin↓ ↓ – ↓ ↓ ↓ (38)

lncRNA HOXA11-AS↓!miR-4458↑ ↓ ↑ ↓ ↓ – (39)

lncRNA H19↓!miR-520a-3p↑!LIMK1↓ ↓ ↑ ↓ ↓ – (40)

in vivo

TAMs↑!MVs↑!miR-142-3↑!RAC1↓ ↓ – ↓ ↓ – (41)

MMP-2, VEGF↓ ↓ – – – – (42)

AMPK↑!autophagy ↓ ↑ – – – (9)

Dexmedetomidine in vitro miR-130a↑!EGR1↓ ↓ ↑ ↓ ↓ – (43)

in vivo IL-6 released by aHSCs↑, STAT3↑ ↑ – – ↑ – (44)

Morphine in vivo/
in vitro

MMP-9, uPA↓ ↓ ↑ ↓ ↓ – (45)

DDX49↓!MAPK↓ ↓ ↑ ↓ ↓ – (46)

in vivo/
in vitro

PI3K/Akt/HIF-1a↑!VEGFA↑
↑ – – ↑ – (47)

Celecoxib
in vitro

COX-2-PGE2-EP2-p-Akt/p-ERK↓!E-
cadherin↑

↓ ↑ ↓ ↓ – (48)

in vivo/
in vitro

PNO1↓!AKT/mTOR↓
↓ – – ↓ – (49)

in vivo NK cytotoxicity suppression↓ – – – ↓ – (50)

Midazolam in vivo/
in vitro

miRNA-124-3p↑!PIM-1↓
↓ ↑ ↓ ↓ – (51)

in vitro miR-217↑ ↓ ↑ ↓ ↓ – (52)

Lidocaine
in vivo/
in vitro

ERK1/2 and p38↑!cleaved caspase-3 and
Bax↑, BCL-2↓

↓ ↑ – – – (10)

circ_ITCH/miR-421/CPEB3↑ ↓ ↑ ↓ ↓ – (53)

in vitro USP14↓!PI3K/Akt↓ ↓ ↑ ↓ ↓ ↓ (54)

(Continued)
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sevoflurane could restore the level of miR-29a and inhibit tumor

progression by lowering the expression of long non-coding RNA

KCNQ1 opposite strand/antisense transcript 1 (lncRNA

KCNQ1OT1) (26), which led to the reduction of DNA

methyltransferase 3 alpha (Dnmt3a) (25) and chromebox protein

homolog 3 (CBX3) (26) in HCC cell lines. In vitro studies also

suggested that sevoflurane-stimulated tumor cells exhibited higher

level of phosphatase and tensin homologue (PTEN) and inactivation

of phosphatidylinositol 3 kinase (PI3K)/protein kinase B (Akt)

signaling pathway (25, 27), a crucial signaling in tumorigenesis

(65). Also, in both cell lines and animal models experiments,

researchers observed a correlation of increased level of miR-148-3p

and decreased Rho-associated protein kinase 1 (ROCK1) after

sevoflurane treatment (28), which might account for its

antitumor property.

In order to further explore the long term cancer-related outcomes

sevoflurane could exert, researchers compared the overall mortality

and recurrence-free survival rates of HCC patients in a retrospective

cohort, and concluded that there was no difference between propofol

based total intravenous anesthesia (TIVA) and sevoflurane anesthesia

(18). A meta-analysis study also adequately evidenced that the use of

sevoflurane might not exert any unfavorable effect on cancer patients’

overall survival (66). However, recently a study on HCC patients with

portal vein tumor thrombus (PVTT) showed that sevoflurane based

inhalation anesthesia was related to worse clinical outcomes

comparing TIVA (21). Unlike other clincal trials, patients in this

cohort had larger tumor burden (87% >10cm), and the distinction

between TIVA and sevoflurane anesthesia was amplified by the

severity of the disease according to its subgroup analysis.
Isoflurane

In Hep-3B cell line, short-term isoflurane exposure (<12h) might

facilitate cancer cell invasion by enhancing the formation of small
Frontiers in Oncology 04
ubiquitin-like modifier 2 and 3 (SUMO2/3) conjugates, a kind of

stress indicators, while the inhibitor of SUMO2/3 could reverse the

response (29). But in primary cultured cells from patients undergoing

hepatectomy and general anesthesia, evidence indicated that

isoflurane could reduce HCC aggressiveness via down-regulating

PI3K/AKT signaling pathway mediated nuclear factor kappaB (NF-

kB) activity (30). These conflicts could be attributed to the different

cell lines and distinctive time of isoflurane exposure (12h versus

24-72h).
Desflurane

Studies showed that desflurane did not affect NK cell counts and

was in favor of preserving the ratio of CD4+/CD8+ T cells in breast

cancer surgery (67, 68). However, most related studies considered

desflurane to be associated with worse outcomes (3, 69). As for HCC

patients, clinical evidence showed that the use of desflurane might

lead to lower overall survival and higher recurrence rates compared

with propofol (19).

To draw a conclusion from the available laboratory and clinical

studies, among volatile anesthetic agents, sevoflurane showed anti-

tumor effects in most cases, desflurane was more likely to exhibit pro-

tumor effects, while isoflurane presented a paradoxical effect on

different tumor cell lines. Other inhalational anesthetic agents were

seldom studied regarding their long-term effects on HCC patients.
Intravenous anesthetic agents

Propofol

There is increasing evidence suggesting that propofol can inhibit

proliferation, metastasis, and induce apoptosis of malignant tumors,

thereby influencing the prognosis of cancer patients (7, 31). As of
TABLE 2 Continued

Agents Study
type

Mechanisms Functions References

Proliferation Apoptosis Invasion Migration EMT

Bupivacaine in vivo/
in vitro

PI3K/Akt↓, MAPK↓
↓ ↑ ↓ ↓ – (55)

Ropivacaine in vitro damaged mitochondria; caspase-3 ↑ ↓ ↑ – ↓ – (56)

in vivo/
in vitro

IGF-1R↓!PI3K/AKT/mTOR ↓
↓ ↑ ↓ ↓ ↓ (57)

Amide-type LA in vitro RASSF1A expression↑ ↓ – – – – (11)

Procaine in vivo/
in vitro

demethylation
↓ – – – – (58)

Summary of studies about the impact and mechanisms of different anesthesia agents on HCC cells. Light color = anti-tumor effect, dark color = pro-tumor effect;—, indeterminate or limited data;
↑, increase; ↓, decrease; EMT, epithelial-mesenchymal transition; miR, microRNAs; Dnmt3a, DNA methyltransferase 3a; PTEN, phosphatase and tensin homolog; PI3K, phosphatidylinositol 3
kinase; AKT, protein kinase B; CBX3, chromebox protein homolog 3; GSK-3b, glycogen synthase kinase 3b; MMP, metaloproteinases; ROCK1, Rho-associated protein kinase 1; SUMO2/3, small
ubiquitin-like modifier 2 and 3; NF-kB, nuclear factor kB; BCL-2, B cell lymphoma-2; lncRNAs, long non-coding RNAs; HOXA11-AS, HOMEOBOX A11 antisense RNA; LIMK1, LIM domain
kinase 1; NORAD, non-coding RNA activated by DNA damage; MIEN1, migration and invasion enhancer 1; TAMs, tumor-associated macrophages; MVs, microvesicles; RAC1, ras-related C3
botulinum toxin substrate 1; NET1, neuroepithelial cell transforming gene 1; ERK, extracellular signal-regulated kinase; VEGF, vascular endothelial growth factor; HMGA2, High mobility group
A2; AMPK, adenosine monophosphate-activated protein kinase; EGR1, early growth response 1; aHSCs, activated hepatic stellate cells; DDX49, DEAD-box helicase 49; MAPK, mitogen-activated
protein kinases; HIF-1a, hypoxia-inducible factor-1a; VEGFA, vascular endothelial growth factor A; COX-2, cyclooxygenase-2; PGE2, prostaglandin E2; EP2, PGE2 receptor 2; PNO1, partner of
NOB1; mTOR, rapamycin; NK cell, natural killer cell; USP14, ubiquitin specific peptidase 14; CPEB3, cytoplasmic polyadenylation element binding protein 3; IGF-1R, insulin-like growth factor-1
receptor; LA, local anesthetics; RASSF1A, ras association domain family 1A.
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today, the underlying mechanism of its anti-tumor effect has not been

fully understood, but it may relate to the regulation of non-coding

RNAs (e.g., miRNAs, lnc RNAs), alteration of signaling pathways, as

well as restoration of microenvironment.

Propofol can modulate miRNAs expressions and exert inhibitory

effect on many carcinoma-crucial pathways linked to proliferation,

migration, and apoptosis (7). An in vitro study showed that propofol

could up-regulate miR-199a to inhibit the adhesion of HCC via

downregulating metaloproteinases-9 (MMP-9) expression, an

enzyme that could degrade extracellular matrix (ECM) proteins and

mediate cancer metastasis (31). Also, activation of caspase-8 and

caspase-9 mediated by increased level of miR-199a might be the

underlying mechanism accounting for propofol-induced HCC cell

apoptosis (32). Similarly, propofol appeared to up-regulate miR-134

expression, inhibit B cell lymphoma-2 (BCL-2) expression level, and

elevate cleaved caspase-3 level, thereby inducing apoptosis as well

(33). Propofol also increased the expression of miR-219-5p, a tumor

suppressor candidate, which directly inhibited the glypican-3

mediated activation of Wnt/b-catenin pathway, and subsequently

regulating the progression, metastasis and epithelial-mesenchymal

transition (EMT) of HCC (38). LncRNAs are mRNA-like transcripts

ranging from 200 nucleotides to 100 kilobases. It has been proved that

some lncRNAs can modulate the expression of miRNAs so that they

act as an axis and can be influenced by propofol at any level. For

example, propofol could inhibit HCC progression by increasing the

level of miR-4458 via modulating HOMEOBOX A11 antisense RNA

(HOXA11-AS)/miR-4458 (39) axis as well as reducing HCC growth

and metastasis through lncRNA H19/miR-520a-3p/LIM domain

kinase 1 (LIMK1) axis (40). Apart from that, miR-556-3p played an

essential role in propofol regulated non-coding RNA activated by

DNA damage (NORAD)/miR-556-3p/migration and invasion

enhancer 1 (MIEN1) axis, which involved in suppressing HCC cell

proliferation and EMT progression (34). In addition, propofol

increased the expression of miR-105, a potential JAK2/STAT3

signaling inhibitor, serving as a key mediator in HCC apoptosis

process (35).
Frontiers in Oncology 05
Evidence shows that some signaling pathways may play critical

roles in liver cancer progression, and researchers have explored how

propofol regulates tumor behaviors through these signaling pathways.

Extracellular signal-regulated kinase 1/2 (ERK1/2) are protein-serine/

threonine kinases that participate in the Ras-Raf-MEK-ERK signal

transduction cascade, which are activated in one third of human

cancers (70). A pathological analysis of HCC samplings showed that

high p-ERK1/2 levels might be associated with elevated HCC

recurrence and worse overall survival (71). In Fei G et al’s study,

the levels of p-ERK1/2 were decreased in HCC cell lines treated with

propofol, leading to less aggressive growth and invasion behaviors (8).

Down-regulation of p-ERK1/2 might be caused by neuroepithelial cell

transforming gene 1 (NET1), a newmember of the tetraspanins group

and a therapeutic potential target for cancer (72). High mobility

group A2 (HMGA2) is an architectural transcriptional regulator that

could independently predict the prognosis of HCC patients (73). And

in Ou W et al’s study, propofol decreased the level of HMGA2, and

subsequently attenuated the activity of Wnt/b-catenin pathway,

thereby inducing apoptosis and inhibiting HCC proliferation as

well as invasion (36). In fact, signaling pathways like nuclear factor

E2-related factor-2 (Nrf2), NF-kB are well-illustrated in the relations

between propofol and other kinds of cancers. However, as of yet there

is little literature about the direct link between these pathways and the

effect of propofol on HCC biological behaviors till now.

The tumor microenvironment (TME) is a mixture of tumoral

cells within the ECM, surrounded by a complex mix of stromal cells

and the proteins they secrete. The biological processes involved in

TME include angiogenesis, inflammation, fibrosis and other processes

like hypoxia, oxidative stress and autophagy (Figure 1) (74). Propofol

can affect TME in different ways. Vascular endothelial growth factor

(VEGF), the most important factor in angiogenesis, could be inhibited

by propofol in HCC patients via down-regulating NET1 (8). An

experiment examined oxidative stress caused by H2O2, and found

that in contrast with pentobarbital, propofol exerted a protective effect

on hepatocytes under oxidative stress (75), it is also the case for what

had discovered before when comparing propofol to etomidate (76).
FIGURE 1

The impact of anesthesia agents and techniques on biological processes in hepatocellular carcinoma cells and tumor microenvironment. HCC,
hepatocellular carcinoma; VEGF, vascular endothelial growth factor; MMPs, metaloproteinases; HSC, hepatic stellate cells; DEX, dexmedetomidine; LA,
local anesthetics; miRNAs, microRNAs; BCL-2, B cell lymphoma-2; EA, epidural analgesia; TNF-a, tumour necrosis factor a; IL-6, interleukin-6; NF-kB,
nuclear factor kB; HIF-1a, hypoxia-inducible factor-1a; SOD, superoxide dismutase.
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There was a meta-analysis found that propofol might also have a

beneficial impact on HCC patients after liver ischemia reperfusion

injury (LIRI), demonstrated by a lower level of malondialdehyde

(MDA), alanine transaminase (ALT), aspartate transaminase (AST)

and a higher level of superoxide dismutase (SOD) (77). Propofol

could also lead to down-regulation of MMPs and increase of E-

cadherin by impairing Twist1 expression, and inhibit HCC

proliferation, migration, and invasion as a result (37).

In vivo studies provide a holistic perspective of the effect propofol

has on HCC. Studies had observed that propofol treatment

significantly decreased the tumor volume and slowed proliferation

in nude mice model (38), and even in a propofol dose-dependent

manner (78). Besides, by constructing Over H19‐Propofol‐Huh7‐exo

mouse model, researchers found the high level exsomal lncRNA H19

promote the growth and metastasis of HCC tumors, hence verifying

propofol’s anti-tumor effect conversely (40). Also, in tumor-bearing

mice models, researchers found that propofol activated tumor-

associated macrophages (TAMs) were able to secrete microvesicles

(MVs), which delivered extrinsic miR-142-3p to HCC cells, thereby

down-regulating ras-related C3 botulinum toxin substrate 1(RAC1)

expression and inhibiting HCC invasion (41). In terms of tumor

microenvironment, a mice model experiment proved that propofol

could decrease levels of MMP-2 and VEGF in a dose-dependent

manner (42), which reduced the chance of cancer metastasis. Studies

in xenograft mice tumor models also showed autophagy, a catalytic

process related to cancer initiation and progression, could be induced

by propofol via activating adenosine monophosphate-activated

protein kinase (AMPK) pathway (9).

Clinical evidence is also in correspondence with the above results.

A retrospective study, which compared the recurrence of early- and

intermediate-stage HCC patients after hepatic resection, revealed that

the use of propofol as the main anesthetic agent might be superior to

inhalational anesthetics in terms of recurrence rate (17). Similarly, Lai

and his colleague also found the overall mortality and distant

metastasis rate were higher in desflurane group than in propofol

based TIVA group (19). Meanwhile, a nationwide retrospective

cohort in Japan suggested the overall survival and recurrence-free

survival rates were not significantly different between volatile

anesthesia and propofol based TIVA groups of patients with

digestive tract cancers including HCC (20), which was consistent

with that of a Chinese cohort (18). Through combining existing

clinical evidence, Chang et al. conducted a meta-analysis and

concluded better overall survival and recurrence-free survival for

patients with hepatobiliary cancer under propofol-based TIVA (66).
Dexmedetomidine

Dexmedetomidine (DEX), a centrally acting alpha-2 agonist,

plays an essential role in perioperative period as it can provide safe

sedation, reduce opioids consumption and stabilize hemodynamic

status. Clinical evidence indicated that DEX’s central effect reduced

the release of norepinephrine and thereby inhibiting inflammatory

response. A meta-analysis showed the administration of DEX during

perioperative period lowered the levels of catecholamine, cortisol,

glucose, IL-6, TNF-a, and C reactive protein (CRP), whereas

increased the expression of NK cells, B cells, CD4+T cells, and the
Frontiers in Oncology 06
ratios of CD4+/CD8+ and Th1/Th2 (79). This inflammatory

attenuation may show great anti-tumor effect in liver cancer

patients since the inflammatory process provides a pro-

tumorigenesis microenvironment. An in vitro study in HCC

indicated that DEX could suppress HCC cell proliferation and

induce apoptosis by down-regulating miR-130a and inhibiting early

growth response 1 (EGR1) expression (43). However, in a fibrosis

mouse model experiment, it proved that DEX might not induce the

pathogenesis of HCC cell itself. Instead, it promoted HCC

progression by activating hepatic stellate cells via ARD2A-induced

IL-6 secretion and STAT3 activation (44).
Etomidate

Etomidate is commonly used for elder patients and those with

unstable hemodynamic status. Comparing with volatile anesthetics,

etomidate shows less inhibition to NK cell-mediated cytotoxicity (59).

The treatment of etomidate significantly mitigated lipopolysaccharide

(LPS)-induced TNF-a and IL-6 levels and activation of NF-kB

signaling pathway in macrophages (80). As for its effect on tumor,

studies conducted in lung cancer illustrated that etomidate could curb

cancer cell proliferation and invasion through different mechanisms

(81, 82).
Ketamine

Ketamine is long believed to affect the immunoregulatory

activities of immune cells. It inhibits the maturation of bone

marrow-derived dendritic cells (BMDCs) and hampers the ability of

dendritic cells (DCs) to prime a Th1-biased immune response (83).

NK cell function is largely related to tumor recurrence and mortality

(84). In a mouse model experiment using breast cancer cell line,

ketamine reduced the number of NK cells and improved metastasis

drastically compared with other anesthetics (4). However, Beilin B

et al.’s results showed a small dose of ketamine before induction might

prevent immune function from inflammatory cascade by inhibiting

the release of IL-6 and TNF-a in early postoperative period (85). In

recent years, ketamine has been proved not to change natural killer

cell cytotoxicity in cancer patients and may even inhibit cancer cell

growth (86–88).
Perioperative adjuvant medications

Opioids

Opioids, such as morphine, are widely used to alleviate pain

perioperatively, which is generally thought to be immunosuppressive.

Opioids exert restraining effect on innate immunity by suppressing

NK cell cytotoxicity, inhibiting macrophage and neutrophil

phagocytosis, and decreasing cytokine production (89). However,

opioids also play an imperative role in relieving postoperative pain,

which is a potential risk factor of tumor metastasis and morality (90).

Morphine, a generally studied opiate, has been shown to have

both anti- and pro-metastasis potential in HCC. In an in vitro study,
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HCC cell lines pre-exposed to morphine did not increase the

proliferation, instead they showed a less progressive ability of

sphere formation and were prone to apoptosis via down-regulating

MMP-9 and uPA, which are both ECM-degrading enzymes (45). In a

nude mouse model, morphine also reduced lung colonization (45).

Another study showed morphine could down-regulate DEAD-box

helicase 49 (DDX49) expression and mitogen-activated protein

kinases (MAPK) signaling to exert anti-tumor effect (46). On the

contrary, morphine was also proved to promote angiogenesis by

activating PI3K/Akt/HIF-1a pathway and increasing secretion of

VEGFA in HCC (47). Sufentanil is also commonly used during

perioperative period. A randomized animal study indicated that

sufentanil-based postoperative analgesia could increase Th17 cells

and FoxP3+ regulatory T (Treg) cells, but no difference in 5-year

mortality was observed (91). A retrospective study pertaining to the

choice of postoperative analgesia gave us information that the use of

epidural analgesia with morphine might have risk of increasing cancer

recurrence and death in contrast to intravenous analgesia with

fentanyl (22). The heterogeneous nature of these studies can be

attributed to different cell lines and morphine concentrations.

Therefore, more studies with same standards are needed to clarify

whether opioids could exert anti-tumor effect on HCC or not.
Non-steroidal anti-inflammatory drugs

Non-steroidal anti-inflammatory drugs (NSAIDs) inhibit

cyclooxygenase (COX) enzymes, which can catalyze the synthesis of

prostaglandins (PGs) in inflammatory processes. Clinical data

analysis showed that the COX-2 expression in HCC tumor sample

was closely associated with TNM stage, tumor size, lymphovascular

invasion and distant metastasis, and 5-year survival rate (48). In vitro

experiments suggested celecoxib treatment could up-regulate E-

cadherin and inhibit COX-2-PGE2-PGE2 receptor 2 (EP2) -p-Akt/

p-ERK pathway, and subsequently inhibit cell proliferation, induce

apoptosis, and constrain migration and invasion (48). Recently, a

study focused on the mechanisms other than COX-2 found that

celecoxib’s anti-tumor effect on HCC might also involve partner of

NOB1 (PNO1) and AKT/rapamycin (mTOR) signaling pathway (49).

In an animal model, perioperative administration of COX-2 inhibitor

could attenuate the inflammatory stress caused by surgery and reduce

the risk of tumor metastasis (50). Parecoxib sodium combined with

fentanyl for PCIA provided adequate analgesia, preserved immune

function, and postponed HCC recurrence more favorably than

fentanyl alone (23). Apart from its use for anesthesia, it has been

proved by a meta-analysis that long-term NASIDs use could prevent

the development of HCC (92), and reduce the recurrence rate of

patients at risk after curative resection (93).
Benzodiazepines

Several meta-analysis articles suggested that the use of

benzodiazepines might not be associated with cancer mortality (94,

95). But preclinical experiment in HCC cells showed that midazolam

increased the level of miR-124-3p and consequently repressed the

expression of PIM-1, a survival kinase, leading to cell cycle arrest and
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apoptosis (51). After treated with midazolam, HCC cell viability,

migration were inhibited and apoptosis rated was enhanced in

accordance with the increasing level of miR-217 (52).
Regional anesthesia

Since the regional nerve block techniques gain popularity in these

years, the perioperative administration of local anesthetics (LA) has

been widely employed, especially for cancer patients. Numerous

studies and experiments have suggested that LA could improve

postoperative rehabilitation and reduce cancer recurrence (96, 97).
Local anesthetics

The commonly used LA are amide-type, such as lidocaine,

bupivacaine, and ropivacaine, which can impede the release of

inflammatory mediators and down-regulate the activation of

immune cells, thereby suppressing immune and inflammatory

response (98). And the analgesic characteristic of LA presented an

anti-tumor effect by inducing the consumption of opioids through

effectively alleviating the pain of surgery and cancer (99). In addition

to these indirect action, LA can exert inhibitory effect on tumor

progression directly. It has been well accepted that LA can cause

apoptosis in cancer cells. In HCC cell lines, Xing W et al.’s study had

seen significantly increased apoptosis rate in cells treated with

lidocaine. They also proved this might be the result of activation of

ERK1/2 and p38, and then the activation increased cleaved caspase-3

and Bax levels and decreased BCL-2 level (10). The similar pro-

apoptotic effect has been observed with bupivacaine as well (55).

Another study validated ropivacaine’s effect on caspase-3, and

proposed that ropivacaine could damage the structure of

mitochondria and interfere its function, then lead to cell death (56).

Furthermore, LA can also inhibit HCC cell proliferation, migration,

invasion by regulation of signaling pathways. PI3K/AKT/mTOR

signaling pathway is usually activated in HCC patients and closely

related to the anti-tumor effect of LA (100). Lidocaine down-regulated

PI3K/Akt pathway via the reduction of ubiquitin specific peptidase 14

(USP14) level, leading to lower-level proliferation and invasion

capacity (54). Similarly, ropivacaine and bupivacaine both could

suppress PI3K/Akt pathway and reduce tumor cell proliferation and

metastasis (55, 57). Other pathways like MAPK can also be down-

regulated with LA treatment and involved in HCC progression (55).

Transcriptional silencing of tumor suppressor genes through

methylation of their promoters could lead to tumorigenesis (101).

Tumor suppressive gene ras association domain family 1A

(RASSF1A) has been shown to be silenced by promoter

methylation in HCC according to previous findings (102). Dongtai

Chen and his colleagues evaluated methylation levels of RASSF1A in

HCC cell lines treated by amide-type LA and discovered a decreased

level of methylation and increased expression of RASSF1A both in

mRNA and protein levels, followed by reduced cell proliferation (11).

This demethylating effect of LA on hepatoma cells was firstly

discovered in 2007 in a study concerning procaine, an esters-type

agent (58). In addition, the increased level of cytoplasmic

polyadenylation element binding protein 3 (CPEB3) induced by
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lidocaine might also be a part of LA’s anti-tumor mechanisms, which

could be regulated by circ_ITCH/miR-421/CPEB3 axis (53).
Local anesthesia techniques

Thoracic epidural block (TEA) is a historically classic pain-relief

method, which was strongly recommended by American Pain Society

(103). TEA combined with general anesthesia (GA) could provide

elder HCC patients with better cognitive status, less release of

inflammatory factors, such as IL-6, IL-1, TNF-a, and lower stress

response than GA alone (104, 105). Application of TEA was

associated with less activation of hypothalamic-pituitary-adrenal

(HPA) axis, better preservation of the Th1/Th2 balance and

maintenance of CD3+, CD4+, and CD4+/CD8+ T cells, indicating

an immune protective effect on HCC patients under surgery

(106–108).

Clinical trials have been conducted to clarify whether TEA

combined with GA could exert anti-tumor effect on HCC patients

during surgery. A retrospective cohort recruiting 772 patients

undergoing selective curative resection surgery suggested that GA

combining with TEA showed higher 3-year overall survival and

disease-free survival rates, rendering GA solely as the independent

predictors of poor survival and high risk of recurrence, respectively

(16). But another single-center study using electronic medical records

found that TEA did not have a definite relation with the recurrence-

free survival and overall survival of HCC patients (24). These two

retrospective cohorts were based on patients with different baseline

characteristics. Patients in the latter were with higher AFP level, larger

tumor size, and longer anesthesia time, and the follow-up time was

longer than the former. Therefore, with the intrinsic retrospective

limitations, it is a call for future randomized controlled trial to

be conducted.

Other regional anesthesia techniques like transverse abdominal

plane block (TAPB), thoracic paravertebral blocks (TPVBs),

quadratus lumborum block (QLB), erector spinae plane block

(ESPB) and local wound infiltration have been reported to be used

as analgesic methods for HCC patients undergoing open liver

resection, but there is devoid of evidence concerning the

relationship between these techniques and long-term prognosis. An

analysis of ACS NSQIP database regarding the one-month mortality

and overall morbidity rates of patients under hepatectomy revealed

that the use of regional abdominal wall nerve block (mostly TAPB)

was associated with better short-term morbidity like shorter duration

of hospital stay compared with TEA, while there was no significant

difference pertaining to overall morality rates (109).
Conclusions

New techniques, drugs and regimens are constantly explored and

tentatively conducted in clinical practices, especially for cancer

patients. The perioperative factors linked with recurrence are the

circulating tumor cells and minimal residual disease. Therefore, it is

pivotal for us anesthesiologists to maintain the homeostasis and
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preserve patients’ immunity in this period. Despite there is no

conclusive evidence to provide a clear protocol, there are some

beneficial actions we can take. Firstly, propofol-based TIVA should

be routinely used if possible for HCC patients undergoing open

hepatectomy, if not, sevoflurane-based inhalational anesthesia ought

to be the alternative. Next, local anesthesia agents and techniques are

recommended to implement, especially for patients contraindicated

to epidural anesthesia. Because local anesthesia shows great

superiority in postoperative analgesia and attenuation of

inflammatory response. Hence, the ability to skillful use the

ultrasound should be added to the anesthesia education system.

Furthermore, in accordance with enhanced recovery after surgery

(ERAS) program, the effective multimodal analgesic methods

including opioids and NSAIDS are indispensable. Undoubtedly, a

clear anesthesia protocol for HCC patients far from well established,

more prospective RCTs and multicenter studies on cancer recurrence

are warranted for more scientific and convinced results.
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