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Background: Management of advanced chordomas remains delicate

considering their insensitivity to chemotherapy. Homozygous deletion of the

regulatory gene CDKN2A has been described as the most frequent genetic

alteration in chordomas and may be considered as a potential theranostic

marker. Here, we evaluated the tumor efficacy of the CDK4/6 inhibitor

palbociclib, as well as the PLK1 inhibitor volasertib, in three chordoma

patient-derived xenograft (PDX) models to validate and identify novel

therapeutic approaches.

Methods: From our chordoma xenograft panel, we selected three models, two

of them harboring a homozygous deletion of CDKN2A/2B genes, and the last

one a PBRM1 pathogenic variant (as control). For each model, we tested the

palbociclib and volasertib drugs with pharmacodynamic studies together with

RT-PCR and RNAseq analyses.

Results: For palbociclib, we observed a significant tumor response for one of

two models harboring the deletion of CDKN2A/2B (p = 0.02), and no significant

tumor response in the PBRM1-mutated PDX; for volasertib, we did not observe

any response in the three testedmodels. RT-PCR and RNAseq analyses showed a

correlation between cell cycle markers and responses to palbociclib; finally,

RNAseq analyses showed a natural enrichment of the oxidative phosphorylation

genes (OxPhos) in the palbociclib-resistant PDX (p = 0.02).
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Conclusion: CDK4/6 inhibition appears as a promising strategy to manage

advanced chordomas harboring a loss of CDKN2A/2B. However, further

preclinical studies are strongly requested to confirm it and to understand

acquired or de novo resistance to palbociclib, in the peculiar view of a

targeting of the oxidative phosphorylation genes.
KEYWORDS
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Introduction

Chordomas are rare bone tumors of the skull-base and spine

which originate from remnants of the notochord, explaining

their common location along the neuraxis. They are

characterized by a locally invasive extension despite slow

growth. Considering their chemoradioresistance, a radical

resection associated with a high-dose radiation is the gold-

standard therapeutic strategy (1). However, despite this

aggressive treatment, the disease-free survival is generally short

(2, 3) due to the fact that locoregional recurrence is a common

event following the initial treatment (4). The management of

these tumor relapses or progression after surgery and proton

beam therapy is a clinical challenge, especially for patients with

metastases and inoperable recurrence disease. Difficulties in

managing advanced chordomas explain the poor long-term

prognosis of this cancer with an overall survival evaluated at

~30% at 10 years (3). There is, therefore, an unmet need for

systemic therapies, which are especially difficult to raise given the

lack of data (5–15) concerning the tumor biology (genetic driver

events), and that chordomas have a relatively low mutation

burden with few therapeutically actionable alterations (5, 6).

Over the years, a wider use of new targeted therapies, such as

tyrosine kinase inhibitors (TKI), has been developed.

Unfortunately, the proportion of objective responses to all

these agents was very low in chordomas (16–24). The limited

number of patients included in these studies, as well as the lack

of follow-up, interfere with the preliminary proof of effectiveness

of these drugs, that encourages the development of several pre-

clinical models (25–34).

Recently, we established and well-characterized a large panel of

12 chordoma patient-derived xenografts (PDXs) (35), including all

relevant clinical features, their immunohistochemical and genomic

profiles, serving as a support for preclinical drug testing. In this way,

the Next Sequencing Generation (NGS) genomic characterization

of our models showed a preponderance (58%) of homozygous

deletions of CDKN2A/2B and mutations affecting the mammalian

SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin

remodeling complexes (such as PBRM1, SMARCB1, ARID1A
02
pathogenic mutations), as described in a majority of chordomas

(5, 6, 14). Mutations in the SWI/SNF complexes were also mutually

exclusive with homozygous deletions of CDKN2A/2B in our panel.

Genes encoding subunits of SWI/SNF complexes are collectively

altered in over 20% of human malignancies (36) and became an

interesting target for new therapies as enhancer of zeste homolog 2

(EZH2) inhibitors (35, 37, 38).

Cyclin-dependent kinase (CDK) inhibitor 2A (CDKN2A) is

a tumor suppressor gene encoding the p16ink4a protein which

plays an important role in cell-cycle regulation through the

inhibition of cyclin-dependent kinases (CDK) 4/6 that protects

the p53 protein from degradation (39). CDKN2A loss or

mutation is found in a wide range of malignancies and may

lead to an increased CDK activity, bypassing a critical senescent

signal (40). In chordomas, the regulatory gene CDKN2A is also

frequently lost (5, 6), and thus, CDK4/6 may be in an over-

activated state (41), although multiple upstream seem to be the

input in the dysregulation of CDK4/6 activity (42). Palbociclib

(PD 0332991), a selective inhibitor of CDK4/6, approved for the

treatment of hormone-receptor positive breast cancer (43), has

been recently tested in in vitro cell-line chordoma models

harboring the loss of CDKN2A (41), suggesting a potential in

vivo action of anti-CDK4/6 in chordomas harboring this

genomic alteration.

The Polo-like kinase (PLK) family, particularly PLK1, has

recently become an attractive oncogenic target considering its

regular roles in the G2/M cell cycle checkpoint, via its effects on

chromosome segregation, spindle assembly, and cytokinesis

(44). Volasertib (BI 2536), a selective PLK1-inhibitor, showed

a promising antitumor activity in other cancer preclinical

models (45–47). Considering that several genomic analyses of

chordoma samples reveal widespread cell cycle dysregulation

(48), testing the inhibition of PLK1 in chordomas makes sense.

In this study, we therefore focused our pharmacological

expertise on the CDK4/6 inhibitor palbociclib and the PLK1-

inhibitor volasertib in two xenograft models harboring

homozygous deletions of CDKN2A/2B, and in a third PBRM1-

mutated model (control), in order to evaluate the CDKN2A/2B

loss as a theranostic biomarker in chordomas.
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Materials and methods

Chordoma patient-derived xenografts

Three previously established and characterized chordoma

PDXs were used for in vivo experiments: cluster of

differentiation (CD) 3, CD7, and CD39 (35). The main

clinical, histological, and genomic features of our xenografts

panel have been previously described (35). PDX models of

chordomas were obtained by engrafting a primary tumor

sample into nude mice (Charles River Laboratories). All in

vivo experimental procedures, animal care, and housing were

performed in accordance with the recommendations of the

European Community (2010/63/UE) for the care and use of

laboratory animals. Experimental procedures were specifically

approved by the ethics committee of the Institut Curie CEEA-IC

#118 (Authorization APAFiS# 25870-2020060410487032-v1

given by National Authority) in compliance with the

international guidelines.
Next-generation sequencing

DNA was extracted from frozen tumor samples using a

standard phenol/chloroform procedure. RNA was extracted

from microdissected areas using the RNeasy Mini Kit (Qiagen,

Valencia, CA, USA).

DNA from xenografts and a part of patients’ tumors were

then analyzed for gene mutations by targeted next-generation

sequencing (NGS). The in-house NGS panel includes 571 genes

of interest in oncology for diagnosis, prognosis, and theranostics

including chordoma genes of interest such as PIK3CA, PTEN,

CDKN2A/2B, PBRM1, SETD2, and ARID1A. The library

preparation was performed using the Agilent Sureselect XT HS

kit, and sequencing was completed on an Illumina NovaSeq

6000 sequencer. All variants, called using Varscan2 (v2.4.3-0),

that passed the following thresholds were validated: allelic ratio

above 5% and population frequency lower than 0.1% in 1000 g,

ESP, or gnomAD. This large targeted NGS panel also allowed

molecular analysis of tumors for CNV (copy number variation)

status including CDKN2A homozygous deletion detection. In

case of doubt concerning the originating link between the

patient’s tumors and PDXs, an identity monitoring was

performed based on polymorphisms.
Antitumor efficacy of targeted
therapy drugs

Considering the results of the molecular analysis of our

chordoma xenograft panel, two drugs on three PDXs (CD3,

CD7, and CD39) were considered in our pharmacological

program, i.e. the CDK4/6 inhibitor palbociclib (Ibrance®,
Frontiers in Oncology 03
Pfizer) and the PLK1 inhibitor volasertib (Boehringer

Ingelheim). This last targeted treatment was tested in the field

of our huge expertise developed in various types of human

cancers, such as non-small cell lung cancers (46) and breast

cancers (47). Palbociclib was administered orally at a dose of 75

mg/kg/day (tween 80 0.5% + methylcellulose 0.5% + water 99%),

once daily, 5 days per week; volasertib was administered orally at

the dose of 10 mg/kg/day (methylcellulose 0.5% + tween 80 0.5%

+ DMSO 2% + water 97%), once daily, 4 days per week. The

treatment was administered from day 1 to mouse sacrifice.

Drugs were sourced from the oncological department of

Institut Curie, Paris, France.

For in vivo therapeutic studies, a 15 mm3 tumor fragment

was grafted into 30 female immunodeficiency nude mice. Mice

bearing growing tumors with a volume of 60–150 mm3 were

randomly assigned to control or treatment groups. Animals with

tumor volumes outside this range were excluded. Mice were

weighted and tumors were measured once a week. Considering

the slow growth of these tumors, xenografted mice were

sacrificed when tumor volume reached a mean volume of

500 mm3.

Tumor volumes were calculated using two perpendicular

diameters with calipers as follows: V (volume) = (a×b)2/2 where

a and b are the largest and smallest perpendicular tumor

diameters (in mm). Relative tumor volumes (RTV) were

calculated from the following formula: RTV = (Vx/V1), where

Vx is the tumor volume on day x and V1 is the tumor volume at

initiation of therapy (day 1). Antitumor activity was evaluated

according to tumor growth inhibition (TGI), calculated

according to the following formula: percent GI = 100 −

(RTVt/RTVc ×100), where RTVt is the median RTV of treated

mice and RTVc is the median RTV of controls, both at a given

time point when the antitumor effect was optimal. A meaningful

biological effect was defined as a TGI of at least 50% (49). The

statistical significance of differences observed between the

individual RTVs corresponding to the treated mice and

control groups was calculated using the two-tailed Mann–

Whitney U test.

Moreover, to evaluate the response to treatments observed in

the three models according to individual mouse variability, we

decided to consider each mouse as one tumor-bearing entity.

Hence, in all in vivo experiments, a relative tumor variation

(RTVV)) was calculated for each treated mouse as follows:

[(RTVt/mRTVc)], where RTVt is the relative tumor volume of

the treated mouse and mRTVc is the median relative tumor

volume of the corresponding control group at the end of

treatment. We then calculated an overall response rate (ORR)

for each treated mouse as follows: ORR = [(RTVV) - 1]. A tumor

was considered to be responding to treatment, if the ORR was

below -0.5. The statistical significance of the ORR between tested

treatments was determined using Fisher’s Exact test. Finally, we

evaluated the impact of treatments on tumor progression, by

evaluating all progression-free survival probabilities taking
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tumor doubling time (RTV × 2) and time for RTV × 4 into

account. A log-rank (Mantel–Cox) test was used to perform

treatment comparisons.
Pharmacodynamics study by RT-PCR
analysis and RNAseq after in vivo
pharmacological experiments

A RT-PCR study was performed after the administration of

palbociclib and volasertib drugs on the two models CD3 and

CD7. The RT-PCR technique has been previously described by

our group (50). Results, expressed as N-fold differences in target

gene expressions relative to the murine and human TBP genes

(both the murine and the human TBP transcripts), and termed

Ntarget, were determined as Ntarget = 2DCtsample, where the DCt
value of the sample was determined by subtracting the Ct value

of the specific target gene from the Ct value of the TBP. The

Ntarget values of the samples were subsequently normalized so

that the value for “basal mRNA level” (smallest amount of

quantifiable target gene mRNA, Ct = 35) was 1 for selected

genes. The expression of the following cancer genes potentially

implied in palbociclib resistance (51, 52) was studied: CCNE1,

CDK4, PTEN, RB1, and E2F1. The PLK1 gene was also studied,

as the target of PLK1 inhibitors. Finally, we studied some genes

implied in the proliferation, or overexpressed in chordomas:

MKI67, MYC, TBXT and EGFR (53). The nucleotide sequences

of the gene primers used are available on request.

For RNAseq analyses, RNA was extracted from

microdissected areas using the RNeasy Mini Kit (Qiagen,

Valencia, CA, USA). Library preparation was performed using

the QuantSeq 3′ mRNA-Seq reverse (REV) Library Prep Kit

(Lexogen, Vienna, Austria) using 150 ng of total RNA, and

according to the manufacturer’s instruction. The pool was

sequenced on a NovaSeq 6000 SP 2x75bp flow cell (Illumina

Inc., San Diego, CA, USA). RNA sequencing data were analyzed

using the BlueBee Genomics Platform (Lexogen, Vienna,

Austria). Gene Ontology Enrichment Analysis was performed

using the ShinyGO (http://bioinformatics.sdstate.edu/go/) and

gProfiler (https://biit.cs.ut.ee/gprofiler/gost) Web sites.
Statistical analyses

Statistical analyses were performed using the Prism v9.0

software (GraphPad Software, Inc., La Jolla, CA, USA).

Statistical characteristics were used to describe all variables.

Numerical variables were expressed as the median or mean

and standard deviation, as appropriate. Categorical variables

were expressed as the count and percentage. Variables were

tested by the Mann-Whitney U test, Fisher’s Exact test, or chi-

squared test, as appropriate. Survival distributions were

determined using the Kaplan–Meier method and the log-rank
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(Mantel–Cox) test was used to compare groups. Every statistical

test used in this manuscript was two-tailed, and p-values less

than 0.05 were considered as significant.
Results

Patient-derived xenograft selection

The histological and genomic features of the three PDXs are

described in Table 1. CD3 was obtained from a patient’s sacral

primary tumor previously operated on and displaying a

homozygous deletion of CDKN2A/2B; CD7 was obtained from

a skull base primary tumor previously operated on and

irradiated and displaying a homozygous deletion of CDKN2A/

2B; CD39 was obtained from a skull base primary tumor

previously operated on and presenting a pathogenic PBRM1

variant (c.599C>G), without CDKN2A/2B deletion (Figure 1).

The CD39 model which does not harbor any loss-of-function

genomic alteration of CDKN2A or CDKN2B but a PBRM1-

variant was chosen as a negative control in order to reinforce the

fact that CDKN2A/2B might be a biomarker of response to

palbociclib. None of these models harbored another CNV or

pathogenic variant of theranostic interest.
In vivo antitumor efficacy of
targeted therapies

In vivo therapeutic experiments with palbociclib and

volasertib were done on these three xenografts. For each

model, PDX tumor-bearing mice were randomized into

treatment and control groups (n = 4–7 mice per group). For

the palbociclib drug, TGI was calculated at 80, 49, and 85 days,

for CD3, CD7, and CD39, respectively. For the volasertib drug,

TGI was calculated at 77, 28, and 51 days, for CD3, CD7, and

CD39, respectively.

In vivo responses to palbociclib and volasertib are shown in

the Figure 2. For the CD3 xenograft, palbociclib induced a

significant TGI (p = 0.02) with an optimal TGI of 60%, whereas
TABLE 1 Histopathological and molecular features of the three
selected PDX models.

Models Histology
type*

Molecular alteration Targeted-
therapy

CD3 Conventional CDKN2A/2B loss Palbociclib
Volasertib

CD7 Conventional CDKN2A/2B loss Palbociclib
Volasertib

CD39 Conventional PBRM1 variant (c.599C>G;
p.(Ser200Ter))

Palbociclib
Volasertib
*According to the WHO (World Health Organization) 2020.
CD, cluster of differentiation.
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volasertib showed a slight tumor growth response close to

statistical significance (p = 0.065) (Figure 2A). The probability

of progression-free survival at RTV × 4 was significantly longer in

the palbociclib and volasertib treatments groups than in the

control (p = 0.03 and p = 0.02, respectively), but not at RTV× 2

(p = 0.09 and p = 0.052, respectively) (Figure 2B).

For the CD7 xenograft, we did not observe any tumor

growth response to both palbociclib and volasertib (p = 0.85
Frontiers in Oncology 05
and p > 0.99, respectively), as well as for the CD39 xenograft

without CDKN2A/2B deletion (p = 0.40 and 0.058, respectively).

Hence, when we looked at the individual tumor responses in

the three treated models (Figure 3A), the ORRs lower than -0.5

were 33.3% and 18.8% after palbociclib and volasertib,

respectively (p = 0.25). Finally, the study of the progression-

free survival across the three PDXmodels at RTV × 2 and RTV ×

4 did not show any significant effect for palbociclib (p = 0.39 and
B

C

A

FIGURE 1

Genome view profiles of the allele-specific copy number of the CD3 (A), CD7 (B), and CD39 (C) chordoma PDX models. The top graph log-
odds-ratio represents the B-Allele Frequency (BAF), and the bottom graph the log depth ratio between tumor and a healthy witness. Both CD3
and CD7 chordoma PDX models harbored a homozygous deletion of CDKN2A/2B (red bar), whereas CD39 did not.
frontiersin.org

https://doi.org/10.3389/fonc.2022.960720
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Passeri et al. 10.3389/fonc.2022.960720
p = 0.39 for RTV × 2 and RTV × 4, respectively) nor with

volasertib (p=0.13 and p=0.27 for RTV x 2 and RTV x 4

respectively) (Figures 3B, C).
Pharmacodynamics study

Using RT-PCR analyses, we first looked at modifications of

candidate gene expression occurring after palbociclib and

volasertib in vivo therapies in CD3 and CD7 models compared

to the control groups (Figure 4). For that, we applied RT-qPCR

on the genes of interest (described in the materials and methods

section) on 28 samples assigned to the control or treatment

group. After palbociclib treatment, we observed a significant

decrease in human MKI67 (p = 0.008), E2F1 (p = 0.016), and

PLK1 (p = 0.016) gene expression in the in vivo responding CD3

xenograft; in contrast, we only observed decreased gene

expression in E2F1 (p = 0.029) in the non-responding model

CD7. No significant modification of gene expression was noted

for CDK4 (palbociclib target), MYC, TBXT, EGFR, CCNE1, and

RB1 in both studied models. After volasertib administration, we

observed a significant gene expression modification of RB1 (p =

0.03) in the CD3 model. No significant modification of gene

expression was noted for the other genes, including PLK1

(volasertib target).
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To better understand the opposite efficacy of palbociclib in

the two CDKN2A/2B deleted CD3 and CD7 PDXs, we then

performed RNAseq analyses in both control and treated groups

(three tumors per group). In a differential supervised analysis,

comparing control tumors and tumors treated with palbociclib

in both PDX models, we observed a more important

modification of gene expression in the responding CD3 PDX

model (n = 318 genes, Supplementary Table S1) compared to the

non-responding CD7 PDX model (n = 12 genes; Supplementary

Table S2), which correlated with in vivo observations. Next, we

tested the enrichment of the set of genes resulting from the

KEGG database. As expected, we found a significant decrease in

the enrichment of cell cycle genes in the responding CD3 tumors

(p = 0.04), such as TOP2A (p = 2.2 e-26), MKI67 (p = 4.3 e-20),

and AURKB (2.5 e-8). Moreover, we compared in a supervised

analysis the gene expression of control untreated CD3 PDX

tumors and control untreated CD7 PDX tumors in order to find

predictive biomarkers of intrinsic palbociclib resistance

(Supplementary Table S3). We observed an upregulation of

genes implied in hypoxia such as S100A4 (p = 6.5 e-79) and

CA3 (p = 3.8 e-56) in the resistant CD7 PDX model (Figure 5A).

Among the top 1000 genes in which we observed a significant

gene expression variation in both the models (adjusted p-value),

we noted an enrichment of the oxidative phosphorylation genes

in the resistant CD7 PDX model (p = 0.02) using the KEGG data
B

A

FIGURE 2

In vivo efficacy of palbociclib and volasertib, in the CD3, CD7, and CD39 chordoma PDXs. PDX tumor-bearing mice were randomized into each
treatment group (n = 4–7 mice per group), and treated with palbociclib 75 mg/kg, 5 days per week (orange), or volasertib 10 mg/kg, 4 days per
week (blue). Untreated control is shown in black. (A) Relative tumor volumes. Tumor growth was evaluated by plotting the mean of the relative
tumor volume ± SD per group. (B) Probability of tumor progression. The time to reach RTV × 2 and RTV × 4 for each treated mouse has been
calculated using Kaplan Meier curves and log-rank test.
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base, such as NDUFA1 (p = 6.5 e-14), NDUFB2 (p = 1.2 e-07),

COX6C (p = 4.4 e-07), COX7A2 (p = 1.9 e-05), COX7C (p = 3.2 e-

7), and COX17 (p = 4.2 e-10) (Figure 5B). To resume the

pharmacodynamic study, we observed a decrease in the

expression of genes implied in the cell cycle in the responding

CD3 compared to the CD7 PDX model treated by palbociclib.

Moreover, we noted a significant enrichment of the expression of

genes implied in oxidative phosphorylation (OxPhos) into the

non-responding control CD7 PDX model in comparison with

the responding control CD3 PDX model.
Discussion

In this current study, we explored the antitumor effect of the

targeted therapy palbociclib in three PDX chordoma models in

order to consider the homozygous deletion of CDKN2A/2B as a

theranostic biomarker of response to palbociclib, as suggested in

other cancer types (43, 54, 55). We observed various responses to

palbociclib concerning both models (CD3, CD7) harboring a

loss of CDKN2A/2B, and no tumor efficacy in the non-CDKN2A/

2B-deleted PBRM1-mutated PDX (CD39). We also tested the

PLK1 inhibitor volasertib in these three PDXs and did not

observe any significant anti-tumor response.

Chordoma tumors are known to overexpress multiple

kinases (56) (included PDGFR-a, PDGFR-b, c-Kit, c-Met,

pAKT, mTOR, HER2, VEGFR, and EGFR) which are involved

in a multitude of cellular functions relevant to cancer
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pathogenesis. These kinases are well-studied in the field of

oncology, and several FDA-approved drugs on the market

targeting each kinase can be used as repurposing candidates

for advanced chordomas. The first pre- and clinical results of

some FDA-approved drugs targeting EGFR, PDGFR-a,
PDGFR-b, and c-Kit, have shown partial objective response

and clinical benefit in chordomas (57). The lack of data

concerning the biology of chordomas (genetic driver events)

and theranostic markers hampers the selection of molecularly

guided therapies and may explain these sparse results. As

kinases, CDK4 and CDK6 play a crucial role in the G1-S

phase transition, which is an important restriction point in the

normal cell cycle, often reduced in cancer, leading to

uncontrolled cell proliferation (Figure 6). Importantly, in

chordomas, as well as in our PDX chordoma panel (35), the

CDK4/6 regulatory gene CDKN2A (also known as p16) is

frequently lost (5, 6), leading to the fact that CDK4/6 may be

found in an over-activated state (41). However, it should be

noted that other signaling pathways, in addition to CDKN2A

loss, are inputted in cyclin D overexpression and promote

CDK4/6 activity, leading to uncontrolled cell proliferation

(42). Palbociclib, a specific inhibitor of CDK4/6, has recently

been tested in in vitro cell line chordoma models harboring the

loss of CDKN2A and showed an efficient inhibition of the tumor

cell growth (41). Finally, the efficacy of palbociclib has been

tested in numerous clinical trials for cancers, and is also

currently being tested in a phase II trial, in patients with

locally advanced/metastatic chordomas (NCT03110744).
B C

A

FIGURE 3

Individual tumor responses in the three treated models. (A) Overall response rate (ORR) in all treated chordoma PDXs after palbociclib (n = 17)
and volasertib (n = 16). A tumor was considered to be responding to treatment if ORR was below -0.5. (B, C) Probability of progression (RTV × 2
and RTV × 4) in all treated chordoma PDXs after palbociclib and volasertib treatments.
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FIGURE 4

Gene expression modifications after treatments with palbociclib and volasertib (CD3 and CD7 models). Quantitative RT-PCR was performed to
measure the expression of the target genes. Data are presented as level of gene expression compared to the standard level of Homo sapien (Hs)
TBP. Genes expressions were compared between mice treated with the indicated agent and the control group. Error bars show the standard error
of the mean. * and ** achieve statistical significance compared to control (p < 0.05 and p < 0.01, respectively) by Mann–Whitney U test.
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B

A

FIGURE 5

Volcanoplots illustrating the top 1000 genes (A) and all genes related to the oxidative phosphorylation (OxPhos) pathway (B), in which we
observed a significant gene expression variation in both untreated CD3 and CD7 PDX models (adjusted p-value).
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In our in vivo pharmacological program, the CD3 model

harboring CDKN2A/2B showed a significant tumor growth

inhibition (p = 0.02), while the CD7 model showed no tumor

response (p = 0.85). Pharmacodynamic study (RT PCR and

RNAseq) confirmed the difference between both PDX models

harboring both the loss of CDKN2/2B. Indeed, in the responding

CD3 PDX model, we observed a decrease in the expression of

genes implied in the cell cycle, such as MKI67 (p = 0.008), E2F1

(p = 0.016), PLK1 (p = 0.016), TOP2A (p = 2.2 e-26), and AURKB

(p = 2.5 e-8), compared to the non-responding model (CD7). We

did not observe tumor response to palbociclib with the xenograft

CD39 (p = 0.40) (which did not harbor a loss of CDKN2A/2B);

such an observation raises the possibility to consider CDKN2A/

2B loss as a theranostic marker of palbociclib antitumor efficacy
Frontiers in Oncology 10
in chordomas. Considering the various sensitivities to

palbociclib, we can formulate the hypothesis on which tumor

heterogeneity and preexistence of a resistant clonal subtype to

palbociclib in the CD7 PDX model might be present. Indeed,

chordoma is known as a heterogeneous tumor (58) with various

cell phenotypes. Genetic heterogeneity contributes to selecting a

clonal cell population during tumor development and

progression, and is well-known as a prominent contributor to

therapeutic failure (59). This hypothesis is reinforced by genetic

analyses performed on the CD7 chordoma PDX model, which

confirmed the loss of CDKN2A/2B in treated and control mice,

but not in the primary patient’s tumor (35), suggesting a spatial

tumor heterogeneity in which some cells harbor the homozygous

deletion of CDKN2A, and others do not. Moreover, as observed
B

C

A

FIGURE 6

The classic model for the regulation of the G1/S transition by cyclins and CDK. (A) In basal situation, RB protein phosphorylation performed by
cyclin D-CDK4/6 kinase induces E2F releasing and facilitates the expression of E2F target genes, which are critical for initiation of DNA synthesis
and entry into S-phase. CDK4/6 activity is repressed by the p16 protein. (B) Loss of p16/CDKN2A/2B activity leads to an overactivation of the
CDK4/6 activity and therefore an uncontrolled cell proliferation. (C) The CDK4/6 inhibitor re-establishes the activity of the RB protein activity as
an inhibitor of cell division.
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in hormone receptor-positive breast cancers, many tumors

demonstrate de novo (or intrinsic) resistance to palbociclib,

implying genomic alterations (60). When we compared the

gene expression in the RNAseq-supervised analysis in non-

treated CD3 and CD7 PDX tumors, we observed a significant

enrichment of the expression of genes implied in oxidative

phosphorylation (OxPhos) into the non-responding CD7 PDX

model, as compared to the responding CD3 PDX model.

Metabolism reprogramming is well known as a hallmark of

cancer (61). While normal cells commonly use mitochondrial

oxidative metabolism for energy generation, tumor cells often

switch to aerobic glycolysis, described as the Warburg effect (62).

Classically, glycolytic metabolism is involved in the induction of

acquired drug resistance, such as in estrogen-receptor breast

cancer treated with palbociclib (63). However, some authors also

suggested that drug resistance could be associated with an

upregulation of the oxidative phosphorylation (OxPhos)

pathway, which may be explained by the “reverse Warburg

effect” (64, 65). Evans et al. (66) recently showed an OxPhos

dependence in chemotherapy-resistant triple-negative breast

cancer. Moreover, radiation therapy seems to increase in vitro

and in vivo OxPhos activity (67). Thus, we can suppose a

selection of clonal subtypes to palbociclib in the CD7 PDX

model, increased by the history of radiation, leading to a higher

OxPhos activity in this model. Interestingly, drug resistance can

be reversed by blocking OxPhos (68). In several cancers, new

OxPhos inhibitors have already been identified, and are under

preclinical and/or clinical evaluation (66, 69). Moreover,

favorable results about the synergistic antitumoral effect of the

combination of OxPhos inhibitors and palbociclib in a triple-

negative breast cancer cell line (66), encourage testing the use of

this drug combination or OxPhos inhibitors alone in

palbociclib-resistant PDX chordoma models harboring the

CDKN2A/2B loss. However, some authors revealed an

upregulation of oxidative metabolism (OxPhos) in CDK4/6

inhibitor-tolerant uveal melanomas (70), suggesting further

experimental research to conclude a causal association in the

Oxphos dependency of palbociclib-resistant chordomas.

Although being not fully understood, several other resistance

mechanisms of CD4/6 inhibitors exist, as mechanisms bypassing

the CDK4/6 inhibition via activating CDK2 signaling, which is

another way that phosphorylates RB (52).

The PLK1 inhibitor showed a slight antitumor efficacy

without significant activity (p = 0.065) in one model (CD3).

These results could be explained by the absence of concomitant

amplification or copy number gains of CCND1 and CCNE2 in

our chordoma PDXs models (35), both of which are involved in

RB inactivation driving tumor cells through the S phase (47).

PLK1 inhibition seems to be more promising in a combination

of treatments than in monotherapy (46, 71), therefore suggesting

the importance of future preclinical trials in order to assess the

combination of PLK1 inhibitors with other targeted drugs such

as palbociclib. Indeed, PLK1 inhibition results in a G2-M arrest
Frontiers in Oncology 11
(72). Consequently, the combination of drugs resulting in a dual

G1 (palbociclib) and G2-M arrest (volasertib) might therefore be

addressed in chordomas.
Study limitations

Considering our disparate results and the low number of

tested models (n = 3), there is a lack of support evidence to

consider CDKN2A/2B loss as a potential biomarker for CDK4/6

inhibitor sensitivity, suggesting the importance of further studies

on more preclinical models. Secondly, we did not perform drug

combinations, especially with volasertib and palbociclib,

considering the slow-growth of the tumor in PDX models

(35). Moreover, we also hypothesized that the enrichment of

the expression of genes implied in oxidative phosphorylation

(OxPhos) could lead to primary resistance in chordoma.

However, our results are insufficient to definitely conclude a

causal association considering the few tested models and the

absence of additional pharmacogenomic experiments.
Conclusion

Considering the frequency of genomic alterations affecting

the CDKN2A/2B gene in chordomas, targeting this biomarker

was fundamental. The present study described for the first time

the in vivo activity of a CDK4/6 inhibitor and a PLK1 inhibitor

in two human chordoma xenografts harboring homozygous

deletions of CDKN2A/2B. We also hypothesized that OxPhos

activity could lead to as a resistance mechanism to CDK4/6

inhibitors in chordomas. CDK4/6 inhibition may be effective,

but further studies in several PDX models are strongly necessary

to confirm such an observation, and to identify predictive

markers of response or resistance to palbociclib in chordomas

and reverse primary or secondary resistances. Investigating

volasertib in combination with palbociclib could also provide a

novel therapeutic strategy.
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