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Background: Clear cell Renal Cell Carcinoma (ccRCC) is the most common

malignant tumor in the urinary system and the predominant subtype of

malignant renal tumors with high mortality. Biopsy is the main examination

to determine ccRCC grade, but it can lead to unavoidable complications and

sampling bias. Therefore, non-invasive technology (e.g., CT examination) for

ccRCC grading is attractingmore andmore attention. However, noise labels on

CT images containing multiple grades but only one label make prediction

difficult. However, noise labels exist in CT images, which contain multiple

grades but only one label, making prediction difficult.

Aim: We proposed a Transformer-based deep learning algorithm with CT

images to improve the diagnostic accuracy of grading prediction and to

improve the diagnostic accuracy of ccRCC grading.

Methods: We integrate different training models to improve robustness and

predict Fuhrman nuclear grade. Then, we conducted experiments on a

collected ccRCC dataset containing 759 patients and used average

classification accuracy, sensitivity, specificity, and AreaUnderCurve as

indicators to evaluate the quality of research. In the comparative

experiments, we further performed various current deep learning algorithms

to show the advantages of the proposed method. We collected patients with

pathologically proven ccRCC diagnosed from April 2010 to December 2018 as

the training and internal test dataset, containing 759 patients. We propose a

transformer-based network architecture that efficiently employs convolutional

neural networks (CNNs) and self-attention mechanisms to extract a persuasive

feature automatically. And then, a nonlinear classifier is applied to classify. We

integrate different training models to improve the accuracy and robustness of
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the model. The average classification accuracy, sensitivity, specificity, and area

under curve are used as indicators to evaluate the quality of a model.

Results: The mean accuracy, sensitivity, specificity, and Area Under Curve

achieved by CNN were 82.3%, 89.4%, 83.2%, and 85.7%, respectively. In

contrast, the proposed Transformer-based model obtains a mean accuracy

of 87.1% with a sensitivity of 91.3%, a specificity of 85.3%, and an Area Under

Curve (AUC) of 90.3%. The integrated model acquires a better performance

(86.5% ACC and an AUC of 91.2%).

Conclusion: A transformer-based network performs better than traditional

deep learning algorithms in terms of the accuracy of ccRCC prediction.

Meanwhile, the transformer has a certain advantage in dealing with noise

labels existing in CT images of ccRCC. This method is promising to be

applied to other medical tasks (e.g., the grade of neurogliomas

and meningiomas).
KEYWORDS

tumor grading, ensemble learning, clear cell renal cell carcinoma, transformer
network, deep learning
1 Introduction

Renal cell carcinoma (RCC) is the most common kidney

tumor (1, 2). Clear cell RCC (ccRCC) is the predominant

hypotype of RCC, accounting for about 75-80 (3). With the

background of population aging, kidney cancer, especially RCC,

keeps rising. When ccRCC progresses to intermediate and

advanced stages, lymph node metastasis or distant organ

metastasis probably occurs, which leads to dangerous clinical

symptoms and a poor prognosis (4, 5). At present, one of the

most important pieces of clinical evidence for judging the

malignancy degree of ccRCC is given by the Fuhrman grading

system, which defines four pathological grades based on nuclear

size, shape, staining, and nucleoli (5). Generally, tumors with low

invasiveness are classified as grades I–II, and those with high

invasiveness are classified as grades III–IV (6).

The preoperative biopsy is the gold standard for evaluating

the grade of ccRCC. However, patients undergoing biopsy are at

risk of complications, e.g., hematuria (with more than 80%

incidence), perirenal hematoma (with about 60%–90%

incidence), and infection (7). The procedure of preoperative

biopsy is complex and invasive. Besides, biopsy cannot reflect the

Fuhrman grade of the whole tumor (8) because of the high

spatial and temporal heterogeneity. Thus, preoperative

evaluation of ccRCC using a noninvasive procedure for clinical

diagnosis is urgently needed. CT examination is the most

commonly used non-invasive technique for preoperative

diagnosis and follow-up and plays an essential role in
02
diagnosing and treating renal carcinoma, e.g., detection,

localization, characterization, and grading of lesions. In some

studies, it has been used to evaluate the preoperative ccRCC

classification, such as (9–12).

Preoperative noninvasive prediction of ccRCC is conducive

to delivering an individualized treatment. Previous studies (12,

13), using radiation characteristics based on multiphase CT,

investigated the predictive performance of different machine

learning models for discriminating ccRCC. Beyond that (14–17),

have shown that convolutional neural networks based on single

or multiphase CT images are beneficial for evaluating ccRCC

grading. However, the biggest challenge of CT image grading is

the existence of noise labels in the image (8). What is a “noise

label?”One CT image may contain multiple grades but may have

only one label. For example, the grade III–IV grade CT image

contains grade I–II tumor areas because the label was obtained

from the biopsy of the most severe tumor area of the whole

kidney. When encountering noise labels, convolutions

uniformly process all tumor regions regardless of their

importance, which leads to the inefficiency of classification.

CNN makes decisions based on the convolution kernel, which

only focuses on the local pixel subset, resulting in the network

tending to learn the local mode rather than the global context.

The transformer network, a branch of deep learning, is

considered a promising technology for analyzing medical

images because it can capture global representations and

establish long-distance relationships within the image (18, 19).

Therefore, the transformer is suitable for handling CT images
frontiersin.org
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with noise labels. We propose a transformer classifier,

TransResNet, to predict high-grade ccRCC using CT images.

To the best of our knowledge, there have been no investigations

about discriminating the low and high nuclear grade ccRCC by

combining transformer network and radiological features.

As a result, this research aims to investigate an efficient

transformer classifier for predicting the Fuhrman grading of

ccRCC based on three-phased CT images.
2 Materials and methods

2.1 Data preparation

Patient cohort: This diagnostic and observational study was

approved by the institutional review board (West China

Hospital, Sichuan University), and written informed consent

was obtained from all patients. Consecutive patients were

collected from April 2010 to December 2018 in one hospital.

We cleaned the original data according to the following rules: (1)

there is no obvious noise in the image of the patient; (2) the

patient image has no apparent artifacts. Specifically, all of the

pathologically proven ccRCC grades are reconfirmed by

experienced radiologists. This work uses the Fuhrman nuclear

grading system as the standard grading system. Finally, 759

patients were included in this work.

CT images: All patients underwent a multi-slice CT scan

with three phases, including unenhanced, arterial, and portal

venous phases, using the following systems: LightSpeed VCT

(GE Healthcare), Sensation 64 CT (Siemens), or Sensation 16 CT

(Siemens). The PCP, CMP, and NP of the MDCT (multidetector

CT) examination were acquired for each patient with the

following protocol. By using a high-pressure injector at a rate

of 3.5 ml/s, 70–100 ml of contrast agents were injected into the

antecubital vein. The CMP is the corticomedullary phase

contrast-enhanced scan starting 30 s after the contrast agent

injection. The NP is the nephrographic phase contrast-enhanced

scan starting 90 s after the contrast materials injection. Spiral

scanning and thin-slice reconstruction were used for all three

phases. The CT scanning parameters of the phases were as

follows: the tube voltage was 120 KV; the reconstruction

thickness was 1 mm to 5 mm, and the matrix was 512 × 512.

All CT scans of patients are converted to color-scale images and

reviewed by experienced radiologists in abdominal imaging. The

ccRCC images collected from the CMP phase are used

in experiments.

CT Processing: Medical CT slices are diverse and complex.

If CT slices are selected to be the input of the classification

model, the results are imperfect and require further

optimization. To make a more accurate diagnosis, we

preprocess the original CT image by detecting the organ or

lesion area from medical scanning. We utilize a tumor detection
Frontiers in Oncology 03
network to quickly and efficiently obtain the rectangular region

of interest of the tumor in each phase image. As shown in

Figure 1, to reduce the complexity of direct tumor segmentation,

the detection frame is divided into two stages: (1) renal organ

detection: this detection module is composed of VGG16 (20)

without the classification layers (pre-trained on ImageNet (21)),

aiming to find the rectangular region of kidneys to mitigate the

influence of background of CT scans and reduce the search space

of tumors; (2) tumor detection: aims to regress the rectangular

region of the tumor accurately and predict the possibility of

the tumor.

Because medical data are scarce and difficult to label, large

deep learning models rely on data augmentation to improve

performance. To study the impact of data enhancement, we will

consider several common enhancements here. There are two

types of data augmentation in the vision computer domain. One

is appearance transformation, such as sharpness, brightness,

contrast, saturation, gray processing, Gaussian blur, and

elast ic i ty (22), another involves spat ia l geometric

transformation, such as horizontal flipping, rotation, cropping,

and resizing (23). Every enhancement strategy can transform

data stochastically with internal parameters (e.g., rotation

degree, noise level). Our model adopted strategies including

random clipping, Affine, Gaussian blur, and Gaussian noise.

Figure 2 visualizes the augmentations that we study in this work.
2.2 ccRCC classification network

To make the features extracted from the ccRCC dataset

correspond to the label as much as possible, we introduced a

transformer module into convolutional networks to improve

performance. We illustrate the overall diagram in Figure 3A.

Firstly, the input image is processed with several convolution

blocks, and then the processed feature map is provided to the

transformer block. At the end of the network, the class tokens

are applied for the prediction of ccRCC. Our insights into taking

advantage of convolutions and transformers are: (1) in the early

network, using convolution to learn densely distributed and low-

level features requires less computational cost than the

transformer; and (2) in the later network, applying the

transformer to learn higher-level semantic concepts and long-

range dependencies in the image.

The network framework, termed TransResNet, is composed

of convolution blocks, transformer blocks, and classifier (one FC

layer). The convolution block adopts a pyramid structure, in

which the resolution of feature mapping decreases with the

increase in network depth while the number of channels

increases. It consists of four phases: the first phase is a 3 × 3

convolution with stride 1 and padding 1, which is used to extract

initial local features. In the last three stages, we refer to the first

three layers of ResNet, in which the output channels of each
frontiersin.org
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layer are 16, 32, and 64, respectively. The Transformer block

contains 12 repeated transformers. As shown in Figure 3B, each

transformer consists of a multi-head self-attention (MSA)

module and a multi-layer perceptron (MLP) block.

In the Transformer, we consider the input feature map

X∈Rc×h×w with c channels and the feature shape of h × w.

Self-attention estimates the relationship between one part of a

feature map and other parts (e.g., which tumor masses are likely

to come together into a complete tumor mass with maximum

grade). Therefore, the feature map is divided into a sequence X=

{x1,x2,…,xn} (x ∈ Rc�h
n�w

n ) with n patches. The goal of self-
Frontiers in Oncology 04
attention is to capture the interaction among all n patches by

encoding each patch in terms of global contextual information.

The output of the MSA layer is computed with the feature map X

using the following equation:

Z = MSA LN softmax
QKTffiffiffiffiffi

dk
p

 !
V + Xclass + Xposition

 ! !

+ X (1)

where Queries WQ , Keys WK, and Value Wv are learnable

weights to automatically learn the importance of each patch. The
B C D E FA

FIGURE 2

Illustrations of the results using various data augmentation (A) shows the original CT image; (B) is the CT image after 180° rotation; (C) is the CT
image after Affine transformation; (D) shows the CT image after crop and resize transformation; (E) is the CT image with Gaussian blur; (F) is the
CT image with Gaussian noise.
B

A

FIGURE 1

(A) shows the flow frame of data processing, in which stage one is the kidney detection network and stage two is a tumor detection network.
(B) shows the details of the detection network.
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input sequence X is projected onto these weight matrices to get

Q=XWQ , K=XWK and V=XWV . The dk is the dimension of key

vector k, providing an appropriate normalization to make the

gradient more stable. LN represents the linear normalization,

Xclass and Xposition are randomized parameters representing

classification and position information, respectively. To

capture the structure of object image, position and

classification information are merged into the self-attention

feature map for training.

After the self-attended feature map Z passes through the linear

layer, we put it into a MLP including two linear transformations

and a GELU activation to perform the same operation on the

vector of each position. The output can be obtained:

Y = MLP LN Zð Þð Þ + Z (2)
Frontiers in Oncology 05
Referring to ViT (24), we take the classification information

Xclass instead of extracted image features as the input of the

classifier FC to classify directly. We train our network using the

cross-entropy (CE) loss between prediction and ground truth,

which can be written as:

LCE = −o (y log  ŷ + 1 − yð Þ log  (1 − ŷ )) (3)

where the y is the real label and ŷ is the predicted probability.

The loss function represents the difference between the real label

and the predicted probability.

We constructed TransResNet with three residual blocks and

12 transformer blocks. The major hyper-parameters are as

follows: the optimizer is Stochastic Gradient Descent (SGD)

with an initial learning rate of 0.01, momentum of 0.9, and

weight decay of 5e−4. The batch size is 100 per worker. For the
B

A

FIGURE 3

A simple network framework for TransResNet. (A) represents the overall architecture, mainly including the CNN structure and the transformed
structure. (B) shows the details of TransResNet. The network framework contains 12 transformer blocks (i.e., L = 12).
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epochs, the learning rate is scaled linearly from 0.01 to 0.00001,

and then it is divided by 10 at epochs 50, 100, and 150. The

proposed model is implemented using Pytorch 1.0.1. We ran the

experiments on an Ubuntu 16.04.3 server with four NVIDIA

GeForce GTX 1080 cards. Specific details of the code can be seen

at: https://github.com/yangmeiyi/ccRCC_project.git.
2.3 Model ensembles

To a certain degree, ensemble learning can improve

prediction accuracy. To achieve a strong classifier, we train

multiple different classifiers. We selected the following five

networks as sub-networks of the integration model:
Fron
TransResNet: In medical, ResNet (25) is the preferred

model because it is simple and efficient. The most

common model, ResNet50, is ineffective on our dataset

due to serious over-fitting. Finally, we decided to pair

Transformer and resnet34.

TransDenseNet: DenseNet (26) found that some layers are

randomly lost at each step in the training process, which

can significantly improve the general ization

performance of ResNet. Similarly, we chose to

combine Transformer and DenseNet-121 with the

smallest model parameters as our sub-network.

TransInception: Compared with the structure of ResNet,

Inception (27) not only increases the width of the

network but also embeds features of different scales.

Similarly, Inception-V3 was selected by us.

TransSENet: Different from the previously mentioned

networks, improving the performance through spatial

latitude, SENet (28) establishes the interdependence

between feature channels.

TransRegNet: RegNet (29) proposes a new design paradigm

that estimates the overall network design space (depth

and width) to obtain the best design. Similarly, we chose

RegNetY-200MF with the minor model parameters.
We combine them through the average method. These

classifiers and TransResNet are constructed in the same way.

The difference lies in the construction of convolution blocks,

such as TransDenseNet uses a dense convolutional network and

TransInception adopts an inception network.

Suppose we have got N trained different classifiers. Facing a

test sample x (x ∈ test dataset), the prediction results of the

integrated model are a N-dimensional vector {S1,S2,…,Sn} . The

final score using averaging is formulated as follows:

Final _ score = o
N
i=1Si
N

(4)
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3 Results

3.1 Clinical characteristics

This study included 759 patients, which comprised 477 low-

grade [grade I (n = 25, 5.24%) and II (n = 452, 94.76%)] ccRCC

patients and 282 high-grade [grade III (n = 232, 82.27%) and IV

(n = 50, 17.73%)] ccRCC patients. Male and female patients are

equally represented, accounting for 64% and 46%, respectively.

The patient characteristics of the training and testing cohorts are

shown in Table 1.
3.2 Performance of proposed algorithm

To validate this model, we choose Accuracy (ACC), Area

Under Curve (AUC), Sensitivity (SE), and Specificity (SP) as

evaluation criteria.

Performance with data enhancement: To comprehend the

role of enhancement strategy in detail, the individual and

different combinations of them are discussed. With

inconsistent images of the ccRCC, cropping as the basic data

processing is applied. Figure 4 shows the evaluation results

under single and combined transformations. Even though

Affine is a very effective enhancement for the model, any

single transformation is insufficient for representation learning.

One augmentation composition stands out: random Affine and

random Gaussian noise. The best combination is more than two

enhancements, such as random Rotate, random Affine, and

random Crop, making the model obtain 87% ACC and

91% AUC.

Performance on different architectures. This section shows

the effect of the transformer on ResNet (25), DenseNet (26),

Inception (27), SENet (28), and RegNet (29). Each model has its

own unique advantages. We present the ACC, AUC, SE, and SP

of TransResNet, TransDenseNet, TransInception, TransRegNet,

and TransSENet on the ccRCC dataset in Table 2. Each

architecture was performed under the enhancement method of
TABLE 1 The demographic and clinical statistics of patients with
ccRCC.

Attribute Training cohort Testing cohort

Age (years) 56 ± 12 (589) 54 ± 11 (170)

Male 374 112

Female 215 58

Grade I 21 4

Grade II 371 81

Grade III 165 67

Grade IV 32 18
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Crop, random Horizontal Flip, random Rotation, and

random Affine.

Table 2 shows the experimental results of different network

architectures. The Receiver Operating Characteristic (ROC)

curve is a metric that can provide a pure index of accuracy,

which has been accepted by every researcher and applied in

medical studies. We show the ROC curve in Figure 5.

Ensemble results: Ensemble learning is a popular way

to improve robustness and accuracy by training a group

of heterogeneous models. These heterogeneous models

are combined by different strategies such as voting,

averaging, stacking, and blending. This study analyzes

various ensemble strategies, and the results are shown in

Table 3. The integrated model consists of a single model:

TransResNet, TransDenseNet, TransInception, TransRegNet,

and TransSENet.
Frontiers in Oncology 07
3.3 Comparison with SOTA methods

Does our proposed solution lead to better performance than

pure transformers? To answer this question, we compared pure

transformer networks ViT (24) and CaiT (30) with the smallest

parameters and a hybrid network Conformer (31) trained in

parallel by convolution and transformer in Table 4. In the

training process, ViT-Small and CaiT-Small are suitable for

our dataset, but the results are still unsatisfactory. In

particular, the hybrid structure Conformer with huge model

parameters is difficult to train on small dataset ccRCC, resulting

in the worst performance, although its classification results on

ImageNet are better than ViT and CaiT.

Does the transformer improve performance compared to

CNN? For CNN, we have done a series of experiments with

ccRCC for comparison. The experiments included Data
FIGURE 4

Illustrations of data augmentation operators.
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Enhancement, CNN architecture, Transfer Learning, and the

Regularization Method. The experimental results are shown in

Figure 6. In the experiment of data enhancement, the

performance of the CNN model has definite improvements

after random Affine. However, other data enhancement

methods are not effective for the dataset. We found that the

CNN architectures have little effect on the Fuhrman Grade of

ccRCC, although the advantages of each structure are

different. From various experimental results, the model

based on CNN is difficult to break through the bottleneck of

AUC (e.g., 85 AUC). Our method, TransResNet, easily

surpasses CNN algorithms using various tricks in ACC

and AUC.
Frontiers in Oncology 08
3.4 Comparison with transfer learning

Transfer learning is widely used in medical image

processing, such as type 2 diabetes (32), 3D genome folding

(33), and papillary thyroid carcinoma (34), etc. Many factors

make it impossible to establish large-scale datasets such as

ImageNet in the medical field, so the limited data restricts the

performance of deep neural networks. Some studies reckon that

the pre-trained model obtained on ImageNet can be fine-tuned

on the medical dataset to acquire high performance. The

experiment by Shin et al. proved that although there are

differences between natural images and CT images, CNN fully

trained on large-scale well-annotated datasets may still be
TABLE 2 The impact of transformer on different network structures. .

Model ACC AUC SE SP

ResNet-34 82.3 ± 2.5 85.7 ± 2.3 89.4 ± 1.7 83.2 ± 1.2

TransResNet 87.1 ± 2.3 90.3 ± 2.5 91.3 ± 1.4 85.3 ± 1.5

DenseNet-121 81.5 ± 2.3 85.5 ± 2.4 80.0 ± 0.5 84.3 ± 1.2

TransDenseNet 83.9 ± 2.1 90.5 ± 2.2 80.6 ± 0.6 86.8 ± 1.0

Inception-V3 80.0 ± 2.0 83.7 ± 2.0 76.5 ± 1.2 78.8 ± 1.3

TransInception 84.3 ± 2.0 89.4 ± 2.0 83.4 ± 1.3 85.8 ± 1.6

SENet 81.8 ± 2.5 84.2 ± 2.8 76.8 ± 1.5 85.1 ± 1.4

TransSENet 85.1 ± 2.3 89.2 ± 2.5 89.1 ± 1.3 82.1 ± 1.1

RegNet 81.9 ± 2.1 84.3 ± 2.5 82.5 ± 1.5 80.0 ± 1.0

TransRegNet 82.3 ± 2.0 87.7 ± 2.5 84.7 ± 1.0 80.0 ± 0.5
front
We report the average accuracy and standard deviation of five time runs.
ACC, AUC, SE, and SP are the accuracy, the Area Under Curve, the sensitivity and the specificity of the model on the testset, respectively.
FIGURE 5

Receiver operating characteristic (ROC) curves for the task of tumor classification using a positive ratio feature.
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transmitted to make the medical image recognition task more

effective (35). Therefore, we compared the performance of our

method and transfer learning on ccRCC. We transferred the

ResNet, DenseNet, and ViT trained with ImageNet to ccRCC for

fine-tuning, respectively. In transfer learning, to make the

network training more thorough, we follow the method of

(35): all CNN layers are fine-tuned with a learning rate 10

times lower than the default learning rate, except for the last

layer. The last fully connected layer is randomly initialized and

newly trained to adapt to the new object categories in the ccRCC

application. Its learning rate remains at the original 0.01. The

results are shown in Table 5.

In the experiment, we found that although transfer learning

can speed up convergence early in training, it does not improve

final accuracy. As shown in Table 5, the accuracy of our

proposed method can quickly catch up with the best of

transfer learning and stay higher.
3.5 Analysis of noise labels

Previous articles (15, 17) studied the impact of CNN-based deep

learning on ccRCC. These studies prove that the features from CT

images extracted by CNN can be effectively used for ccRCC grading

and obtaining the SOTA performance. Due to the inconsistency

between extracted features and labels, some data are always

misclassified by the CNN-based algorithm. For example, 21 CT

images in our test set could not be classified correctly, including three

low-grade images and 18 high-grade images. This phenomenon is
Frontiers in Oncology 09
consistent with the fact that high-grade images contain more noise

information. In other words, the features extracted from tumor

images scanned by high-grade ccRCC CT scans are not always

related to Fuhrman nucleus grades III and IV, and some of the

features are related to Foreman nucleus grades I and II. Figure 7

shows the case of misclassification data, in which Figure 7A is a

positive sample, but it is classifiedas anegative example.Figure7B is a

negative example sample of classification error. Figure 7C is a class

activation map of a positive example sample of classification error.

Figure 7D is a class activation map of a positive example sample of

classification error. We found that: (1) similar CT images with

different categories are difficult to distinguish (e.g., Figures 7A, B),

and (2) some CT images are not activated correctly (e.g.,

Figures 7C, D).

The Transformer offers many advantages over traditional CNN

algorithms for ccRCC grading. For example, Transformer can

capture the representation of global images and establish long-

distance relationships in CT images, reflecting the microscopic

heterogeneity changes of tumors more comprehensively and

providing a more accurate diagnosis than all CNN algorithms. In

addition, the complementary strengths between CNN and

Transformer can be adapted to the requirements of specific clinical

environments. After the optimized classifier TransRsenet, 14 CT

images in our test set could not be correctly classified, including two

low-grade images and 12 high-grade CT images. Figure 8 shows the

class activationmap of these error data to show the shift of attention

of the model during training. Compared with the convolutional

network, themodel with the proposedmethodmakes objects clearer

and more accurate than the original ones.
frontiersin.org
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TABLE 3 Ensemble results under different strategies.

Model ACC AUC SE SP

TransResNet 85.8 90.3 91.3 85.3

TransDenseNet 83.9 90.5 80.6 86.8

TransInception 84.3 89.4 83.4 85.8

TransRegNet 82.3 87.7 84.7 80.0

TransSENet 85.1 89.2 89.1 82.1

Ensemble(voting) 85.8 90.5 91.4 89.8

Ensemble(averaging) 86.5 91.2 92.1 89.5

Ensemble(stacking) 86.1 90.8 89.1 91.1

Ensemble(blending) 86.1 90.0 90.0 85.5
ACC, AUC, SE, and SP are the accuracy, the Area Under Curve, the sensitivity and the specificity of the model on the testset, respectively. The averaging strategy of ensemble shows the best
results (the seventh column, highlighted in bold).
TABLE 4 Comparison with the state-of-the-art transformer.

Model ACC AUC SE SP

TransResNet 85.8 90.3 91.3 85.7

ViT-Small 78.6 83.5 88.5 81.3

CaiT-Small 79.4 83.2 89.1 82.0

Conformer 76.4 79.3 83.5 65.7
ACC, AUC, SE, and SP are the accuracy, the Area Under Curve, the sensitivity and the specificity of the model on the testset, respectively. Our model TransResNet obtains the best result
(the first column, highlighted in bold).
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In addition to the comparison of convolution algorithms, we also

compared the network architecture of SOTA, such as the

transformer-based ViT, CaiT, and Conformer, obtaining the

best grading results under ACC, SE, SP, and AUC. In conclusion,

we demonstrated the effectiveness of the Transformer module

over ccRCC grading. Furthermore, the combination of CNN and

Transformer mitigates the noise label problem in ccrRCC.
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3.6 External validation

We evaluate our model based on one external validation

dataset, the Cancer Genome Atlas-Kidney Renal Clear Cell

Carcinoma (TCGA-KIRC) (36, 37). The TCGA-KIRC focused

on connecting cancer phenotypes to genotypes by providing

clinical images matched to subjects from The Cancer Genome
FIGURE 6

A series of experimental results about CNN.
TABLE 5 The comparison results of our method and transfer learning.

Transfer Model ACC AUC SE SP

ResNet18 80.6 86.0 83.3 78.8

ResNet34 80.2 85.6 86.3 78.2

DenseNet121 81.2 85.6 78.9 89.4

TransResNet 85.8 90.3 91.3 85.3

ViT-tiny 74.7 75.6 64.7 84.7
frontiersin
The comparison models are ResNet, DenseNet, and ViT-tiny parameterized by pre-training using the ImageNet dataset. Our model is trained from random initialization.
ACC ,AUC ,SE, and SP are the accuracy, the Area Under Curve, the sensitivity and the specificity of the model on the testset, respectively. Our model TransResNet obtains the best results
(the seventh column, highlighted in bold).
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B CA

FIGURE 8

Visualization of the class activation map generated by the last transformer layer on images from the ccRCC. The yellow box indicates the lesion
area. The color red denotes higher attention values, and the color blue denotes lower. (A) is the original image; (B) shows the class activation
map of the CNN model; and (C) is the class activation map of the TransResNet model.
B C DA

FIGURE 7

The demonstration of error classification. It mainly includes four categories. (A) shows the the CT image of positive samples; (B) shows the the
CT image of negative samples; (C) shows the CT image of positive samples and corresponding class activation map; (D) shows the CT image of
negative samples and corresponding class activation map.
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Atlas (TCGA). Clinical, genetic, and pathological data resides in

the Genomic Data Commons (GDC) Data Portal, while the

radiological data is stored in The Cancer Imaging Archive

(TCIA). Here we just use the CT radiological data. We

selected 20 patients (e.g., 10 low-grade samples and 10 high-

grade samples) from 227 patients as our external validation data.

The results of our model TransResNet on the data are: 81.9%

ACC, 85.4% AUC, 76.6% SE, and 87.2% SP.
4 Discussion

This retrospective study comprehensively investigates the pros

and cons of different deep learning models based on two-phase

CT images for discriminating low- and high-grade ccRCC.

According to data scarcity and noise labels, a transformer-based

deep learning model, TransResNet, is proposed. After a thorough

comparison, the proposed discriminative model, TransResNet,

achieved satisfactory performance. In addition, we find that this

model can effectively alleviate the impact of noise labels.

At present, the analysis of radiomics is a common paradigm

to predict the ccRCC. Previous studies analyzed the texture of

non-enhanced CT through machine learning to obtain universal

features for higher accuracy. For example, Coy et al. have shown

that high-grade ccRCC lesions are significantly larger and have

more calcifications, necrosis, aggregation system infiltration, and

unclear tumor margins than low-grade ccRCC lesions (38). In

addition, several studies (39, 40) have proved that high-grade

tumors tend to be larger than low-grade. However, our

experiment found high-grade lesions are not significantly

different from low-grade CT images. This is consistent with

the findings of (12) and (13). The performance of image-based

quantitative indicators varies on different datasets, and their

adequacy needs further verification. In this study, we use deep

learning to analyze the CT images, which can automatically

discover pixel-level features, supporting a more powerful model.

In ccRCC, some high-grade lesions have low-grade features

due to unavoidable sampling bias. It was also interesting to find

that convolution-based networks focus on local pixel subsets,

which results in a tendency to learn local patterns so that the

relationships within images are ignored. As a result, in the

complex samples, the convolution kernel cannot effectively

make decisions, which leads to unsatisfactory grading accuracy.

CNNs uniformly process CT images regardless of their

importance. In contrast, the transformer uses a self-attention

mechanism instead of a CNN, which can establish long-range

dependencies in images. The Transformer has been widely used

for medical tasks with high accuracy, e.g., prostatic segmentation

(41), delineating the epicardium and endocardium (42), multi-

modal medical image classification (18), etc. The Transformer can

not only be used for segmentation but also carries an advantage in

processing images with noisy labels due to its way of capturing

image features. However, transformer networks require a large-
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scale dataset for training because the transformer lacks inductive

bias (24). Thus, scarce medical data leads to severe over-fitting,

which may further reduce the reliability of the classifier.

Therefore, we take advantage of the CNN and a transformer to

extract the features of CT images. The introduced transformer

module can help CNN obtain the relationship between the pixel

blocks inside the image. We find that this hybrid classifier is

superior to a single classifier, with ACC increasing from 83% to

87% and AUC increasing from 85% to 90%.

Correctly grading complex samples is one of the significant

indicators for evaluating the strength and stability of a deep

learning model, which reflects the ability to extract general

features. Our method shows some advantages when faced with

noise samples and difficultly graded examples (see Analysis of

noise labels section). As is known to all, different models have

respective preferences for data, and the features learned from a

single model are not necessarily reliable. This paper trains a set

of heterogeneous models to improve robustness and accuracy by

integrating their extracted features, with ACC increasing from

85.8% to 86.5% and AUC increasing from 90% to 91.2%. This

study shows that our method can effectively reduce the difficulty

of grading caused by noise labels. This method can be widely

applied to other medical grading tasks, e.g., the grade of

neurogliomas and meningiomas.

Our study has several limitations. First, Fan et al. (12) found

that the classifier based on a three-phase CT image is better than

that based on a single-phase CT image. Theoretically, non-

enhanced CT images can provide additional information for

diagnosis. However, this study only used the data from the

arterial and portal vein phases due to fewer non-enhanced CT

images and inapparent texture information. Additionally, we did

not collect additional validation sets because the original

DICOM data of the ccRCC are difficult to obtain. However,

the superiority of the transformer in the feature extraction can be

reflected in the training and testing.
5 Conclusion

This paper studies the application of transformer

architecture to ccRCC classification. We first collected a high-

quality ccRCC CT scan dataset containing more than 759

patients with pathological proven. Then, a hybrid structure,

termed TranResNet, is proposed, which compromises the

merits of CNN and Transformer. Unlike other transformer

models, TranResNet does not require pre-training on large-

scale datasets. Finally, we conducted extensive experiments on

ccRCC datasets to verify our method. TransResNet achieves

good performance over ConvNets and other related transformer

architectures, demonstrating promising results in ccRCC

classification. We hope it will help future research on this

subject, and it can cooperate with radiologists to classify the

ccRCC in an actual clinical situation.
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https://doi.org/10.3389/fonc.2022.961779
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2022.961779
Data availability statement

The original contributions presented in the study are

included in the article material, further inquiries can be

directed to the corresponding author.
Ethics statement

This diagnostic and observational study was approved by the

institutional review board (West China Hospital, Sichuan

University). Written informed consent for participation was

not required for this study in accordance with the national

legislation and the institutional requirements.
Author contributions

MY designed the study and all laboratory studies, performed

experiments, analyzed the data, and wrote the manuscript. ML,

JD, and XC performed laboratory experiments. XH, YW, QL, and

SW collected and analyzed the ccRCC data. LX and FZ provided

help in data and statistical analysis. LW and XW participated in

data analysis and interpretation. ML and BS oversaw the design of

the study and all laboratory studies, data analysis, and

interpretation, and wrote the manuscript. All authors

contributed to the article and approved the submitted version.
Frontiers in Oncology 13
Funding

This work was supported by the Medico-Engineering

Cooperation Funds from University of Electronic Science and

Technology of China (No. ZYGX2021YGLH213, No.

ZYGX2022YGRH016), the Municipal Government of Quzhou

(Grant 2021D007, Grant 2021D008, Grant 2021D015, Grant

2021D018), as well as the Zhejiang Provincial Natural Science

Foundation of China under Grant No. LGF22G010009.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.
References
1. Capitanio U, Montorsi F. Renal cancer. Lancet (2016) 387(10021):894–906.
doi: 10.1016/S0140-6736(15)00046-X

2. Incorvaia L, Procopio G, Porta C. Renal Cancer. In: A Russo, M Peeters, L
Incorvaia and C Rolfo (eds) Practical Medical Oncology Textbook. UNIPA Springer
Series., Cham: Springer. (2021) pp.755–74. doi: 10.1007/978-3-030-56051-5_45

3. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2021. CA: Cancer J
Clin (2021) 71:7–33. doi: 10.3322/caac.21654

4. Fuhrman SA, Lasky LC, Limas C. Prognostic significance of morphologic
parameters in renal cell carcinoma. Am J Surg Pathol (1982) 6:655–63. doi:
10.1097/00000478-198210000-00007

5. Delahunt B, Eble JN, Egevad L, Samaratunga H. Grading of renal cell
carcinoma. Histopathology (2019) 74:4–17. doi: 10.1111/his.13735

6. Feng Z, Shen Q, Li Y, Hu Z. Ct texture analysis: a potential tool for predicting
the fuhrman grade of clear-cell renal carcinoma. Cancer Imaging (2019) 19:1–7.
doi: 10.1186/s40644-019-0195-7

7. Ljungberg B, Albiges L, Abu-Ghanem Y, Bensalah K, Dabestani S,
Fernández-Pello S, et al. European Association of urology guidelines on renal
cell carcinoma: the 2019 update. Eur Urol (2019) 75:799–810. doi: 10.1016/
j.eururo.2019.02.011

8. Lane BR, Samplaski MK, Herts BR, Zhou M, Novick AC, Campbell SC. Renal
mass biopsy–a renaissance? J Urol (2008) 179:20–7. doi: 10.1016/j.juro.2007.08.124

9. Cornelis F, Tricaud E, Lasserre A, Petitpierre F, Bernhard J, Le Bras Y, et al.
Multiparametric magnetic resonance imaging for the differentiation of low and
high grade clear cell renal carcinoma. Eur Radiol (2015) 25:24–31. doi: 10.1007/
s00330-014-3380-x

10. Chen C, Kang Q, Xu B, Guo H, Wei Q, Wang T, et al. Differentiation of
low-and high-grade clear cell renal cell carcinoma: Tumor size versus ct
perfusion parameters. Clin Imaging (2017) 46:14–9. doi : 10.1016/
j.clinimag.2017.06.010
11. Wu G, Zhao Z, Yao Q, Kong W, Xu J, Zhang J, et al. The study of clear cell
renal cell carcinoma with mr diffusion kurtosis tensor imaging and its
histopathologic correlation. Acad Radiol (2018) 25:430–8. doi: 10.1016/
j.acra.2017.10.016

12. Lin F, Cui EM, Lei Y. Luo lp. ct-based machine learning model to predict the
fuhrman nuclear grade of clear cell renal cell carcinoma. Abdominal Radiol (2019)
44:2528–34. doi: 10.1007/s00261-019-01992-7

13. Lai S, Sun L, Wu J, Wei R, Luo S, Ding W, et al. Multiphase contrast-
enhanced ct-based machine learning models to predict the fuhrman nuclear grade
of clear cell renal cell carcinoma. Cancer Manage Res (2021) 13:999–1008.
doi: 10.2147/CMAR.S290327

14. Nikpanah M, Xu Z, Jin D, Farhadi F, Saboury B, Ball MW, et al. A deep-
learning based artificial intelligence (ai) approach for differentiation of clear cell
renal cell carcinoma from oncocytoma on multi-phasic mri. Clin Imaging (2021)
77:291–8. doi: 10.1016/j.clinimag.2021.06.016

15. Lin F, Ma C, Xu J, Lei Y, Li Q, Lan Y, et al. A ct-based deep learning model
for predicting the nuclear grade of clear cell renal cell carcinoma. Eur J Radiol
(2020) 129:109079. doi: 10.1016/j.ejrad.2020.109079

16. Coy H, Hsieh K, Wu W, Nagarajan MB, Young JR, Douek ML, et al. Deep
learning and radiomics: the utility of google tensorflow? inception in classifying
clear cell renal cell carcinoma and oncocytoma on multiphasic ct. Abdominal
Radiol (2019) 44:2009–20. doi: 10.1007/s00261-019-01929-0

17. Han S, Hwang SI, Lee HJ. The classification of renal cancer in 3-phase ct
images using a deep learning method. J Digital Imaging (2019) 32:638–43.
doi: 10.1007/s10278-019-00230-2

18. Dai Y, Gao Y, Liu F. Transmed: Transformers advance multi-modal medical
image classification. Diagnostics (2021) 11:1384. doi: 10.3390/diagnostics11081384

19. Valanarasu JMJ, Oza P, Hacihaliloglu I, Patel VM. Medical Transformer:
Gated Axial-Attention for Medical Image Segmentation. In: Medical Image
frontiersin.org

https://doi.org/10.1016/S0140-6736(15)00046-X
https://doi.org/10.1007/978-3-030-56051-5_45
https://doi.org/10.3322/caac.21654
https://doi.org/10.1097/00000478-198210000-00007
https://doi.org/10.1111/his.13735
https://doi.org/10.1186/s40644-019-0195-7
https://doi.org/10.1016/j.eururo.2019.02.011
https://doi.org/10.1016/j.eururo.2019.02.011
https://doi.org/10.1016/j.juro.2007.08.124
https://doi.org/10.1007/s00330-014-3380-x
https://doi.org/10.1007/s00330-014-3380-x
https://doi.org/10.1016/j.clinimag.2017.06.010
https://doi.org/10.1016/j.clinimag.2017.06.010
https://doi.org/10.1016/j.acra.2017.10.016
https://doi.org/10.1016/j.acra.2017.10.016
https://doi.org/10.1007/s00261-019-01992-7
https://doi.org/10.2147/CMAR.S290327
https://doi.org/10.1016/j.clinimag.2021.06.016
https://doi.org/10.1016/j.ejrad.2020.109079
https://doi.org/10.1007/s00261-019-01929-0
https://doi.org/10.1007/s10278-019-00230-2
https://doi.org/10.3390/diagnostics11081384
https://doi.org/10.3389/fonc.2022.961779
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2022.961779
Computing and Computer Assisted Intervention, Strasbourg, France, Cham:.
Springer. (2021) 12901:36–46. doi: 10.1007/978-3-030-87193-2_4

20. Simonyan K, Zisserman A. Very deep convolutional networks for large-scale
image recognition. arXiv preprint (2014) arXiv:1409.1556.

21. Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, et al. Imagenet
large scale visual recognition challenge. Int J Comput Vision (2015) 115:211–52.
doi: 10.1007/s11263-015-0816-y

22. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going
deeper with convolutions, in: IEEE conference on computer vision and pattern
recognition. Boston, USA: Computer Vision Foundation / IEEE. (2015) pp. 1–9.
doi: 10.1109/CVPR.2015.7298594

23. Gidaris S, Singh P, Komodakis N. Unsupervised representation learning by
predicting image rotations. arXiv preprint (2018) arXiv:1803.07728.

24. Dosovitskiy A, Beyer L, Kolesnikov A, Weissenborn D, Zhai X, Unterthiner
T, et al. An image is worth 16x16 words: Transformers for image recognition at
scale arXiv preprint arXiv:2010.11929. (2020).

25. He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition,
in: IEEE conference on computer vision and pattern recognition. Las Vegas, USA:
Computer Vision Foundation / IEEE. (2016) pp. 770–8. doi: 10.1109/
CVPR.2016.90

26. Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely connected
convolutional networks, in: IEEE conference on computer vision and pattern
recognition. Hawaii, USA: Computer Vision Foundation / IEEE. (2017). pp.
4700–8. doi: 10.1109/CVPR.2017.243

27. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the
inception architecture for computer vision, in: IEEE conference on computer
vision and pattern recognition. Las Vegas, USA: Computer Vision Foundation /
IEEE. (2016) pp. 2818–26. doi: 10.1109/CVPR.2016.308

28. Hu J, Shen L, Sun G. Squeeze-and-excitation networks, in: Proceedings of the
IEEE conference on computer vision and pattern recognition. Salt Lake City, USA:
Computer Vision Foundation / IEEE. (2018). pp. 7132–41. doi: 10.1109/
CVPR.2018.00745

29. Radosavovic I, Kosaraju RP, Girshick R, He K, Dollár P. Designing network
design spaces, in: IEEE/CVF Conference on Computer Vision and Pattern
Recognition. Seattle, USA: Computer Vision Foundation / IEEE. (2020) pp.
10428–36. doi: 10.1109/CVPR42600.2020.01044

30. Touvron H, Cord M, Sablayrolles A, Synnaeve G, Jégou H. Going deeper
with image transformers, in: 2021 IEEE/CVF International Conference on
Computer Vision, Montreal, Canada: IEEE. (2021) 32–42. doi: 10.1109/
ICCV48922.2021.00010
Frontiers in Oncology 14
31. Peng Z, Huang W, Gu S, Xie L, Wang Y, Jiao J, et al. Conformer: Local
features coupling global representations for visual recognition.,In: Proceedings of
the IEEE/CVF International Conference on Computer Vision. Montreal, Canada.
IEEE. (2021) pp. 357–66. doi: 10.1109/ICCV48922.2021.00042

32. Deng Y, Lu L, Aponte L, Angelidi AM, Novak V, Karniadakis GE, et al. Deep
transfer learning and data augmentation improve glucose levels prediction in type 2
diabetes patients. NPJ Digital Med (2021) 4:1–13. doi: 10.1038/s41746-021-00480-x

33. Schwessinger R, Gosden M, Downes D, Brown RC, Oudelaar AM, Telenius
J, et al. Deepc: predicting 3d genome folding using megabase-scale transfer
learning. Nat Methods (2020) 17:1118–24. doi: 10.1038/s41592-020-0960-3

34. Yu J, Deng Y, Liu T, Zhou J, Jia X, Xiao T, et al. Lymph node metastasis
prediction of papillary thyroid carcinoma based on transfer learning radiomics.Nat
Commun (2020) 11:1–10. doi: 10.1530/ey.18.3.15

35. Shin HC, Roth HR, Gao M, Lu L, Xu Z, Nogues I, et al. Deep convolutional
neural networks for computer-aided detection: Cnn architectures, dataset
characteristics and transfer learning. IEEE Trans Med Imaging (2016) 35:1285–
98. doi: 10.1109/TMI.2016.2528162

36. Clark K, Vendt B, Smith K, Freymann J, Kirby J, Koppel P, et al. The cancer
imaging archive (tcia): maintaining and operating a public information repository.
J Digital Imaging (2013) 26:1045–57. doi: 10.1007/s10278-013-9622-7

37. Akin O, Elnajjar P, Heller M, Jarosz R, Erickson B, Kirk S, et al. Radiology
data from the cancer genome atlas kidney renal clear cell carcinoma [TCGA-
KIRC] collection. Cancer Imaging Arch (2016). Website: https://wiki.
cancerimagingarchive.net/display/Public/TCGA-KIRC

38. Coy H, Young JR, Douek ML, Pantuck A, Brown MS, Sayre J, et al.
Association of qualitative and quantitative imaging features on multiphasic
multidetector ct with tumor grade in clear cell renal cell carcinoma. Abdominal
Radiol (2019) 44:180–9. doi: 10.1007/s00261-018-1688-8

39. Ding J, Xing Z, Jiang Z, Chen J, Pan L, Qiu J, et al. Ct-based radiomic model
predicts high grade of clear cell renal cell carcinoma. Eur J Radiol (2018) 103:51–6.
doi: 10.1016/j.ejrad.2018.04.013

40. Ishigami K, Leite LV, Pakalniskis MG, Lee DK, Holanda DG, Kuehn DM.
Tumor grade of clear cell renal cell carcinoma assessed by contrast-enhanced
computed tomography. Springerplus (2014) 3:1–7. doi: 10.1186/2193-1801-3-694

41. Han C, Rundo L, Murao K, Noguchi T, Shimahara Y, Milacski ZÁ, et al.
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