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Background: Prostate Imaging-Reporting and Data System version 2.1 (PI-

RADS v2.1) was developed to standardize the interpretation of multiparametric

MRI (mpMRI) for prostate cancer (PCa) detection. However, a significant inter-

reader variability among radiologists has been found in the PI-RADS

assessment. The purpose of this study was to evaluate the diagnostic

performance of an in-house developed semi-automated model for PI-RADS

v2.1 scoring using machine learning methods.

Methods: The study cohort included an MRI dataset of 59 patients (PI-RADS

v2.1 score 2 = 18, score 3 = 10, score 4 = 16, and score 5 = 15). The proposed

semi-automated model involved prostate gland and zonal segmentation, 3D

co-registration, lesion region of interest marking, and lesion measurement. PI-

RADS v2.1 scores were assessed based on lesion measurements and compared

with the radiologist PI-RADS assessment. Machine learningmethods were used

to evaluate the diagnostic accuracy of the proposed model by classification of

PI-RADS v2.1 scores.

Results: The semi-automated PI-RADS assessment based on the proposed

model correctly classified 50 out of 59 patients and showed a significant

correlation (r = 0.94, p < 0.05) with the radiologist assessment. The

proposed model achieved an accuracy of 88.00% ± 0.98% and an area

under the receiver-operating characteristic curve (AUC) of 0.94 for score 2

vs. score 3 vs. score 4 vs. score 5 classification and accuracy of 93.20 ± 2.10%

and AUC of 0.99 for low score vs. high score classification using fivefold cross-

validation.

Conclusion: The proposed semi-automated PI-RADS v2.1 assessment system

could minimize the inter-reader variability among radiologists and improve the

objectivity of scoring.

KEYWORDS

lesion measurement, prostate cancer, prostate imaging-reporting and data system
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1 Introduction

Prostate cancer (PCa) is one of the most common cancers in

men and the fifth leading cause of cancer-related death globally

(1). Over the past several years, multiparametric MRI (mpMRI)

has shown the ability to improve the early detection of clinically

significant PCa and patient selection for biopsy (2). Prostate

Imaging Reporting and Data System version 2.1 (PI-RADS v2.1)

was published to simplify the reporting rules, modify imaging

sequences, and define clinically significant cancer to reduce the

variability in imaging, interpretation, and reporting (3). The PI-

RADS assessment system is a qualitative scale with higher values

indicating higher suspicion of PCa (3). PI-RADS includes a

lesion size-based decision criterion (cutoff = 1.5 cm) to

differentiate between score 4 and score 5 and also provides a

minimal requirement for the measurement of lesion volume

(>0.5 cc for clinically significant PCa) (3). Martorana et al. found

that as PI-RADS scores increase, the probability of detecting a

clinically significant PCa proportionally increases with increase

in lesion volume (4).

Primarily, diffusion-weighted imaging (DWI) in the

peripheral zone (PZ) and T2-weighted imaging (T2WI) in the

transition zone (TZ) are used to assign the PI-RADS score (3).

However, PI-RADS scoring is challenging due to its inherent

technical difficulties to visualize a small lesion on MRI, and its

subjectivity. Currently, the PI-RADS score is assessed

qualitatively by a radiologist, which makes the PI-RADS

process time-consuming as reporting time has become an

important performance indicator in healthcare (5). Previous

studies have shown poor inter-reader variability in the

assessment of PI-RADS scores but with the potential to detect

clinically significant PCa (6, 7). Artificial intelligence-based

workflow systems have shown similar or improved

performances in detecting clinically significant PCa compared

to radiologists (8) and have the potential to assist radiologists in

the screening process by reducing inter-reader variability and

evaluation time (9). Recently, one study by Dhinagar et al. (2020)

presented a deep learning-based semi-automated model for PI-

RADS scoring with limited area under the receiver-operator

characteristics curve (AUC) of 0.70 (10). This model was trained

and validated to classify lesions with only PI-RADS score 4 and

score 5. An automated or semi-automated PI-RADS scoring

system for PCa should be able to accurately classify all scores

(score 2, score 3, score 4, and score 5) with good accuracy, as

each class has a different prognosis for different PI-RADS scores

(11). The objectives of this study were (i) to develop a semi-

automated model for PI-RADS v2.1 scoring in order to speed up

and simplify the reporting process and (ii) to analyze the

diagnostic performance of the proposed model by classifying

PI-RADS scores using machine learning methods.
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2 Materials and methods

2.1 MRI data-acquisition

An MRI dataset of 59 men (mean age: 65 ± 8.5 years) with

clinically proven PCa (PI-RADS v2.1 score 2 = 16, score 3 = 10,

score 4 = 18 and score 5 = 15) was used in this retrospective

study with the prior approval from the institutional review board

(IRB) of All India Institute of Medical Sciences (AIIMS), New

Delhi. Informed consent was waived off by IRB for this study

because of the retrospective nature of the study. This study was

performed in accordance with institute guidelines and

regulations. All prostate MRI examinations were acquired

using a 1.5T scanner (Achieva, Philips Health Systems, the

Netherlands). T2W images were acquired using a turbo spin-

echo sequence with TR/TE = 3330/90 ms, field of view (FOV) =

250×250 mm2, reconstructed matrix = 320×320, voxel size =

0.49×0.49×3 mm3, slice thickness = 3 mm, slice gap = 3 mm, and

number of slices = 36. Diffusion-weighted images were acquired

using echo-planar imaging with TR/TE = 6831/81 ms, FOV =

292×292 mm2, reconstructed matrix = 112×112, voxel size =

2.6×2.6×3 mm3, slice thickness = 3 mm, slice gap = 3 mm, and

number of slices = 36, with five b-values of 0, 500, 1000, 1500,

and 2000 s/mm2. Apparent-diffusion coefficient (ADC) maps

were calculated using all five b-values with the least square-

optimization to the mono-exponential model using the vendor-

provided algorithm at the clinical workstation (12).
2.2 Data processing

MRI data in DICOM format were transferred to a

workstation (DELL Precision Tower 3620, using Intel® Xeon®

CPU E3-1245 v5 @3.50GHz processor and 32GB RAM) and

processed using MATLAB® (MathWorks Inc., v2018, Natick,

MA). The midgland region of the prostate was used for

processing and this region consisted of approximately five to

eight slices for each subject. Since most of the prostate cancers

(70%–75%) originate in the PZ, this study focused only on this

region. In this study, T2WI, DWI, and ADC images were

considered for each patient, which was acquired in the

MRI examinations.

2.2.1 PI-RADS v2.1 scoring model
The pre-processing steps involved automatic prostate gland

and zonal segmentation, 3D image registration, lesion region of

interest (ROI) marking, and lesion measurement. The Chan-

Vese active contour model along with morphological opening

operation was used for prostate gland segmentation and a

probabilistic atlas with a partial volume correction algorithm
frontiersin.org
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was used to segment the prostate zones into the peripheral zone

and transition zone (13). The prostate and its zonal

segmentation were performed on the DWI dataset and then

the T2W to DWI were registered so that the same segmentation

results can be used for both the sequences. An Affine

transformation method with a mutual information similarity

index was applied for 3D registration of the prostate gland ROIs

of T2WI and DWI.

All lesion ROIs were manually marked on each slice for all

subjects, as per PI-RADS v2.1 guidelines (3) with the help of an

expert radiologist (>20 years of experience in prostate imaging).

The ROI marking was first demonstrated in a few subjects by the

radiologist. The PhD student (or expert) then marked the ROIs,

which were verified by the radiologist, and changes to the

marked ROIs were made as needed. ROIs were marked on the

peripheral zone of DWI (b = 2000 s/mm2) data and the same

ROIs were used for ADC and registered T2W images of the
Frontiers in Oncology 03
respective subject. Representative examples of the lesion ROIs

for different PI-RADS scores 2 to 5 are shown in Figure 1.

PI-RADS v2.1 introduced the lesion maximum diameter and

lesion volume-based parameters for evaluating the

aggressiveness of lesions. The ellipse fitting-based automatic

algorithm was used in this research for the measurement of

the lesion maximum diameter and volume, the same as proposed

in (14). Maximum diameter was defined as the major axis of the

best fitted ellipse. Lesion volume was determined by the

multiplication of the slice profile (slice thickness + slice gap)

with the summation of all lesion areas in the 2D plane. For

comparison, the radiologist manually measured the maximum

diameter and volume of the lesion using the image processing

software ImageJ (v.1.48; National Institute of Health, Bethesda,

USA). In the current study, PI-RADS v2.1 scores were assessed

based on the lesion maximum diameter and lesion volume from

the fitted ellipse. The workflow of the proposed model for PI-
FIGURE 1

Lesion region of interests delineation from high b-value (b = 2000 s/mm2) DWI and ADC of the representative patients with different PI-RADS
scores 2 to 5.
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RADS v2.1 assessment is shown in Figure 2. The detailed

description of all the steps of the proposed model and its

parameters are provided in annexure

2.2.2 Performance of the proposed model
Three machine learning methods (linear discriminant

analysis (LDA), linear support-vector machine (SVM), and

Gaussian SVM) were used to evaluate the diagnostic

performance of the proposed model. In this study, the model

proposed two different classification approaches: the first

approach was to classify PI-RADS scores into four classes:

score 2 (n = 16) vs. score 3 (n = 10) vs. score 4 (n = 18) vs.

score 5 (n = 15), and the second approach was to classify into

two classes: low score (score 2 and score 3) vs. high score (score 4

and score 5).
2.3 Statistical analysis

The PI-RADS scores obtained from the proposed model

were compared with the radiologist’s assessment using the

Pearson correlation coefficient (r). Sensitivity, specificity,

accuracy, and area under the receiver-operating characteristic

curve (AUC) were measured to evaluate the performance of the
Frontiers in Oncology 04
proposed model. The accuracy of the proposed model was

validated using stratified fivefold cross validation.
3 Results

3.1 Lesion measurement

Lesion maximum diameter and lesion volume measured by the

ellipse fitting approach were 0.47 ± 0.06 cm and 0.13 ± 0.03 cc for

score 2, 0.67 ± 0.11 cm and 0.29 ± 0.12 cc for score 3, 0.96 ± 0.18 cm

and 0.66 ± 0.28 cc for score 4, and 1.45 ± 0.15 cm and 0.99 ± 0.25 cc

for score 5. Table 1 shows the maximum diameter and volume of

the lesion measured with manual assessment and automated ellipse

fit method for different scores.
3.2 Semi-automated model-based PI-
RADS scoring

The proposed model-based PI-RADS v2.1 assessment

showed 50 out of 59 subjects correctly matched (~85%) with

the radiologist assessment. The proportion of the correct

classification rate was 93.75% for score 2, 90% for score 3,
TABLE 1 Lesion maximum diameter and volume for different PI-RADS v2.1 scores, in terms of mean ± standard deviation (SD); SD was calculated
across all subjects within each score.

Scores Lesion maximum diameter (cm) Lesion volume (cc)

Manual assessment Automated Ellipse fit Manual assessment Automated Ellipse fit

Score 2 0.41 ± 0.08 0.47 ± 0.06 0.10 ± 0.05 0.13 ± 0.03

Score 3 0.73 ± 0.12 0.67 ± 0.11 0.36 ± 0.21 0.29 ± 0.12

Score 4 1.01 ± 0.19 0.96 ± 0.18 0.74 ± 0.44 0.66 ± 0.28

Score 5 1.34 ± 0.24 1.45 ± 0.15 0.93 ± 0.39 0.99 ± 0.25
FIGURE 2

Proposed workflow of the semi-automated model for PI-RARS v2.1 assessment.
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83.34% for score 4, and 73.35% for score 5, which are also shown

in Figure 3. The correct classification rate was also evaluated for

the low score (score 2 and score 3) and high score (score 4 and

score 5). The correct classification rate was 92.30% for the low

score and ~79% for the high score. Semi-automated PI-RADS

v2.1 assessment showed a strong positive correlation (r = 0.94, p

< 0.05) with the radiologist’s assessment.
3.3 Diagnostic performance using
machine learning methods

Table 2 presents the performance of both classifications

approaches, i) four-class classification (score 2 vs. score 3 vs.

score 4 vs. score 5) and ii) two-class classification (low score vs.

high score) using three different classifiers. The LDA classifier

achieved the highest performance with sensitivity of 85.50 ±

1.95%, specificity of 75 ± 1.10%, accuracy of 88.00 ± 0.98%, and

AUC of 0.94 in the four-class classification, and linear SVM
Frontiers in Oncology 05
classifier achieved the highest performance with sensitivity of

91.45 ± 3.65%, specificity of 95.85 ± 1.25%, accuracy of 93.20 ±

2.10%, and AUC of 0.99 in two-class classification using fivefold

cross-validation. Figure 4 shows the ROC graphs for the four-

class and two-class classifications using three different classifiers.
4 Discussion

The PI-RADS v2.1 has emerged as a technical and reporting

standard for uniform interpretation of prostate MRI. However,

PI-RADS was challenged by the limited reproducibility among

radiologists and medical centers due to its inherent subjectivity

in scoring prostate lesions and lack of quantitative metrics (2,

15). An automatic or semi-automatic PI-RADS scoring could

assist the radiologist to perform initial screening, speed up

reporting, and reduce errors in misclassifying lesions. In this

study, a semi-automated PI-RADS v2.1 scoring model was

developed for the diagnosis of PCa and validated the
TABLE 2 Classification performance of the proposed model a) for Score 2 vs. Score 3 vs. Score 4 vs. Score 5 classification using 5-fold cross-validation.

Classifiers Sensitivity (%) Specificity (%) Accuracy (%) AUC

LDA 85.50 ± 1.95 75.00 ± 1.10 88.00 ± 0.98 0.94

Linear SVM 81.75 ± 2.70 74.30 ± 2.25 83.10 ± 1.10 0.91

Gaussian SVM 86.00 ± 1.50 74.50 ± 1.70 86.40 ± 1.65 0.92

b) for Low score (2 and 3) vs. High score (4 and 5) classification using fivefold cross validation

Classifiers Sensitivity (%) Specificity (%) Accuracy (%) AUC

LDA 90.00 ± 2.80 81.25 ± 1.95 89.80 ± 0.95 0.95

Linear SVM 91.45 ± 3.65 95.85 ± 1.25 93.20 ± 2.10 0.99

Gaussian SVM 88.60 ± 2.05 91.67 ± 2.50 86.40 ± 1.90 0.96
frontie
FIGURE 3

Proportion of the detection rate across all PI-RADS v2.1 scores.
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diagnostic performance of the proposed model using machine

learning methods.

The automatic non-invasive measurement of the prostate

lesion could significantly improve to determine the prognosis

and assist in PI-RADS assessment. Few approaches for

measuring prostate lesions have been reported in earlier

studies (16, 17). The maximum diameter and volume of the

lesion provide an important information in determining the

clinically significant PCa (18, 19). In this study, an automatic

ellipse-fitting-based method was used to measure the

dimensions of the lesions, and it was found that the results

were similar to those obtained from the expert manual

measurements. This is because PI-RADS uses only a two-

dimensional approach for lesion marking and measurement.

Sanford et al. utilized a convolution neural network (CNN)

to evaluate the performance of the automated PI-RADS v2

scoring with an accuracy of 60% for low score vs. high score

classification (20). A recent study has presented a semi-

automated PI-RADS scoring system using CNN with an AUC

of 0.70 (10). However, both studies were limited to a two-class

classification only. The proposed semi-automated PI-RADS v2.1

scoring model here outperformed the existing methods with the
Frontiers in Oncology 06
correct classification rate of 85% and AUC of 0.94 for four-class

classification (score 2 vs. score 3 vs. score 4 vs. score 5) and AUC

of 0.99 for two-class classification [low score (score 2 and score

3) vs. high score (score 4 and score 5)]. Table 3 shows a

comparison of the performance of the current study with the

recent related papers.

The three supervised classifiers (LDA, linear SVM, and

Gaussian SVM) employed in this study are based on the

literature, as these three methods are the most commonly used

and have been demonstrated to provide better classification

performance compared to other classifiers for the prostate

MRI (21, 22). These classifiers are fast and have been shown

to work well with small datasets (23).

The proposed model for semi-automated PI-RADS v2.1

scoring is relatively objective and could be helpful for non-

expert radiologists in terms of reporting accuracy. However,

there are some limitations of the study. First, the proposed

model is evaluated only for the lesions in the peripheral zone.

The second limitation is that the sample size was small. The

small sample size in this study provides the preliminary evidence

to establish this new automated analysis approach. However a

much larger cohort from multiple clinical centers will be
TABLE 3 A comparison of the current study’s performance with the recent related articles.

Authors (year) Number of
subjects

Method Performance

Dhinagar et al.
(2020) (10)

617 VGG-16 based deep learning method ROC-AUC = 0.74 (score 2, 3) vs. (score 4, 5)

Sanford et al. (2019)
(20)

196 Convolutional neural network with a ResNet101 Correct classification rate = 60%
Sensitivity = 74% for correct depiction of PI-RADS 4/5 lesions

Singh et al. (current
study)

59 Image processing and supervised machine
learning based model

Overall correct classification rate = 85%
accuracy = 88% and AUC = 0.94 for score 2 vs. score 3 vs. score 4 vs.
score 5 classification
accuracy = 93.20% and AUC 0.99 for (Score 2, 3) vs. (Score 4, 5)
BA

FIGURE 4

Multiple receiver-operating characteristic graphs for (A) score 2 vs. score 3 vs. score 4 vs. score 5 classification and (B) low score (2 and 3) vs.
high score (4 and 5) classification.
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essential for wider comparison and clinical acceptability which is

beyond the scope of the current manuscript. Third, the reference

measurement was done by only one radiologist; inter-observer

and intra-observer variability were not evaluated. In this study, it

was found that the correct classification rate for scores 4 and 5 is

lower than for scores 2 and 3, possibly because the extra prostatic

invasion of the lesion was not evaluated and because of inherent

curvature bias in ellipse-fitting (24, 25), which needs to be

further investigated. An automated lesion ROI marking may

improve the model significantly and minimize the workload of

radiologist. However, its impact on optimizing clinical workflow

in hospital settings was not evaluated, which would require a

much larger clinical study.
5 Conclusion

The proposed semi-automated model for PI-RADS v2.1

scoring achieved a high classification accuracy of 88% in four-

class classification and 93% in two-class classification. This

model could reduce the inter-reader variability among

radiologists and improve the objectivity of scoring in a

screening setting of prostate cancer.
6 Annexure

Step 1: Prostate gland segmentation

A semi-automated method based on a level set formulation

of the Mumford-Shah function developed by Chan and Vese was

used for segmentation of prostate gland (26). Chan and Vese

proposed a pure region-based model to segment image

ECV C,   c1,   c2ð Þ

=
Z
inside(C)

(u − c1)
2dx   dy   dz

+
Z
outside(C)

u − c2)
2dx   dy   dz

�
(1)

where,u is the segmentation image and c1 and c2 are the average

intensities of the two regions partitioned by the curveC. During the

minimizationof equation (1), the image is divided into two regions:

insideandoutsideof the curve.The level set framework is combined

tominimize the energy function shown inequation (1).The steps of

the proposedmethod for segmentationof the prostate glandusing a

DWI image (b=2000s/mm2)were as follows: 1) a rectangularmask

was constructed manually depending on the prior shape

information of the prostate. This mask was further used in all

slices of DWI in a subject; 2) a segmentation step to estimate the

prostate by Chan-Vese active contour model combining the shape

prior, and the range of total iterations was set to 80–100; 3) a

refining step to smooth the prostate surface; few surrounding pixels
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were also found to be labeled as prostate gland. A morphological

opening operation (structuring element= disk and size= 2) was

applied to remove these speckle pixels. Please refer to (27) formore

details of prostate gland segmentation.
Step 2: Image registration

The prostate gland segmentation was performed on the DWI

images (b = 2000s/mm2). The segmentation of the prostate gland

was also performed individually on the T2W images. The ROIs

of T2WI and DWI were used for 3D registration, not the original

images. The affine transformation method with a mutual

information similarity index was applied for 3D registration.

The affine transformation with 12 degrees of freedom (DoF)

allows shearing, scaling, translation, and rotation in three

directions. In 3D, affine transformation can be expressed as

T: (x, y, z)=

ð q11 q12 q13

q21 q22 q23

q31 q32 q33
Þ  ð x

y

z

Þþ

q14
q24
q34

0
BB@

1
CCA

(2)
where the coefficients parameterize the 12 DoF of

the transformation.
Step 3: Prostate zonal segmentation

This algorithm proposes a novel method for the sub-

segmentation of the prostate into peripheral zone and transition

zone. The prostate zonal segmentation was performed on the DWI

images (b=2000s/mm2). Themethod is basedonprobabilistic atlas

approach with partial volume (PV) correction algorithm [ii]. Pre-

processing steps were carried out for the registration and template

creation. Followed by atlas construction, finally, zonal

segmentation was performed. The statistical atlas was created by

averaging the intensity of images of all training subjects aligned to

the image of the target subject based on the corresponding spatial

information of PZ and TZ. After that, probabilistic atlases were

obtained by counting the number of occurrences of individual

pixels in zonal statistical atlases (separate probability map for PZ

and TZ) and normalizing the result.

The zonal segmentation of the registered data of the test

subject was performed using a probabilistic map at 50%

threshold probability (probability= 0.5) for both zones. When

binary masks of PZ and TZ were applied to the registered dataset

of the test subject, it was observed that some pixels in between

the two zones could not be assigned to either of the zones. These

pixels were having either equal or less than 0.5 probability values
frontiersin.org
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for belongingness to two zones; these pixels constitute the

PV zone.

The PV correction algorithm was thus developed for correct

assignment of these pixels in the PV zone to either PZ or TZ. For

every pixel in the PV zone a belongingness value was calculated

separately for both the zones, PZ and TZ, by optimizing the cost

function for normalized intensity difference, probability, and

Euclidian distance from the corresponding zone. The mask of

PZ and TZ was further used in all slices of T2WI and ADC for

each subject. Please refer to (27) for more details of prostate

zonal segmentation and PV correction steps.
Step 4: Lesion region of interest
(ROI) marking

All lesion ROIs (size range: 50 to 200 voxels) were manually

delineated from each slice of all subjects for lesion measurement,

based on PI-RADS v2.1 guidelines (3). ROIs were outlined on

the PZ of the DWI (b = 2000 s/mm2) data with the help of a

radiologist (with >20 years of experience in prostate MRI) and

the same ROIs were used for the ADC and T2W images of the

respective subject.
Step 5: Lesion measurement

In this study, an automatic ellipse-fitting approach was used

for the measurement of lesion maximum diameter and volume.

This function employs the least-squares (LS) criterion to

estimate the best fit the ellipse to a given set of points (x, y) of

the lesion.

The LS estimation is done for the conic representation of

an ellipse.

Conic ellipse representation=

a � x2+ b � x � y + c � y2+ d � x + e � y +f  ¼  0 (3)

Maximum diameter was defined as the major axis of the best

fit ellipse. Lesion volume was determined by the multiplication

of slice profile (slice thickness + slice gap) with the summation of

all lesion areas in the two-dimensional plane.

For comparison, the radiologist manually measured the

maximal diameter and volume of the lesion using the image

processing software ImageJ. (v.1.48; National Institute of Health,

Bethesda, MD, USA).
Step 6: PI-RADS v2.1 assessment

In the current study, PI-RADS v2.1 scores were assessed

based on the lesion maximum diameter and lesion volume from

the fitted ellipse.
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Step 7: Machine learning based validation

Three machine learning methods (Linear discriminant

analysis (LDA), linear support-vector machine (SVM), and

Gaussian SVM) were used to evaluate the diagnostic

performance of the proposed model. These machine learning

methods were implemented using default parameters so as not

to introduce a bias or overfit the model on the given data.

LDA is supervised and computes the directions (“linear

discriminants”) that will represent the axes that maximize the

separation between multiple classes. The LDA approach in detail

is shown in (28).

SVM creates a hyper plane in the feature space to divide the

data into two classes with the maximummargin. Using a positive

semidefinite function, the feature space can map the original

features (x, y) into a higher-dimensional space.

x, yð Þ  !  k  x, yð Þ (4)

The function k (·, ·) is called the kernel function. Here, we

implemented two standard kernel SVM classifiers.

k  x, yð Þ  ¼   x: yð Þ Linear

¼  exp (- ( ∥ x - y ∥ )=s2Þ Gaussian (5)

where s is the width of Gaussian. The importance of this

parameter relates to cost of constraint violation during the

SVM training.

The accuracy of the proposed model was validated using

stratified fivefold cross validation.
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