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Background: Glypican-3 (GPC3) expression is investigated as a promising

target for tumor-specific immunotherapy of hepatocellular carcinoma (HCC).

This study aims to determine whether GPC3 alters the viscoelastic properties of

HCC and whether tomoelastography, a multifrequency magnetic resonance

elastography (MRE) technique, is sensitive to it.

Methods: Ninety-five participants (mean age, 58 ± 1 years; 78 men and 17

women) with 100 pathologically confirmed HCC lesions were enrolled in this

prospective study from July 2020 to August 2021. All patients underwent

preoperative multiparametric MRI and tomoelastography. Tomoelastography

provided shear wave speed (c, m/s) representing tissue stiffness and loss angle

(j, rad) relating to viscosity. Clinical, laboratory, and imaging parameters were

compared between GPC3-positive and -negative groups. Univariable and

multivariable logistic regression were performed to determine factors

associated with GPC3-positive HCC. The diagnostic performance of

combined biomarkers was established using logistic regression analysis.

Area-under-the-curve (AUC) analysis was done to assess diagnostic

performance in detecting GPC3-positive HCC.

Findings: GPC3-positive HCCs (n=72) had reduced stiffness compared with

GPC3-negative HCCs (n=23) while viscosity was not different (c: 2.34 ± 0.62

versus 2.72 ± 0.62 m/s, P=0.010, j: 1.11 ± 0.21 vs 1.18 ± 0.27 rad, P=0.21).

Logistic regression showed c and elevated serum alpha-fetoprotein (AFP) level

above 20 ng/mL were independent factors for GPC3-positive HCC. Stiffness

with a cutoff of c = 2.8 m/s in conjunction with an elevated AFP yielded a

sensitivity of 80.3%, specificity of 70.8%, and AUC of 0.80.
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Interpretation: Reduced stiffness quantified by tomoelastography may be a

mechanical signature of GPC3-positive HCC. Combining reduced tumor

stiffness and elevated AFP level may provide potentially valuable biomarker

for GPC3-targeted immunotherapy.
KEYWORDS

magnetic resonance elastography (MRE), hepatocellular carcinoma (HCC), molecular
target, extracellular matrix (ECM), biomechanics
Introduction

Hepatocellular carcinoma (HCC) ranks as the third leading

cause of cancer death worldwide (1). Early-stage HCC can be

treated curatively with surgical resection, transplantation,

transarterial chemoembolization, or ablation. Despite therapeutic

advances, less than 40% of HCC patients are eligible for potentially

curative treatment (2).

Multityrosine kinase inhibitors, such as sorafenib, were the

first systemic therapy for advanced HCC (3). However, due to a

strong and broad resistance of HCC to cytotoxic chemotherapy,

systemic therapy based on antiangiogenic tyrosine kinase

inhibitors has been used primarily in advanced disease (4, 5).

Recently, the quest for HCC treatment has focused on tumor

antigen-specific immunotherapy and other approaches

modulating the immunogenicity of HCC (6). Meanwhile,

agents targeting the programmed cell death protein-1 and

cytotoxic T lymphocyte antigen 4 have been approved for HCC

treatment (7–9). Despite these encouraging developments

in immunotherapy, there is an ongoing need to identify

further molecular targets and develop biomarkers to assess

treatment responses.

Glypican-3 (GPC3), a member of heparan sulfate

proteoglycans anchored to the cell membrane, is highly

expressed in >60% of all HCCs but not in benign hepatic

lesions, hepatic cirrhosis, hepatitis, or in healthy liver tissue

(10–12). Its overexpression has been associated with poorer

prognosis (10, 13–15) and identified as a rational specific

diagnostic biomarker or target for immunotherapy in HCC

(16, 17). Various immunotherapies targeting GPC3 have been

under investigation, including GPC3-targeted antibody

treatment, peptide/DNA vaccine treatments, chimeric antigen

receptor T cells therapy, immunotoxin use, and genetic therapies

(10). he usefulness importance of GPC3 as a therapeutic target

for both antibody- and cell-based immunotherapies has been

explored in previous studies (18). Currently, GPC3 expression is

detected mainly through immunohistochemical staining of HCC

tissue samples obtained by surgical resection or fine-needle

biopsy (10). Given the diagnostic and therapeutic importance

of GPC3 and the lack of non-invasive detection methods for
02
GPC3, a quantitative imaging biomarker for the detection of

GPC3 with high sensitivity and specificity is urgently needed.

Tomoelastography, an advanced MR elastography (MRE)

technique based on multiple frequencies, is an emerging

noninvasive imaging technique for quantifying biomechanical

properties of soft tissues in vivo (19). Tomoelastography yields

quantitative maps of shear wave speed (c in m/s) and loss angle

(j in rad) as surrogates of tissue stiffness and viscosity,

respectively. Tomoelastography has been applied for the

biomechanical characterization of a variety of tumors in vivo,

including pancreatic cancer (20, 21), neuro-tumors (22),

prostate cancer (23, 24), rectal carcinoma (25), and liver

tumors (26, 27). These studies have unveiled the relationship

between biomechanical properties and changes in tissue

microstructure associated with tumor progression including

remodeling of the extracellular matrix (ECM) and collective

cellular behavior (20, 26).

We hypothesize that biomechanical parameters might be

sensitive to GPC3 expression in HCC as GPC3 is an ECM

component that mediates cell-ECM and cell-cell interactions

and promotes cell growth. To test this hypothesis, we conducted

an exploratory study using tomoelastography to investigate the

correlation between the biomechanical properties of HCC and

their GPC3 expression levels, and to develop prediction models

of GPC3-positive HCC.
Material and methods

Study population

This prospective single-center cohort study was approved by the

institutional review board (No. RJ2018-209), and written informed

consent was obtained from all study participants. From July 2020 to

August 2021, 156 consecutive participants with suspected HCC were

enrolled and underwent preoperative tomoelastography. Sixty-one

participants were excluded due to lack of pathological results (n = 19),

previous HCC treatment (n = 3), or poor MRI image quality due to

iron deposition and/or motion artifacts (n = 39). Finally, 95

participants (mean age, 58 years ± 1; 78 men and 17 women) with
frontiersin.org
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100 HCC lesions were included. A flowchart of participant

recruitment is shown in Figure 1.
Clinical MRI for HCC diagnosis

All participants underwent routine multiparametric MRI,

which consisted of T1-weighted, T2w, diffusion-weighted-

imaging with b-values of 0, 50, and 800 s/mm2, and

multiphase dynamic contrast-enhanced imaging with Gd-

DTPA. These routine clinical MRI examinations were

performed within one week before surgery on systems from

different vendors (Siemens, Philips, United Imaging) depending

on their availability. All imaging parameters of the

multiparametric MRI protocol are compiled in Supplemental

Table T1.
Tomoelastography

Tomoelastography examination was performed on a 1.5-

Tesla MRI scanner (Magnetom Aera, Siemens, Erlangen,

Germany) one day before surgery for all patients. The setup

was similar to that described in Shahryari.et al (27). Briefly,

mechanical vibration of 30, 40, 50, and 60 Hz were generated

and transferred sequentially to the liver using four pressure pads

driven by compressed air. Two anterior and two posterior pads,

operating at 0.4 and 0.6 bar, respectively, were placed near the

liver region. Three-dimensional wave fields were acquired using

a single-shot, spin-echo echo-planar MRI sequence with flow-

compensated motion-encoding gradients. Fifteen contiguous

axial slices with a field of view of 384×312 mm2 (matrix size:

128×104) and 3×3×5 mm3 resolution were acquired during free
Frontiers in Oncology 03
breathing as proposed in Shahryari.et al (28). Further imaging

parameters were: echo time of 59 ms; repetition time of 2050 ms;

parallel imaging with GRAPPA factor 2; MEG frequency of

43.48Hz for 30, 40, 50Hz vibration frequencies and 44.88Hz for

60Hz vibration frequency; MEG amplitude of 30mT/m. Total

acquisition time was approximately 3.5 mins. Multifrequency

wavefield data were processed using the pipeline available at

https://bioqic-apps.com. Full field-of-view maps of shear wave

speed (c) and loss angle (j) of the complex shear modulus were

generated. As c is proportional to the square root of the storage

modulus (real part of the complex shear modulus) while j
continuously changes from 0 (pure solid properties) to p/2 (pure
fluid properties), these two parameters are also considered

surrogates for stiffness and tissue fluidity, respectively.

Henceforth, we will use c and j for providing quantitative

information, while “stiffness” and “fluidity” are reserved for

discussing qualitative parameter changes.
Image analysis

Based on imaging features such as tumor size, non-rim

arterial phase enhancement (APHE), non-peripheral washout

(“washout”) in the portal venous phase (PVP) or delayed phase

(DP), and enhancing capsule (“capsule”), Liver Imaging

Reporting and Data System (LI-RADS) categories ranging

from LR1 to LR5 as well LR-M (malignant, not HCC-specific)

and LR-TIV (Tumor In Vein) were assigned to each lesion using

LI-RADS version 2018 (29).

For tomoelastography, regions of interest (ROIs) were

manually drawn on T2w tomoelastography magnitude images

using conventional T2w MR images for anatomical orientation.

One main slice showing the primary lesion at its largest cross-

sectional extension and its two adjacent slices were selected for

defining ROIs of tumors. ROIs were also manually drawn to

encompass as much of the background liver as possible on three

consecutive sections with the largest liver cross-sectional

coverage on the central c- and j-map slices. The measurement

results were averaged and then used as the representative

parameters. Additionally, two radiologists - Rater#1 with 12

years of experience and Rater#2 with 2 years of experience –

independently analyzed tomoelastography data in all 95 patients

for testing interobserver variability.
Histopathological analysis

Lesion specimens were obtained from surgical resection.

Presence of microvascular invasion, Edmondson-Steiner grade,

liver fibrosis stage, and inflammation grade were assessed in

hematoxyl in and eosin (H&E)-sta ined spec imens .

Immunochemistry staining was performed to verify GPC3

expression based on protocol described in Feng et al. (30).
FIGURE 1

Flowchart of participant inclusion and exclusion.
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A sample was classified as positive for GPC3 expression when >10%

of tumor cells showed GPC3 cytoplasmic staining. Ki-67 expression

was assessed by noting the percentage of positively stained cells. All

specimens were analyzed by a pathologist with 16 years of experience

in hepatic pathology who was blinded to all radiological and

clinical results.
Statistical analysis

For group comparison, the c2 test was used for qualitative

parameters while Student′s t-test or the Mann-Whitney U-test

was applied for quantitative measures. Interobserver agreement

regarding mechanical parameters was tested using intraclass

correlation coefficients (ICCs). Univariable and multivariable

analyses of a backward logistic regression were used to

determine predictive factors for GPC3-positive HCC. The

diagnostic model was established using logistic regression

analysis. Area-under-the-curve (AUC) analysis was done to

assess diagnostic performance in detecting GPC3-positive

HCC. AUC values were compared using the Delong test. All

statistical analyses were performed with SPSS software (version

26; SPSS), GraphPad Prism software (GraphPad Prism for

Windows, version 8.0), and MedCalc software (MedCalc

Software Ltd). P < 0.05 was considered to indicate statistically

significant differences.
Results

Clinicopathological characteristics
of participants

The GPC3-positive group included 72 participants (mean

age, 58 years ± 12; 57 men and 15 women) with 76 lesions while

the GPC3-negative group included 23 participants (mean age, 60

years ± 9; 21 men and 2 women) with 24 lesions. In participants

with multiple lesions, all lesions of the same individual were

found to be either positive or negative for GPC3 expression.

Compared with the GPC3-negative group, GPC3-positive

participants had elevated AFP levels (≥ 20 ng/ml, P < 0.001) and

higher Ki-67-positive cellular index (Ki-67 ≥ 20%, P = 0.01). The

two groups did not differ significantly in terms of demographic,

laboratory, and pathologic parameters such as tumor size (P =

0.89), MVI (P = 0.90), Edmondson-Steiner grade (P = 0.08), liver

fibrosis (P = 0.79), and inflammation grade (P = 0.33). The

clinicopathological characteristics are summarized in Table 1.
MRI characteristics of participants

Representative axial T2w images, arterial phase images, and

delayed phase images for participants with (a) positive and (b)
Frontiers in Oncology 04
negative GPC3 expression are shown in Figure 2.

Immunohistochemical analyses of GPC3 were also shown for

these two patients where the cytoplasmic/membranous staining of

GPC3 was significantly higher in patient with positives GPC3

expression. LI-RADS categories are summarized in Table 2. There

were no LR1 or LR 2 cases among our participants, and themajority

of lesions were categorized as LR-5 (73%). The presence of imaging

features such as non-rim APHE (P = 0.68), washout (P = 0.51), and

enhancing capsule (P = 0.69) did not differ significantly between the

two groups. The distribution of LI-RADS categories was also similar

between the two groups (P = 0.40).
Mechanical properties of HCC and
background liver

ICC of interobserver reliability of mechanical properties

based on all participants evaluated by two raters was 0.942

(95% CI: 0.916, 0.961) for tumor c, 0.809 (95% CI: 0.728,

0.827) for tumor j, 0.928 (95% CI: 0.889, 0.952) for

background liver c, and 0.741 (95% CI: 0.635, 0.820) for

background liver j, suggesting good concordance and data

consistency. Bland-Altman plots are shown in Figure 3.

Figure 2 shows tomoelastography c and j maps of GPC3-

positive and negative participants. It is apparent that the GPC3-

postivie HCC is softer (lower c-value) than the GPC3-negative

tumor. We observed significantly lower c values in HCCs of the

GPC3-positive group (2.34 ± 0.62 vs 2.72 ± 0.62 m/s, P = 0.01)

than those of GPC3-negative group. HCC j was not different

between these two groups (1.11 ± 0.21 vs 1.18 ± 0.27 rad, P =

0.21). In background liver, neither c (2.06 ± 0.40 vs 2.08 ± 0.43

m/s, P = 0.87) nor j (0.76 ± 0.15 vs 0.81 ± 0.24 rad, P = 0.26) was

sensitive to GPC3 expression. Group comparisons of the

biomechanical properties in both HCCs and background liver

are compiled in Table 3 and plotted in Figure 4.
Diagnostic performance of
tomoelastography in the prediction
of GPC3 expression and comparison
with AFP

Univariable and multivariable logistic regression analysis

firstly identified tumor c (odds ratio [OR], 0.361; 95% CI:

0.158, 0.826; P = 0.02) and serum AFP levels over 20 ng/mL

(OR, 8.117; 95% CI: 2.422, 27.199; P = 0.001) as two independent

predictors of GPC3-positive HCCs (Table 4).

c detected GPC3-positive HCCs with an AUC of 0.67 (95%

CI: 0.57-0.76, cutoff: 2.8 m/s), which was similar to the

diagnostic performance of AFP (AUC: 0.72, 95% CI: 0.62-0.80;

cutoff: 20mg/L; P = 0.57). Based on AUC analysis, c and AFP had

high sensitivity (84.2%) and specificity (83.3%), respectively.

Therefore, these two parameters were combined for predicting
frontiersin.org
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GPC3-positive HCCs. As shown in Table 5 and Figure 5, the

joined use of c and AFP yielded a significantly higher AUC of

0.803 (95% CI: 0.711-0.876) compared with using either c (P =

0.024) or APF (P = 0.0065).
Frontiers in Oncology 05
Discussion

With the urgent clinical need for improving HCC

immunotherapy, noninvasive detection of GPC3 expression of
TABLE 1 Comparison of clinicopathologic characteristics of participants with GPC3-positive and GPC3-negative HCC.

Characteristic GPC3-positive group (n=72) GPC3-negative group (n=23) P Value

Participants

Age (years) (range) 58 ± 12 (23-81) 60 ± 9 (41-75) 0.42

Sex (male: female) 57:15 21:2 0.31

BMI (kg/m2) 23.13 ± 3.32 24.03 ± 2.60 0.24

Etiology (%) 1.00

Hepatitis B virus 66 (91.7) 22 (95.7)

Hepatitis C virus 3 (4.2) 1 (4.3)

Other 3 (4.2) 0 (0)

Laboratory results

Albumin (g/dL) 39.19 ± 4.52 39.40 ± 4.27 0.84

Total bilirubin (umol/L) 17.87 ± 7.48 15.42 ± 5.83 0.16

INR unit 1.04 ± 0.09 1.05 ± 0.12 0.79

AFP (ng/ml) *<0.001

<20 29 19

≥20 43 4

CEA (ng/mL) 0.63

<5 65 20

≥5 4 2

CA125 (U/ml) 1.00

<24 55 18

≥24 14 4

CA199 (U/ml) 0.90

<25 48 15

≥25 21 7

HCC features

Number of lesions 76 24

Lesion size(cm) 4.28 ± 3.33 4.39 ± 3.25 0.89

Edmondson-Steiner grade 0.08

1-2 42 8

3-4 31 14

MVI 0.90

Positive 22 7

Negative 50 17

Ki-67

<20% 20 12 *0.03

≥20% 56 12

Liver fibrosis grade 0.79

S1-2 21 8

S3-4 45 25

Liver inflammation grade 0.33

A1 16 8

A2-4 50 15
fron
HCC, hepatocellular carcinoma; BMI, body mass index; AFP, a-fetoprotein; INR, international normalized ratio of prothrombin time; MVI, microvascular invasion.
Data are mean ± standard deviation unless otherwise indicated.—Other etiological factors include alcoholism, nonalcoholic fatty liver disease, and schistosomiasis.—Missing data for CEA
(4 cases), CA125 (4 cases), CA199 (4 cases), Edmondson-Steiner grade (5 cases), MVI (4 cases), liver inflammation grade (6 cases), and liver fibrosis grade (6 cases).
*P < 0.05.
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TABLE 2 Standard MRI features and LI-RADS categories of HCC lesions in the two groups.

GPC3-positive group (n=76) GPC3-negative group (n=24) P-value

Non-rim APHE 62 18 0.68

Washout (not peripheral) 50 14 0.51

Enhancing capsule 44 15 0.69

LI-RADS categories 0.40

LR-M 3 3

LR-TIV 2 0

LR-3 3 2

LR-4 11 2

LR-5 56 17
Frontiers in Oncology
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APHE, arterial phase enhancement; LI-RADS, Liver Imaging Reporting & Data System; TIV, Tumor In Vein.
B

A

B

A

FIGURE 2

Representative axial T2-weighted images; arterial phase images; delayed phase images; axial diffusion-weighted images (DWI) at b-value of 800
sec/mm2; axial tomoelastography c and j maps, and immunochemistry-stained section images of tumors (magnification, ×20) obtained in a
patient with GPC3-positive HCC (A) and in a patient with GPC3-negative HCC (B).
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HCC is of great interest. In this study, we have investigated the

macroscopic mechanical manifestation of GPC3 expression

using viscoelastic parameters quantified by in vivo

tomoelastography. A key finding of our study was that GPC3-

positive HCC had lower stiffness than GPC3-negative HCC.

Diagnostic power in predicting GPC3-positive HCC was highest

for the combination of tomoelastography-quantified tumor

stiffness and serum marker AFP.

The conventional LI-RADS categories for imaging-based

classification of HCC were not sensitive to GPC3 expression in

our study population, suggesting that tumor morphology and

vascularity are not directly linked to GPC3 upregulation. Tissue
Frontiers in Oncology 07
stiffness quantified by tomoelastography, on the other hand, was

found to be sensitive to GPC3 expression. Our observation that

GPC3-positive HCCs were softer than GPC3-negative HCCs seems

counterintuitive at first glance, considering that malignant liver

lesions usually have higher stiffness than benign tumors (27).

However, rather than comparing malignant with benign tumors,

we here addressed the influence of a specific protein within groups

of malignant HCCs, which both had abnormally high stiffness

values compared with surrounding liver tissue and other benign

lesions reported in the literature (27). Another study suggests that

GPC3-possitive HCCs possess more metastatic potential since

GPC3 expression promotes cancer cell proliferation and

epithelial-mesenchymal transition (EMT) (10). Several cell

biomechanics studies confirm that metastatic cancer cells become

soft, which promotes unjamming and facilitates invasion through

interfaces and blood vessels (31–33). Recently, EMT has been

reported to cause cancer cells to soften and migrate into their

matrix environments (34, 35). The biomechanical properties of

surrounding tissue can also affect the stiffness of the embedded

lesion (33, 36). However, we observed no difference in the

biomechanical properties of background livers between the two

groups of participants, suggesting that the observed soft signature of

GPC3-positive HCCs reflects tumor-intrinsic properties that are the

collective behavior of soft and unjammed cancer cells due to GPC3-

promted EMT (37).
TABLE 3 Group mean and standard deviation of the mechanical
parameters c (stiffness) and j (fluidity) in the two groups with different
GPC3 expression.

Parameters GPC3-positive
group (n=76)

GPC3-negative
group (n=24)

P-
value

HCC

c (m/s) 2.34 ± 0.62 2.72 ± 0.62 *0.01

j (rad) 1.11 ± 0.21 1.18 ± 0.27 0.21

Background liver

c (m/s) 2.06 ± 0.40 2.08 ± 0.43 0.86

j (rad) 0.76 ± 0.15 0.81 ± 0.24 0.26
B

C D

A

FIGURE 3

Bland-Altman plots show agreement of c and j values evaluated by two independent raters in both HCC (A: c value of tumor; C: j value of
tumor) and background liver (B: c value of liver; D: j value of liver)..
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BA

FIGURE 4

Scatter plots of mechanical parameters (A) c (stiffness) and (B) j (fluidity) comparing GPC3-positive and GPC3-negative groups. *P < 0.05.
TABLE 4 Univariate and multivariate analyses of variables associated with GPC3-positive HCC.

Univariable Multivariable

OR (95%CI) P Value OR (95%CI) P Value

Tumor c (m/s) 0.484 (0.181, 0.816) *0.01 0.361 (0.158, 0.826) *0.02

Tumor j (rad) 0.277 (0.036, 2.106) 0.22

Liver c (m/s) 0.903 (0.283, 2.882) 0.86

Liver j (rad) 0.236 (0.019, 2.983) 0.26

Sex

Male 1

Female 0.362 (0.076, 1.719) 0.20

Age 0.982 (0.941, 1.025) 0.42

BMI 0.914 (0.787, 1.061) 0.24

Size 0.967 (0.820, 1.139) 0.69

Albumin (g/dL) 0.989 (0.889, 1.101) 0.84

Total bilirubin (umol/L) 1.062 (0.977, 1.155) 0.15

INR unit 0.516 (0.004, 64.255) 0.79

AFP (ng/mL) *0.001 8.117 (2.422, 27.199) *0.001

<20 1

≥20 7.667 (2.384, 24.650)

CEA (ng/mL)

<5 1

≥5 0.615 (0.105, 3.612) 0.59

CA125 (U/ml)

<24 1

≥24 1.145 (0.334, 3.927) 0.83

CA199 (U/ml)

<25 1

≥25 0.938 (0.334, 2.635) 0.90

Non-rim APHE

Absent 1

Present 2.296 (0.721, 7.315) 0.16

(Continued)
Frontiers in Oncology
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Tissue fluidity, as quantified by loss angle j, showed no

sensitivity to GPC3 expression. Since GPC3 is known to

upregulate cell motility, we expected GPC3-rich HCC to behave

more fluid-like than GPC3-negative HCC, similar to high-grade

tumors in the prostate (24, 38). However, considering that GPC3 is

a proteoglycan with negatively charged heparan sulfate chains, its

hydrophilic water-binding capacity on HCC cell surfaces could

reduce water mobility and turn tissue into a more solid-like state, as

known for high-grade glioma in the brain (22). Thus, we

hypothesized that the counteracting effects of cell unjamming and

water immobilization render j insensitive to GPC3 expression

in HCC.

The best diagnostic performance in detecting GPC3-positive

HCCs was achieved by combing stiffness and AFP level. The

high specificity of AFP level for tumors with GPC3 expression

might be related to the shared transcription factors zinc fingers,

AFP regulator 2 (Arf2), and homeoboxes 2 (Zfh2) (39–41). As

AFP is a serum marker commonly used for clinical HCC

screening, it is routinely available. In our study population, the

insufficient sensitivity of AFP in detecting GPC3-positive HCC

was well compensated for by stiffness, which lacks specificity.

Therefore, combining the serum biomarker and the

tomoelastography-derived imaging biomarker may be a
Frontiers in Oncology 09
promising approach for the identification of GPC3-postive

HCC. Owing to its noninvasive nature, tomoelastography

could also be of value for monitoring and predicting outcome

of immunotherapy targeting GPC3.

Our study has limitations. First, it was a single-center

study. A multicenter study including other hospitals where

tomoelastography is availability is planned. Second, the sample

size was relatively small, especially in the GPC3-negative

group. However, patient distribution in the GPC3-positive

and -negative groups reflects the demographic distribution of

GPC3-positive cases in a general HCC population (10). Third,

clinical MRI examinations were performed on different

scanner systems. However, LI-RADS categories are based on

qualitative interpretation of MR images and, according to the

guidelines, are not system-dependent (29). Finally, the scope of

our study didn’t cover the post-surgical outcome assessment

which is of high interest and relevance. This aspect will be

incorporated in our future studies to extend the prognostic

value of our method.

In summary, reduced stiffness quantified by in vivo

tomoelastography is a mechanical signature of GPC3-positive

HCC. The macroscopic softening observed in GPC3-positive

HCCs could be a collective reflection of HCC cell softening as a
TABLE 5 Diagnostic performance of mechanical parameters c (stiffness) and serum marker AFP in detecting GPC3-positive HCC.

Cutoff AUC P-value Sensitivity (%) Specificity (%)

c
(m/sec)

2.8 0.674
[0.572-0.764]

… 84.2 (64/76) [74.0-91.6] 50.0 (12/24)
[29.1-70.9]

AFP level (≥20mg/L) 20 0.719
[0.621-0.805]

0.57 60.5 (46/76)
[48.6-71.6]

83.3 (20/24)
[62.6-95.3]

c + AFP … 0.803
[0.711-0.876]

*0.02 80.3 (61/76)
[69.5-88.5]

70.8 (17/24)
[48.9-87.4]
Unless otherwise specified, data in parentheses are numerators/denominators and data in brackets are 95% CIs. AUC of combined stiffness(c) and AFP level, denoted as c + AFP, was
obtained by using probabilities estimated from logistic regression.
TABLE 4 Continued

Univariable Multivariable

OR (95%CI) P Value OR (95%CI) P Value

Nonperipheral washout

Absent 1

Present 0.588
(0.226, 1.533)

0.28

Enhancing capsule

Absent 1

Present 0.978
(0.376, 2.542)

0.96

LI-RADS

Non-LR-5 1

LR-5 1.214 (0.437, 3.374) 0.71
fron
*P < 0.05.
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result of EMT. The combined use of HCC stiffness and AFP level

provided high diagnostic accuracy in detecting GPC3 expression

and could be considered a viable biomarker for identifying

GPC3-positive HCC and predicting therapeutic outcome.
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