
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Jayasree Chakraborty,
Memorial Sloan Kettering Cancer
Center, United States

REVIEWED BY

Fajin Dong,
Jinan University, China
Weiwei Zhan,
Shanghai Jiaotong University School
of Medicine, China

*CORRESPONDENCE

Zhiyong Zhou
zhouzy@sibet.ac.cn
Yakang Dai
daiyk@sibet.ac.cn
Fenglin Dong
fldong@suda.edu.cn

†These authors have contributed
equally to this work and share
first authorship

SPECIALTY SECTION

This article was submitted to
Breast Cancer,
a section of the journal
Frontiers in Oncology

RECEIVED 08 June 2022
ACCEPTED 20 July 2022

PUBLISHED 15 August 2022

CITATION

Liu J, Wang X, Hu M, Zheng Y, Zhu L,
Wang W, Hu J, Zhou Z, Dai Y and
Dong F (2022) Development of an
ultrasound-based radiomics
nomogram to preoperatively predict
Ki-67 expression level in patients with
breast cancer.
Front. Oncol. 12:963925.
doi: 10.3389/fonc.2022.963925

COPYRIGHT

© 2022 Liu, Wang, Hu, Zheng, Zhu,
Wang, Hu, Zhou, Dai and Dong. This is
an open-access article distributed under
the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other
forums is permitted, provided the
original author(s) and the copyright
owner(s) are credited and that the
original publication in this journal is
cited, in accordance with accepted
academic practice. No use,
distribution or reproduction is
permitted which does not comply with
these terms.

TYPE Original Research
PUBLISHED 15 August 2022

DOI 10.3389/fonc.2022.963925
Development of an ultrasound-
based radiomics nomogram to
preoperatively predict Ki-67
expression level in patients with
breast cancer
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Lin Zhu1, Wei Wang1, Jisu Hu3, Zhiyong Zhou3*,
Yakang Dai3* and Fenglin Dong1*

1Department of Ultrasound, The First Affiliated Hospital of Soochow University, Suzhou, China,
2Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou
Municipal Hospital, Suzhou, China, 3Suzhou Institute of Biomedical Engineering and Technology,
Chinese Academy of Sciences, Suzhou, China
Objective: To develop and validate a radiomics nomogram that could

incorporate clinicopathological characteristics and ultrasound (US)-based

radiomics signature to non-invasively predict Ki-67 expression level in

patients with breast cancer (BC) preoperatively.

Methods: A total of 328 breast lesions from 324 patients with BC who were

pathologically confirmed in our hospital from June 2019 to October 2020 were

included, and they were divided into high Ki-67 expression level group and low

Ki-67 expression level group. Routine US and shear wave elastography (SWE)

were performed for each lesion, and the ipsilateral axillary lymph nodes (ALNs)

were scanned for abnormal changes. The datasets were randomly divided into

training and validation cohorts with a ratio of 7:3. Correlation analysis and the

least absolute shrinkage and selection operator (LASSO) were used to select

the radiomics features obtained from gray-scale US images of BC patients, and

each radiomics score (Rad-score) was calculated. Afterwards, multivariate

logistic regression analysis was used to establish a radiomics nomogram

based on the radiomics signature and clinicopathological characteristics. The

prediction performance of the nomogram was assessed by the area under the

receiver operating characteristic curve (AUC), the calibration curve, and

decision curve analysis (DCA) using the results of immunohistochemistry as

the gold standard.

Results: The radiomics signature, consisted of eight selected radiomics

features, achieved a nearly moderate prediction efficacy with AUC of 0.821

(95% CI:0.764-0.880) and 0.713 (95% CI:0.612-0.814) in the training and

validation cohorts, respectively. The radiomics nomogram, incorporating

maximum diameter of lesions, stiff rim sign, US-reported ALN status, and

radiomics signature showed a promising performance for prediction of Ki-67
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expression level, with AUC of 0.904 (95% CI:0.860-0.948) and 0.890 (95%

CI:0.817-0.964) in the training and validation cohorts, respectively. The

calibration curve and DCA indicated promising consistency and clinical

applicability.

Conclusion: The proposed US-based radiomics nomogram could be used to

non-invasively predict Ki-67 expression level in BC patients preoperatively, and

to assist clinicians in making reliable clinical decisions.
KEYWORDS

radiomics nomogram, ultrasonography, breast neoplasms, shear wave elastography
(SWE), Ki-67 expression
Introduction

Breast cancer (BC) has surpassed lung cancer to become the

most common malignant tumor in the world, with the highest

morbidity and mortality among women, globally accounting for

2.3 million new cases and 685,000 deaths in 2020 (1). Ki-67

index is an important marker to indicate tumor cell proliferation

and an independent predictive and prognostic factor for early-

stage BC patients (2). A high expression level of Ki-67 is

associated with a higher recurrence and a poorer patient

survival (3, 4), generally indicating more active cell division

and proliferation, as well as more aggressiveness, while

accompanying by a better efficacy of anti-proliferative

chemotherapy (5). In addition, The American College of

Surgeons Oncology Group Z1031 (ACOSOG Z1031) trial (6)

has shown that Ki-67 index at 2 weeks of treatment is

significantly associated with recurrence-free survival, and it

can predict the prognosis of BC patients undergoing

neoadjuvant endocrine therapy (NET). The proliferative

activity of the Ki-67 index is important in decision-making of

adjuvant treatments for early-stage BC patients, especially the

pathological response to NET (3, 6, 7). Therefore, an accurate

and non-invasive predictor is required to determine the

expression level of Ki-67 in clinical practice.

At present, Ki-67 expression level is mainly determined by

immunohistochemical methods based on core needle biopsy

tissue or gross examination after surgery. Both puncture and

surgery are invasive methods, which are time-consuming, cost-

intensive, and non-reproducible. In addition, the expression

level of the proliferation marker Ki-67 could dynamically

change over the course of treatment (8). Therefore, it is

currently impossible to routinely monitor Ki-67 expression

level in BC patients, especially in patients who require to

continuous monitoring for neoadjuvant therapy. Ultrasound is

a simple, real-time, and non-invasive diagnostic method. In
02
particular, shear wave elastography (SWE), a new ultrasound-

based technology, can qualitatively and quantitatively analyze

the elastic properties of breast tissues (9). This enables clinicians

to analyze the changes in the stiffness of the lesions during the

course of neoadjuvant therapy (7, 10), and can provide more

information for multiple and repeated monitoring of the

biological activity of the lesions, which has gradually been

clinically recognized (10, 11). A previous research (12) has

shown that the maximum value of elastic modulus (P=0.000)

and maximum size (P=0.004) of the Ki-67 high-expression

group showed significantly higher values than those of the Ki-

67 low-expression group. However, the study did not further

validate the diagnostic efficacy of the two indicators.

In 2012, Lambin et al. (13) firstly proposed the concept of

radiomics. Radiomics transforms medical images into

collectible, high-fidelity, and high-throughput data, and

selected radiomics features are used to develop predictive

models and to support clinical decision-making (14, 15).

Radiomics provides a stable and non-invasive approach to

reflect the heterogeneity of lesions by extracting a large

number of imaging features from the ROI through automatic

algorithms, and the critical data are proceeded by diversified

statistical analysis and data mining methods (16, 17). Radiomics

facilitates the quantitative assessment of tumor heterogeneity to

a certain extent, and it has shown great advantages in

clinical application.

However, previous studies on the prediction of Ki-67

expression level in BC tissues have mainly concentrated on

digital mammography (DM) and magnetic resonance imaging

(MRI) (18, 19), and the AUC of the validation set was 0.685 and

0.740, respectively, which was limited. A DM scan uses X-rays,

whereas an MRI scan uses strong magnetic fields and radio

waves. DM scans are more common and less expensive, but MRI

scans produce more detailed images. However, none of them can

be used as an effective evaluation method. Comparably,
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ultrasound (US), especially US examination of thyroid and

breast, possesses the advantages of universal typeability, non-

radiation, high reproducibility, and high discriminatory, which

is widely used in clinical practice. Several scholars have extended

the application of radiomics to the field of US imaging,

concentrated on the identification of benign and malignant

breast tumors (20, 21), attempted to predict biological

behavior of invasive ductal carcinoma (IDC) (22), performed

the differential diagnosis of triple-negative BC and fibroadenoma

(23), and predicted the metastatic status of axillary lymph nodes

(ALNs) in early-stage IDC patients (24).

To date, few ultrasound-based radiomics studies have

predicted Ki-67 expression level in BC patients. The present

research aimed to investigate the quantitative radiomic imaging

features extracted from US and to establish a radiomics

nomogram via combination of radiomics features, gray-scale

US images, and SWE to noninvasively predict Ki-67 expression

level in BC patients.
Materials and methods

Patients

This study was approved by the Ethics Committee of the

First Affiliated Hospital of Soochow University (Suzhou, China),

and the requirement of written informed consent was waived.

Patients with BC were diagnosed in our hospital by needle

biopsy or surgical pathology from June 2019 to October 2020.

Inclusion criteria were as follows: (1) Patients who underwent

gray-scale US and SWE; (2) US was completed within two weeks

before surgery, followed by needle biopsy and surgical treatment.
Frontiers in Oncology 03
The exclusion criteria were as follows: (1) Patients who received

neoadjuvant therapy; (2) Patients who underwent biopsy before

US; (3) Unavailability of data related to immunohistochemical

examination or Ki-67 proliferation index. Finally, 328 lesions

(324 patients) were involved, including 1 male, 323 females, and

4 bilateral BC patients, who aged 26-88 (average age, 53.03 ±

12.55) years old. All lesions were randomly divided into training

cohort (n=230) and validation cohort (n=98) with a ratio of 7:3

(Figure 1).
Clinical data

Baseline clinical and histopathological data, including age,

menopause, number of malignant lesions, histological tumor

type, and Ki-67 status were retrieved from medical records. Ki-

67 score was recorded as the percentage of positively stained

malignant cells. According to the St. Gallen International Expert

Consensus (25), the criteria for determining the Ki-67

proliferation index are as follows: if Ki-67 ≥ 14%, it is marked

as high expression level; otherwise, it is marked as low

expression level.
US data acquisition

US examinations were performed using Resona R7 and

Resona R9 ultrasound machines (Mindray Medical

International Co., Ltd., Shenzhen, China) with a L14-6 high-

frequency linear array probe. The largest section of the

ultrasound image was selected to measure the value of the

maximum diameter, and the size of the lesion was indicated (<
FIGURE 1

Recruitment pathway for BC patients selection.
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2 cm, ≥ 2 cm). The lesions were classified according to the

American College of Radiology Breast Imaging Reporting and

Data System (BI-RADS) classification system (26). Then, we

switched to the SWE and attempted to indicate whether lesions

in the SWE mode have a stiff rim sign. The stiff rim sign was

previously defined as follows (11): compared with the interior of

the lesion, the marginal zone of the lesion is red or orange,

annular or semi-annular, representing an increase in stiffness; if

it was not shown, downward the range and attempt to indicate

whether there is a stiff rim sign during the process until the

surrounding tissue became orange or red; if a hard ring sign

appeared, record the data.

We also evaluated the status of ALN on the ipsilateral side of

breast lesions. ALN status based on US findings was assessed

according to the following criteria (27): (I) normal ALN was

presented with an oval or reniform shape, with a thin (thickness,

< 3 mm), even, smooth, C-shaped hypoechoic cortex, and a

hyperechoic central fatty hilum; (II) ALN for suspicious

metastasis manifested with round shape, focal or eccentric

thickened cortex (thickness , > 3 mm), periphera l

vascularization, and an indented or effaced fatty hilum. The

images were read by 2 radiologists (YZ was reader 1 with 10

years of experience in breast imaging, and MH was reader 2 with

6 years of experience in breast imaging). When there was a

discrepancy between two radiologists’ interpretation, the third

radiologist (FD, with more than 15 years of experience in breast

imaging) made the final decision. All three radiologists were

blinded to patients’ clinical and pathological data.
Radiomics analysis

Region of interest (ROI) segmentation
All images were saved in Digital Imaging and Communications

inMedicine (DICOM) format. The ROI of BC was drawnmanually

on the grayscale US image of the maximum cross-section. The

segmentation of lesions was conducted by a radiologist with 6 years

of experience (reader 2) who was blinded to patients’ Ki-67 status

using an open-source imaging platform ITK-SNAP (ver. 3.8.0;

http://www.itksnap.org/).

Extraction of radiomics features
We extracted 1218 radiomics features, including 9 shape-

based features, 234 first-order statistics, and 975 second-order

features from each ROI using open-source Pyradiomics

packages (ver. 2.12; https://pyradiomics.readthedocs.io/en/2.1.

2/) (28). All radiomics features were in accordance with

definitions of Imaging Biomarker Standardization Initiative

(IBSI) (29). To examine the feature stability, 70 lesions were

randomly selected, and the ROI was delineated by another

radiologist with 10 years of experience in breast US (reader 1)

to assess the consistency between readers. In addition, to assess
Frontiers in Oncology 04
intra-observer reliability, reader 2 performed the second

delineation of ROIs from 70 randomly selected images after 1

week according to the same procedure. The inter- and intra-

observer reproducibility of the two radiologists in ROI

delineation were measured by the intraclass correlation

coefficients (ICCs).

Selection of radiomics features
First, ICCs were used to evaluate the interobserver

agreement of feature extraction, and features with a good

agreement, that is, with ICCs > 0.75, were recruited for further

analysis. Second, all of the selected features were normalized

with z-score normalization in the training and validation cohorts

to achieve a zero mean and unit variance to prevent features in

greater numeric ranges from dominating those in smaller

numeric ranges. Third, the least absolute shrinkage and

selection operator (LASSO) was applied to select the key

radiomics features with nonzero coefficients, and a 5-fold

cross-validation was conducted to determine an optimal

regulation weight (l). The selected features were used to

construct a radiomics signature, and a radiomics score (Rad-

score) for each patient was then calculated using a linear

combination of the key features weighted by their LASSO

coefficients. We finally calculated the area under the receiver

operating characteristic (ROC) curve (AUC) value to assess the

predictive performance of the Rad-score.
Development of the radiomics
nomogram

Using data from the training cohort, both univariate and

multivariate logistic regression analyses were performed to

analyze independent predictive factors related to the

evaluation of Ki-67 expression level in BC lesions, including

clinicopathological characteristics (age, menopausal status,

histological type, tumor diameter, stiff rim sign, BI-RADS

category, and US-LN status). After performing the multivariate

logistic regression analysis, variables with P<0.05 were

considered as independent predictive factors and a test of

collinearity was performed between the factors and Rad-score.

A radiomics nomogram was developed by the multivariate

logistic regression analysis. The radiomics signature and the

clinicopathological model were also developed in the training

cohort to estimate the value of radiomics.
Validation of the radiomics nomogram

The AUC values were used to evaluate the predictive

performance of the Radiomics nomogram in the training and

validation cohorts. The DeLong test was used for comparison of
frontiersin.org
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the clinicopathological model, radiomics signature, and the

radiomics nomogram based on the AUC values. The

calibration curves were used to evaluate the agreement

between the observed and predicted results by 1000 bootstrap

resamples. The clinical applicability of the radiomics nomogram

was evaluated through quantifying the net benefit under

different threshold probabilities in the validation cohort by

decision curve analysis (DCA).
Statistical analysis

Statistical analysis was conducted with R software (version

4.0.4; http://www.R-project.org). The Student’s t-test or the

Mann–Whitney U test was used for comparing differences in

continuous variables. The Pearson’s Chi-square test or the

Fisher’s exact test was used to compare differences in categorical

variables. The glm function was used in the univariate and

multivariate logistic regression analyses. The LASSO regression

analysis was performed using the “caret” and “glmnet” packages.

The “pROC” package was utilized to plot the ROC curves. AUC

values were used to estimate the performance of the models, and
Frontiers in Oncology 05
were compared using the DeLong test. Nomogram construction

was carried out with the “rms” package. The “calibration curve”

function was used to plot the calibration curves. The DCA was

conducted by the “rmda” package. A two-sided P < 0.05 was

considered statistically significant.
Results

Clinicopathological characteristics

The clinicopathological characteristics in the training and

validation cohorts are shown in Table 1. The univariate analysis

showed that parameters, such as age, menopausal status, number

of patients with high Ki-67 expression level, US-reported

maximum tumor diameter (MTD), histopathological type, stiff

rim sign, and ultrasound BI-RADS classification were not

significantly different between the training and validation

cohorts (al l P>0.05) , except for US-reported ALN

status (P=0.027).

The univariate analysis showed that US-reported MTD,

histopathological type, stiff rim sign, ultrasound BI-RADS
TABLE 1 Comparison of descriptive characteristics of the training and validation cohorts.

Characteristic Training cohort (n=230) Validation cohort (n=98) Pvalue

Age (years) 52.61 ± 12.41 53.90 ± 12.97 0.396

High Ki-67 expression 160 (69.6%) 63 (64.3%) 0.348

Menopausal status

Premenopausal 96 (41.7%) 44 (44.9%) 0.597

Postmenopausal 134 (58.3%) 54 (55.1%)

US-reported MTD

<2cm 99 (43.0%) 53 (54.1%) 0.067

≥2cm 131 (57.0%) 45 (45.9%)

Histological type

Ductal carcinoma in situ 23 (10.0%) 11 (11.2%) 0.422

Invasive ductal carcinoma 189 (82.2%) 76 (77.6%)

Invasive lobular carcinoma 5 (2.2%) 1 (1.0%)

Others 13 (5.7%) 10 (10.2%)

Stiff rim sign

No 75 (32.6%) 34 (34.7%) 0.714

Yes 155 (67.4%) 64 (65.3%)

BI-RADS category

3 1 (0.4%) 2 (2.0%) 0.279

4A 56 (24.3%) 28 (28.6%)

4B 76 (33.0%) 34 (34.7%)

4C 62 (27.0%) 26 (26.5%)

5 35 (15.3%) 8 (8.2%)

US-reported LN status

LN-negative 150 (65.3%) 76 (77.6%) 0.027

LN-positive 80 (34.7%) 22 (22.4%)
frontie
MTD, maximum tumor diameter; LN, lymph node.
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classification, and US-reported ALN status were correlated with

Ki-67 expression level in the training cohort (Table 2). Then,

these characteristics were imported to the multivariate logistic

regression analysis. In the multivariate logistic regression

analysis, US-reported MTD, stiff rim sign, and US-reported

ALN status (all P<0.05) were proven to be the independent

predictive factors in identifying high and low expression levels of

Ki-67 (Table 3). There was no multicollinearity problem

between these three f ac to r s and Rad-score . The

clinicopathological model constructed by the three factors
Frontiers in Oncology 06
performed well, with the AUC values of 0.883 (95% CI: 0.835-

0.931) and 0.844 (95% CI: 0.758-0.931) in the training and

validation cohorts, respectively.
Radiomics analysis

Among 1218 radiological features extracted, 985 features

with ICC greater than 0.75 in both inter-observer and intra-

observer were screened. Then, the optimal feature data set with
TABLE 3 Multivariate analysis of clinic-radiological characteristics in training cohort.

Characteristic P value b OR value 95%CI

US-reported MTD 0.005 1.097 8.015 1.402~6.404

Stiff rim sign <0.001 2.644 46.302 6.568~30.116

US-reported LN status <0.001 1.849 13.100 2.334~17.287

constant <0.001 -1.665 23.748
fro
MTD, maximum tumor diameter; LN, lymph node.
TABLE 2 Characteristics associated with Ki-67 expression status in training and validation cohorts.

Training cohort(n=230) Validation cohort(n=98)

Low expression High expression P value Low expression High expression P value

No. of Lesions 70 160 35 63

Age (years) 54.71 ± 12.03 51.69 ± 12.50 0.089 54.06 ± 15.72 53.81 ± 11.29 0.935

Menopausal status

Premenopausal 28 (40.0%) 68 (42.5%) 0.724 16 (45.7%) 28 (44.4%) 0.904

Postmenopausal 42 (60.0%) 92 (57.5%) 19 (54.3%) 35 (55.6%)

US-reported MTD

<2cm 50 (71.4%) 49 (30.6%) <0.001 28 (80.0%) 25 (39.7%) <0.001

≥2cm 20 (28.6%) 111 (69.4%) 7 (20.0%) 38 (60.3%)

Histological type

Ductal carcinoma in situ 17 (24.3%) 6 (3.8%) <0.001 6 (17.1%) 5 (7.9%) 0.031

Invasive ductal carcinoma 48 (68.6%) 141 (88.1%) 22 (62.9%) 54 (85.7%)

Invasive lobular carcinoma 1 (1.4%) 4 (2.5%) 0 (0.0%) 1 (1.6%)

Others 4 (5.7%) 9 (5.6%) 7 (20.0%) 3 (4.8%)

Stiff rim sign

No 52 (74.3%) 23 (14.4%) <0.001 26 (74.3%) 8 (12.7%) <0.001

Yes 18 (25.7%) 137 (85.6%) 9 (25.7%) 55 (87.3%)

BI-RADS category

3 1 (1.4%) 0 (0.0%) <0.001 0 (0.0%) 2 (3.2%) 0.120

4A 28 (40.0%) 28 (17.5%) 15 (42.8%) 13 (20.6%)

4B 25 (35.7%) 51 (31.9%) 11 (31.4%) 23 (36.5%)

4C 14 (20.0%) 48 (30.0%) 8 (22.9%) 18 (28.6%)

5 2 (2.9%) 33 (20.6%) 1 (2.9%) 7 (11.1%)

US-reported LN status

LN-negative 64 (91.4%) 86 (53.7%) <0.001 33 (94.3%) 43 (68.3%) 0.003

LN-positive 6 (8.6%) 74 (46.3%) 2 (5.7%) 20 (31.7%)
nt
MTD, maximum tumor diameter; LN, lymph node.
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the least cross-validation binomial deviance was selected by the

LASSO method, and non-zero coefficients were defined as the

weight for each selected feature, which indicated the correlation

between the feature and Ki-67 expression level. Finally, 8

relevant features, including 1 first-order feature and 7 second-

order features were selected (Figures 2, 3). The Rad-score of each
Frontiers in Oncology 07
lesion was calculated by the 8 selected features. In the training

cohort, Rad-score showed a significant difference between high

and low expression levels of Ki-67 in breast lesions (P<0.001).

The AUC values of the radiomics signature were 0.821 (95% CI:

0.764-0.880) and 0.713 (95% CI: 0.612-0.814) in the training and

validation cohorts, respectively.
FIGURE 3

In LASSO regression, a coefficient profile plot was drawn and resulted in 8 radiomic features with nonzero coefficients.
FIGURE 2

Radiomics feature selection using LASSO logistic regression in the training cohort.
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Development of the radiomics
nomogram

In the multivariate logistic regression analysis, US-reported

MTD, stiff rim sign, US-reported ALN status, and Rad-score (all

P<0.05) were found to be the independent predictive factors in

identifying high and low expression levels of Ki-67. The

radiomics nomogram was developed with the 4 efficient

features, which showed the best performance in the three

models with AUC values of 0.904 (95% CI:0.860-0.948) and

0.890 (95% CI: 0.817-0.964) in the training and validation

cohorts, respectively (Figure 4). The DeLong test showed that

there was a significant difference between the radiomics

nomogram and the clinicopathological model in the training

cohort (P=0.032), while showed no significant difference in

the validation cohort (P=0.139). There was a significant

difference between the radiomics nomogram and the

radiomics signature in the training cohort (P=0.001) and

validation cohort (P=0.000), respectively (Table 4). In the

training and validation cohorts, the sensitivity of the radiomics

nomogram reached 86.9% and 98.4%, respectively. The

specificities were 85.7% (training cohort) and 74.3%

(validation cohort), respectively.
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Validation of the nomogram

In the training and validation cohorts, the calibration curves

of the radiomics nomogram demonstrated that the bias curves

were both close to the ideal line in the figures and showed a good

consistency between predicted and actual outcomes (Figure 5).

The Hosmer-Lemeshow test also yielded a non-significant P

value of 0.62 in the training cohort and 0.41 in the validation

cohort, suggesting no deviation from the good fit. Figure 6

summarizes the clinical application of prediction models by

DCA. Compared with clinical-radiological model or radiomics

signature, the radiomics nomograms improved the prediction of

Ki-67 expression level and provided more net benefits at a wide

range of risk thresholds.
Discussion

In the present study, a radiomics signature was constructed

to predict the Ki-67 expression level using a machine learning

technique based on US images, and it was proved to be an

independent predictor. More importantly, our research

indicated that the radiomics nomogram combined with the
FIGURE 4

A radiomics nomogram was developed with stiff rim sign, US-reported MTD, US-reported LN status and Rad-score for the prediction of Ki-67
expression status in the training cohort.
TABLE 4 AUC comparison of three prediction models.

Model Training cohort Validation cohort

Z value P value Z value P value

Clinic-radiological model VS radiomics signature 2.064 0.039 2.293 0.022

Clinic-radiological model VS Radiomics nomogram -2.139 0.032 1.48 0.139

Radiomics signature VS Radiomics nomogram -3.487 0.0005 3.627 <0.001
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radiomics signature and clinicopathological variables (including

SWE) could preoperatively predict the Ki-67 expression level in

BC patients with a satisfactory performance.

Radiomics has shown a great capability in differentiating

benign and malignant tumors (20, 21, 30), discriminating

molecular subtypes (31), distinguishing between benign and

malignant non-mass enhancement lesions (32), predicting

ALN metastasis (24, 33), and responding to neoadjuvant

chemotherapy (34) based on MRI, CT or US findings. A

recent research showed that MRI- or digital breast

tomosynthesis-based radiomics can be used for prediction of

Ki-67 expression level in BC patients. Zhang et al. (35) used 11

radiomics features extracted from apparent diffusion coefficient

(ADC) maps of sequences on MRI to construct a radiomics

model to predict Ki-67 expression level, with the AUC of 0.75 in

training dataset and 0.72 in test dataset. Tagliafico et al. (36)

combined the most 5 predictive features extracted from digital

breast tomosynthesis, and achieved the best AUC of 0.698.

However, there are few studies on the prediction of Ki-67

expression level by ultrasound-based radiomics. Compared
Frontiers in Oncology 09
with earlier studies (35, 36), this study, on the one hand,

adopted a more convenient and economical ultrasound

imaging means, while also taking into account the hardness

assessment of shear wave elastography; on the other hand, the

training and validation sets achieved AUC values of 0.904 and

0.890, with better diagnostic performance.

In the present study, radiomics was conducted to analyze the

US images of breast tumors, and 8 features were extracted from

each primary lesion image. Among the radiomics features,

wavelet.HH_glszm_ZonePercentage showed the strongest

correlation with the Ki-67 expression level, followed by

original_ngtdm_Strength. These selected radiomics features,

excluding first-order_Interquartile_Range, are higher-order

features and represent the heterogeneity of the tumor and the

slight difference of the gray and textural features (37).

Regarding the Zone Percentage, a higher value indicates that

a larger portion of the ROI consists of small zones,

demonstrating that the texture is finer. The results of the

present study showed that the Zone Percentage value is

negatively correlated with the Ki-67 expression level,
A B

DC

FIGURE 5

(A, B) showed the comparison of receiver operating characteristic curves between the clinic-radiological model, radiomics signature and
radiomics nomogram in the training and validation cohorts, respectively. Calibration curves of the radiomics nomogram in the training cohort
(C) and validation cohort (D). The 45 straight line represents a perfect match between the actual (Y-axis) and nomogram-predicted probabilities
(X-axis), and the dotted lines represent the predictive performance of the nomogram.
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indicating that BC lesions with a high Ki-67 expression level

have a lower zone percentage value and a rougher textural

distribution. Idmn gray-level co-occurrence matrix (GLCM)

feature is one of the parameters of GLCM, which has been

widely used in textural analysis (20), and it could describe the

homogeneous echo pattern. According to results of the present

research, a high Ki-67 expression level correlated with Idmn

GLCM feature may accompany by inhomogeneity. In the

cellular level, the high Ki-67 expression level may lead to the

high proliferative activity of tumor cells, and the tumor area is

prone to ischemia, hypoxia, and even liquefaction or necrosis,

resulting in inhomogeneity within the tumor. A previous study

(38) revealed that entropy was closely associated with tumor

invasiveness. In the present study, “zone entropy”, measuring

the uncertainty and randomness in the distribution of zone sizes

and gray levels, was the important feature in high-order textural

features and was positively correlated with a high Ki-67

expression level.

We, in the current study, developed a new radiomics

nomogram that incorporated radiomics signature with US-

reported tumor size, stiff rim sign, and US-reported ALN

status to further improve predictive accuracy for Ki-67

expression level in BC patients. These four parameters were

obtained non-invasively and did not need puncture biopsy,

surgery or immunohistochemical analysis. Therefore, similar

to Yu et al.’s research (22) who predicted metastatic status of

ALNs, the greatest advantage of our nomogram was that Ki-67

expression level could be assessed non-invasively before surgery.

Meanwhile, compared with the clinicopathological model or

radiomics signature used alone, the diagnostic efficiency of the

proposed radiomics nomogram was improved up to 0.904
Frontiers in Oncology 10
(training cohort) and 0.895 (validation cohort) of AUC.

Moreover, in this study, although the prediction accuracy of

Rad-score was slightly lower than that of the clinicopathological

model, the radiomics nomogram combined with Rad-score was

accompanied by a higher accuracy than the clinicopathological

model or Rad-score only. This showed that radiomics could be

used as an important supplement to clinicopathological data to

identify high and low expression levels of Ki-67 in BC lesions.

Using calibration curves, the results of our research revealed that

the predictive probability had a high agreement with the actual

probability. DCA showed that US-based radiomics nomogram

provided more net benefit for a greater number of BC patients

compared with the clinicopathological model or radiomics

signature, indicating that Rad-score increases the clinical value

and reduces US-dependent risk factors for clinical

decision-making.

Several advantages of the present study should be pointed

out. First, we, for the first time, presented the use of US-based

radiomics to predict Ki-67 expression level, and verified its

effectiveness and stability. Second, in addition to the Rad-

s c o r e , t h e fina l p r ed i c t i on mode l i n co rpo r a t ed

clinicopathological features and elastic properties of breast

tissues from SWE to comprehensively evaluate the

heterogeneity of BC lesions. These data were non-invasive and

reproducible, and were not obtained by puncture biopsy, surgery

or immunohistochemical analysis. Third, we constructed a

radiomics nomogram, which showed a great potential in

predicting disease progression and prognosis (39). The

application of the proposed radiomics nomogram could assist

clinicians to select the most appropriate treatment plan based on

the predicted probability.
FIGURE 6

Decision curve analysis for each model in predicting Ki-67 expression status for BC patients.
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Our study has also several limitations. First, due to the

limitation of ultrasonic scanning probe, the radiomics features

were all extracted from two-dimensional (2D) images.

Compared with three dimensional (3D) features, 2D features

may lack some information that may fully describe the features

of the entire lesion. However, a previous study showed that 2D

features extracted from MR patterns performed better than 3D

features in lung cancer (40). Further investigations should be

conducted to explore the potential significance of radiomics of

3D ultrasound for predicting the Ki-67 expression level in BC

patients. Second, all US data were acquired from the same US

machine, and the prediction model was not validated by other

US machines. Therefore, the clinical applicability of the

proposed predictive model needs to further evaluation and

validation. Third, in this retrospective study, the establishment

and validation of the combined model for prediction of the Ki-67

expression level were carried out in a single institution with the

limited sample size, thus, a larger standardized sample size and

an external validation by multicenter studies will be essential.

In conclusion, a novel radiomics nomogram that combined

the clinicopathological characteristics and US-based radiomics

signature demonstrated promising predictive performance and

clinical applicability for predicting Ki-67 expression level in BC

patients. The US-based radiomics has the potential to be used as

a non-invasive approach to develop the treatment strategies and

to assist clinicians in making reliable clinical decisions.
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