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There is a need to standardize the process of micro/nanobubble preparation to

bring it closer to clinical translation. We explored a neural network-based model

to predict the structure-echogenicity relationship for the preparation and

fabrication of ultrasound-enhanced contrast agents. Seven formulations were

screened, and 109 measurements were obtained. An artificial neural network-

multilayer perceptron (ANN-MLP) model was used. The original data were

divided into the training and testing groups, which included 73 and 36 groups

of data, respectively. The hidden layer was selected from three hidden layers and

included bias. The classification graph showed that the predicted values of the

training and testing groups were 76.7% and 66.7%, respectively. According to the

receiver operating characteristic curve, the accuracy of different imaging effects

could achieve a prediction rate of 88.1–96.5%. The percentage graph showed

that the data were gradually converging. The predictive analysis curves of

different ultrasound effects gradually approached stable value of Gain.

Normalized importance predicted contributions for the Pk1, poly-dispersity

index (PDI), and intensity account were 100%, 98.5%, and 89.7%, respectively.

The application of the ANN-MLP model is feasible and effective for the

exploration of the synthesis process of ultrasound contrast agents. 1,2-

Distearoyl-sn-glycero-3 phosphoethanolamine-N (methoxy[polyethylene

glycol]-2000) (DSPE PEG-2000) correlated highly with the success rate of

contrast agent synthesis.

KEYWORDS

ultrasound molecular imaging, contrast-enhanced ultrasound, ultrasound contrast
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1 Introduction

Ultrasonography is a universally available, cost-effective, non-

invasive, non-ionizing, real-time, and safe diagnostic modality

used in pre-clinical and clinical medicine for diagnosis, molecular

imaging, and therapeutics (1, 2). Ultrasound molecular imaging

(UMI) is a powerful technique for the study of disease

progression, diagnostic imaging, and monitoring therapeutic

responses (3, 4). The application potential of UMI has been

proven in a large number of pre-clinical studies and in a vast

array of disease models (5–7).

With the development of molecular imaging, UMI based on

a micro/nanobubble contrast agent is advancing rapidly.

Ultrasound contrast agents (UCAs) used in UMI aim to

improve tissue resolution, allowing for more scientific

diagnosis in diverse imaging studies and clinical applications

(8, 9). To improve molecular imaging results, researchers have

explored the preparation of different types of targeted ultrasound

contrast micro/nanobubbles (10–12). These studies have

suggested that to form uniform micro/nanobubbles, diverse

lipids and surfactants need to be introduced, and various

experimental methods need to be applied (13, 14).

However, the preparation of micro/nanobubbles and the

method of targeting ligand attachments are complex,

cumbersome, and without uniform standards (15).

Furthermore, some techniques used for manufacturing micro/

nanobubbles may reduce the yield and stability of the resultant

bubbles, resulting in poor imaging enhancement (16). Therefore,

there is a need to standardize the process of micro/nanobubble

preparation to bring it closer to clinical translation (17).

In this study, to standardize the preparation of microbubble

contrast agents, we attempted to build a neural network model to

predict the imaging effects of UCAs with different formulations

and parameters. This model will be used to guide the production

of contrast agents, optimize drug formulations, and select

meaningful parameters in the production of UCAs. This

model could provide guidance for the future design and

application of UCAs.
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2 Materials and methods

2.1 Chemicals and reagents

Lecithin, cholesterol, phosphatidylethanolamine, 1,2-distearoyl-

sn-glycero-3-phospho, 1,2-distearoyl-sn-glycero-3-phosphocholine,

and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(methoxy

[polyethylene glycol]-2000)(DSPE PEG-2000) were purchased from

AVT Pharmaceutical Tech Co., Ltd. (Shanghai, China). Chloroform

was obtained fromDuksan Pure Chemicals Co., Ltd. (Beijing, China).

Methanol was obtained from Thermo Fisher Scientific Co., Ltd.

(Shanghai, China). Poly(ethylene glycol)4000 and phosphate-

buffered saline (pH 7.4) were purchased from Solarbio Science &

Technology Co., Ltd. (Beijing, China). All reagents used in our study

wereofanalyticalgradeandwereusedwithout furtherpurification.1,2-

propanediolwaspurchasedfromtheTaixingReagentFactory(Tianjin,

China). RPMI 1640 and Dulbecco’s Modified Eagle Medium, were

purchased from Thermo Fisher Scientific Co., Ltd.

2.2 Preparation of contrast agents

In this study, seven different formulations were screened 98 times

and 38 times to obtain the lipid suspension (Table 1). Measurements

were conducted using a Zetasizer Nano ZS 90 analyzer (Malvern

Panalytical Ltd., Malvern, UK) by dynamic light scattering, and a total

of 109 measurements were obtained. Size distributions of UCAs and

their imaging effects after differentproduction conditionswere recorded.

The following two fabrication methods were used in our

experiment: the film hydration method and the stirring

dissolution method. Detailed steps of the two methods are

described in the Supplementary Material.

All processes were performed in a clean environment and all

products were stored at 4°C before use.

2.3 Characteristics of lipid bubbles

The morphology of lipid particles was examined using an

Inverted Biological Microscope AE2000 (MOTIC, CHINA). Pk1,
TABLE 1 Seven different formulations for ultrasound contrast agent production.

Formulation PE CHOL DSPE-PEG-2000 DSPC DSPG PEG-4000 Solvent

1 + + + – – – 1

2 – – + + + – 1

3 – – – + + + 1

4 – – + + – – 2

5 + + + + – – 3

6 – – + – + – 2

7 – – – + – + 2
front
+, The formulation adds this lipid; -, the formulation does not add this lipid; 1,pure water; 2, phosphate-buffered saline and glycerol; 3, phosphate-bufferedsaline; PE, phosphatidyl
ethanolamine; CHOL, cholesterol; DSPE-PEG-2000,1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-(methoxy[polyethyleneglycol]-2000); DSPC, 1,2-distearoyl-sn-glycero-3-
phosphocholine; DSPG, 1,2-distearoylsn-glycero-3-phospho; PEG-4000, poly(ethylene glycol)4000.
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Pk2, Pk3, intensity, Z-Average, poly-dispersity index (PDI), and

Pk1, Pk2, and Pk3 area were measured using the Zetasizer Nano

described in Section 2.2 (18). Pk1, Pk2, and Pk3 refer to the average

lipid particle size of the main, second, and third peaks. Intensity

refers to the average intensity of light scattered by lipid particles.

The PDI is a polymer dispersibility index used to describe lipid

particle size distribution. Z-Average refers to the average particle

size of lipid particles. The Pk1, Pk2, and Pk3 area refers to the area

occupied by Pk1, Pk2, and Pk3 peaks, respectively.
2.4 Cell culture

The murine mammary cancer cell line (4T1 cells) used in this

studywasobtained fromtheCellBankof theTypeCultureCollection

of the Chinese Academy of Sciences (Shanghai, China) and was

cultivated in RPMI 1640 medium, 10% fetal bovine serum, 100 IU/

mL of penicillin, and 100 mg/mL of streptomycin. The cells were

cultured in a 37°C humidified incubator with a 5% carbon dioxide

atmosphere. Subculture was performed when cells reached 80–90%

confluence. 4T1 cells were grown until logarithmic growth was

obtained, and diluted with a medium to create the cell suspension.
2.5 Mice tumor model and intervention

2.5.1 Ethics statement
All animal procedures were approved by the Research Ethics

Committee of The Second Hospital of Hebei Medical University

(2021-AE042).

2.5.2 Animal model
BALB/c mice (female, 4–6 weeks old) were purchased from

BeijingHuafukangBiotechnologyCompany (Beijing,China).A total

of 1×106 tumor cells in 30µLwere implanted into the fourmammary

fat padsonday0 to establish abreast cancer orthotopic tumormodel.

Cells were maintained on wet ice during implantation.

The tumor volume (mm3) was estimated three times weekly

using a digital caliper. Themajor (Dmax) andminor (Dmin) diameters

of each tumor were recorded (mm), and the volume was calculated

using the following formula: VT= 0.5×Dmax×Dmin
2 (19).

When the maximum diameter of the tumor was 8-10 mm or

the tumor volume was ≥200 mm3 (about 8-10 days after the

tumor was implanted), the group was evaluated for the effect of

the contrast agent. Mice were anesthetized by intraperitoneal

injection of 0.1 mL/10 g body weight of 5% chloral hydrate.

Then, the mice were fixed on the operating table in a supine

position, and a tail vein channel was established for injection.
2.6 Ultrasonography

B-mode, D-mode, and contrast-enhanced ultrasound

(CEUS) were performed using an X4-12L linear scanner in the
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frequency range of 4.0–12.0 MHz (VINNO G86, VINNO

Technology Co., Ltd., Suzhou, China). First, B-mode imaging

of the region of interest (ROI) was performed. The ROI covering

the entire liver or tumor was delineated along the border in the

B-mode images. Second, D-mode imaging was performed to

observe the distribution of blood flow in the ROI. Finally, a

CEUS clip was analyzed using internal quantification software

CBI (VINNO Technology Co., Ltd.) to determine the peak

intensity and area under the curve (AUC). During the above

studies, the depth, gain, and other settings did not change (20).
2.7 Statistical analysis

Data from the experiments are presented as mean ± standard

deviation.Anartificial neural network-multilayer perceptron (ANN-

MLP)model and receiver operating characteristic (ROC) curvewere

used. All statistical analyses were done using SPSS 23.0 (IBM Corp.,

Armonk,NY,USA) andGraphPadPrism8.0.1 (GraphPadSoftware,

Inc., San Diego, CA, USA) was used to visualize the data. A p-value

<0.05 was considered to be statistically significant, and a p-value

<0.01 was considered to be highly significant.
3 Results

3.1 Formulation screening

In total, seven formulations were screened. The experimental

flow chart is shown in Figure 1. We concluded that formulation 4

was the optimal choice. DSPC and DSPE-PEG-2000 were mixed

together in a quality ratio of 5:2 and then dissolved in chloroform

and methanol (2:1, vol/vol). The solvent was a mixture of glycerol

and PBS (1:9, vol/vol). Size distribution of well-imaged UCAs

showed in Figure 2. Microscopic images of the contrast of poorly

imaged and well-imaged UCAs showed in Figure 3.
3.2 Data visualization with
GraphPad Prism

GraphPad Prism was used to visualize data of the parameters,

and values of a good contrast effect were obtained: Pk1, 252.0 ±

175.2 nm; Pk2, 1861.0 ± 1598.0 nm; Pk3, 543.1 ± 1540.0 nm; Pk1

area, 72.5 ± 23.0%; Pk2 area, 18.7 ± 14.0%; Pk3 area, 5.6 ± 6.9%;

PDI, 0.53 ± 0.19; intensity, 507.6 ± 118.9 nm; and Z-Ave, 148.5 ±

11.5 nm (Figure 4).
3.3 The ANN-MLP model

Analysis of the ANN-MLP model was performed. The

original data were divided into training and testing groups,
frontiersin.org
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which included 73 and 36 groups of data, respectively. The

hidden layer was selected from three hidden layers and

included bias. The ANN-MLP neural network model is

shown in Figure 5. The classification graph showed that the

predicted values of the training and testing groups were 76.7%

and 66.7%, respectively (Table 2). The prediction accuracy of

the ROC curve showed that indicators included in different

imaging effects could achieve a prediction rate of 88.1–96.5%

(Figure 6A). The percentage graph showed that the data were

gradually converging (Figure 6B). The predictive analysis

curves of different ultrasound effects gradually approached

stable value of Gain (Figure 6C). Predicted importance

contributions of each index were as follows: Pk1 (the

reference standard), 100%; PDI, 98.5%; intensity, 89.7%;

DSPE-PEG-2000, 88.9%; and Pk1 area, 85.8% (Figure 6D and

Table 3). We applied the ANN-MLP model to predict the effect

of contrast production (Figures 7A–D).
4 Discussion

The neural network model has been applied to various

imaging examinations including magnetic resonance imaging

(MRI), computed tomography (CT) and ultrasound to improve

the diagnostic level of images, including disease diagnosis,
Frontiers in Oncology 04
benign and malignant differentiation (21–23). Neural network

models have also been used in the design and optimization of

formulation Screening. Cardoso-Daodu IM’s study used an

artificial neural network for the optimization of the

formulation of liposomes (24). Streba CT’s study applied

neural network diagnosis for the screening of contrast-

enhanced ultrasonography parameters in the diagnosis of liver

tumors (25), allowing for the reduction of experimental efforts

significantly toward prescription screening. However, this study

sought to address that, currently, there is no application reported

for microbubble production.

This study was conducted to address the current

inconsistency in contrast agent production standards, mainly

in the area of lipid microbubble production. The main purpose

was to provide key factors that can be referred to for future lipid

contrast agent production. In our study, we made a variety of

attempts to explore various methods and appropriate processes,

successfully prepare contrast agents, and determine the key

parameters and ideal particle size that affect the preparation

of contrast agents. Then, we designed an ANN-MLP model of

particle structure and synthetic materials for the preparation of

UCAs. It was expected that this model would serve as a guide to

the stable, controllable, and uniformly sized distribution of

UCAs that would provide enhanced contrast for the

backscattering signal in ultrasonography.
FIGURE 2

Size distribution of well-imaged UCAs measured by dynamic light scattering.
FIGURE 1

Schematic diagram showing the process of ultrasound contrast agent synthesis and neural network model building.
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Our final model showed that the Pk1, PDI, and intensity

are the most important parameters affecting the imaging effect

of contrast agents. Our model showed that the weight of

particle size on the imaging effect was the largest; Pk1 and

intensity were the first and third most important factors
Frontiers in Oncology 05
contributing to the effectiveness. There are many previous

studies on the correlation of particle size with the imaging

effect of contrast agents. Park et al.’s study showed that particle

size has an effect on the contrast effect and that the measured

size of the synthetic UCAs between 0.05 and 1 mm is better
FIGURE 4

Visualization of particle size data incorporated into the initial conditions of the neural network model.
FIGURE 3

Microscopic images of the contrast of poorly imaged and well-imaged UCAs. (A, C) show poor imaging contrast agents, with the lipid
suspension in the container appearing cloudy to the naked eye. (A) shows that the lipid particles are aggregated under the microscope, and (C)
shows that the bubbles of the contrast agent are different in size and distributed unevenly after encapsulation. (B, D) show good imaging
contrast agents, and the lipid suspension in the container is clear and transparent to the naked eye. (B) shows that the lipid particles are evenly
distributed under the microscope, and (D) shows that the bubble size distribution of the contrast agent is uniform after encapsulation.
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(26). In our model, Pk1 and intensity were correlated, and the

contrast effect was better when Pk1 and intensity were 252.0 ±

175.2 and 507.6 ± 118.9 nm, respectively. The results showed

that Pk1 and intensity, which are both nano-level, led to a

satisfactory result that may improve the diagnostics value by

providing a better contrast effect. First, the main reason for this

finding may be that nanoparticles cannot be destroyed by the

reticuloendothelial system while maintaining the ability to

penetrate the vascular system and accumulate in the tumor

tissue via passive targeting. Second, nanoparticles can improve
Frontiers in Oncology 06
poor lymphatic drainage through pores in tumors with

diameters ranging from 200 nm to 1.2 µm, which is the

structural basis for enhanced permeability and retention

effects and enhanced visualization (27).

Moreover, in this model, the PDI was the second most

important factor affecting the contrast agent enhancement

effect. Previous PDI-related studies, mostly for targeted

applications of nanoparticles and microbubbles, described

exper iment s wi th a lmos t monod i sper se par t i c l e s

(polydispersity index <0.2) (28–30). In our model, the
FIGURE 5

Construction of the neural network used for modeling.
TABLE 2 Classification table of the artificial neural network-multilayer perceptron model.

Predicted percent correct

Sample contrast effect No imaging Poor imaging Medium imaging Good imaging Percent

No imaging 14 5 0 0 73.70%

Poor imaging 0 8 4 0 66.70%

Medium imaging 2 2 26 3 78.80%

Training groups

Good imaging 0 0 1 8 88.90%

Overall percent 21.90% 20.50% 42.50% 15.10% 76.70%

No imaging 5 5 0 0 50.00%

Poor imaging 0 4 2 0 66.70%

Medium imaging 1 1 9 0 81.80%

Testing groups

Good imaging 0 0 3 6 66.70%

Overall percent 16.70% 27.80% 38.90% 16.70% 66.70%
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enhancement effect was best when the PDI was 0.53 ± 0.19. We

can speculate that the contrast-enhancement effect and the

drug-carrying effect may be opposite. The particles with the

best enhancement effect does not necessarily have the best

drug-carrying effect, and conversely, the particles with the best

drug-carrying effect have a poor enhancement effect. Thus, we

can try to make microbubbles for corresponding purposes by

adjusting the value of the PDI, for the better application of

contrast agents in clinical settings.

Our model also showed that DSPE-PEG-2000 was highly

correlated with the success rate of contrast agent preparation.

This result is similar to that of Chen and Borden’s study; the

main reason for the impact of DSPE-PEG-2000 on the imaging
Frontiers in Oncology 07
effect might be that it is coupled with a lipid membrane to ensure

the long-term stability of the bubbles and thus decreases

interactions with leukocytes or endothelial cells by limiting

deposition of protein on the microbubble surface (16, 31, 32).

However, the neural network model we built still has a jitter,

and the results of each analysis may be different. This may be

because we did not conduct a sufficiently large number of

experiments, and the model establishment is not stable, which

is also a limitation of this experiment (33). In future research, we

should increase the number of experiments to achieve the best

and most stable model. When the number of experiments is

large enough, the model tends to be stable. However, according

to our results, the AUC was >80%, which shows that the
A

B D

C

FIGURE 6

The conclusions of Neural network model prediction and calculation. (A) ROC curve of the neural network model; (B, C) Percentage graph of
the neural network model. (B) shows that the data are gradually converging. (C) shows that the curves of different ultrasound effects gradually
approach stable value of Gain; (D) Importance contribution of each index predicted by the neural network model.
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Preparation-based imaging of the liver (A) and tumor (C) of mice with poor
181.2 nm). Preparation-based imaging of the liver (B) and tumor (D) of mice
intensity: 496.2 nm).
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establishment of our model is reasonable and meaningful. In

addition, the neural network model contains hidden layers, and

scientists’ specific understanding of the hidden layer is still

limited. All of these limitations require us to increase the

sample size and conduct further research in the future.

In future experiments, we will repeatedly train the neural

network model. We must keep exploring to determine the

various factors that may influence the effect of bubbles and

subsequently produce bubbles with a better contrast effect.

5 Conclusions

We performed a pre-clinical study of contrast preparation

and applied an ANN- MLP model to analyze the results and

identify key factors affecting the imaging effect of contrast

agents. We applied the ANN-MLP model combined with

GraphPad Prism to predict the contrast effects of different

contrast agents in mice and verified that our model’s

predictions were successful. These key parameters can be used

to improve the success rate of contrast preparation in the future.
TABLE 3 Normalized importance contribution of each index.

Parameter Importance Normalized importance

PC 0.070 64.7%

PE 0.026 23.9%

CHOL 0.037 34.4%

DSPE-PEG-2000 0.096 88.9%

DSPC 0.061 56.6%

DSPG 0.083 76.9%

PEG-4000 0.088 82.0%

ZAved 0.079 73.1%

PDI 0.106 98.5%

Pk1 0.108 100.0%

Pk2 0.019 18.0%

Pk3 0.040 37.3%

Pk1 area 0.092 85.8%

Intensity 0.096 89.7%
PC, lecithin; PE, phosphatidyl ethanolamine; CHOL, cholesterol; DSPE-PEG-2000, 1,2-
distearoyl-sn-glycero-3-phosphoethanolamine-N-(methoxy[polyethylene glycol]-2000);
DSPC, 1,2-distearoyl-sn-glycero-3-phosphocholine; DSPG, 1,2-distearoylsn-glycero-3-
phospho; PEG-4000,poly(ethylene glycol)4000; PDI, poly-dispersity index.
ly imaged contrast agents (Pk1: 185.1 nm, PDI: 0.22, and intensity:
with better imaged contrast agents (PK1: 200.4 nm, PDI: 0.41, and
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