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Chengdu, China, 4State Key Laboratory of Oral Diseases, West China Hospital of Stomatology,
Sichuan University, Chengdu, China
Purpose: To investigate the values of a 3D-printed bolus ensuring the precise

postmastectomy chest wall radiation therapy for breast cancer.

Methods and materials: In the preclinical study on the anthropomorphic

phantom, the 3D-printed bolus was used for dosimetry and fitness

evaluation. The dosimetric parameters of planning target volume (PTV) were

assessed, including Dmin, Dmax, Dmean, D95%, homogeneity index (HI),

conformity index (CI), and organs at risk (OARs). The absolute percentage

differences (|%diff|) between the theory and fact skin dose were also estimated,

and the follow-up was conducted for potential skin side effects.

Results: In preclinical studies, a 3D-printed bolus can better ensure the

radiation coverage of PTV (HI 0.05, CI 99.91%), the dose accuracy (|%diff|

0.99%), and skin fitness (mean air gap 1.01 mm). Of the 27 eligible patients, we

evaluated the radiation dose parameter (median(min–max): Dmin 4967(4789–

5099) cGy, Dmax 5447(5369–5589) cGy, Dmean 5236(5171–5323) cGy, D95%

5053(4936–5156) cGy, HI 0.07 (0.06–0.17), and CI 99.94% (97.41%–100%)) and

assessed the dose of OARs (ipsilateral lung: Dmean 1341(1208–1385) cGy, V5

48.06%(39.75%–48.97%), V20 24.55%(21.58%–26.93%), V30 18.40%(15.96%–

19.16%); heart: Dmean 339(138–640) cGy, V30 1.10%(0%–6.14%), V40 0.38%

(0%–4.39%); spinal cord PRV: Dmax 639(389–898) cGy). The skin doses in

vivo were Dtheory 208.85(203.16–212.53) cGy, Dfact 209.53(204.14–214.42)

cGy, and |%diff| 1.77% (0.89–2.94%). Of the 360 patients enrolled in the skin

side effect follow-up study (including the above 27 patients), grade 1 was the

most common toxicity (321, 89.2%), some of which progressing to grade 2 or

grade 3 (32, 8.9% or 7, 1.9%); the radiotherapy interruption rate was 1.1%.
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Conclusion: A 3D-printed bolus can guarantee the precise radiation dose on

skin surface, good fitness to skin, and controllable acute skin toxicity, which

possesses a great clinical application value in postmastectomy chest call

radiation therapy for breast cancer.
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Introduction

Breast cancer is the most common carcinoma that accounts

for 30% of female cancers according to the latest statistics

conducted by the International Agency for Research on

Cancer, with approximately 2.3 million new cases in 2020 (1,

2). Comprehensive treatments including surgery, chemotherapy,

radiotherapy, endocrine therapy, and biotherapy are the main

therapeutic modalities for breast cancer. Previous studies have

shown the mastectomy rates remaining between 30% and 40%

(3). Post-mastectomy radiotherapy (PMRT) is associated with a

better local control and overall survival benefit in patients with

unfavorable pathologic features (4–8).

During the process of radiotherapy, the maximum radiation

dose of high-energy X-ray beams can be reached only after they

enter the human tissue with a certain depth, which is named built-

up effect or skin sparing effect (9–12). Thus, a tissue-equivalent

bolus needs to be placed on the skin’s surface, aiming to reduce the

risk of local recurrence and improve the long-term survival rate in

PMRT, such as wet gauze, paraffin wax, thermoplastic board, and so

on (13). Although the use of a bolus was controversial due to skin

toxicity, a worldwide e-mail survey showed that 82% of Americans

and 65% of Australasians were likely to always use a bolus when

delivering PMRT. Europeans were significantly more likely to use a

bolus for specific indications (p < 0.0001) (14–21). Meanwhile, the

bolus thickness and frequency of use also vary considerably between

centers and are closely related to the incidence and severity of

radiation dermatitis. Vu et al. found that 35% of respondents used a

<10mmbolus, most of which (89%) used a thickness of 5mm (with

responses varying from 3 to 8 mm), and the occurrence rate of

severe skin reactions was 5%–30% (22). Spierer et al. found that

63.6% developed grade 3–4 skin toxicity in a follow-up study of 118

patients with the daily use of a bolus (the radiotherapy interruption

rate was 28%) (23). Pignol et al. recorded acute skin toxicities of 257

patients who received PMRT; the rate of grade 3 toxicity was as high

as 47% for the daily use of a 5–10 mm bolus versus only 26% for

once every other day use (p < 0.001) (16). Another study showed

that there was no observed adverse effect by adding a 5 mm bolus

on alternate days in the median follow-up of 3.7 years (range 1–6.6

years) (24). In addition to the effect of cumulative dose on the skin
02
surface, smoking history (p = 0.03), radiation energy (p = 0.04),

human race (p = 0.031), BMI (p = 0.043), and postmenopausal

status (p = 0.004) were all correlated (14, 16, 25). Thus, the National

Comprehensive Cancer Network Guidelines (NCCN, version

4.2022) and the European Society for Radiotherapy & Oncology

(ESTRO) recommend that special consideration should be given to

the daily use of a 3–5 mm bolus in the setting of PMRT to select

cases, especially for inflammatory breast cancer, skin involvement

(T4b-d), and positive anterior margin (20, 24, 25).

However, due to the irregular chest wall shape and surgical

scar, it is difficult to make the commercial bolus conform

perfectively with the skin; in addition, it is also easy to be

deformed during radiotherapy, which usually causes air gaps

between the bolus and skin (26–29). Some studies have shown

that these gaps can lead to inadequate or inhomogeneous

radiation doses to the skin, which may further reduce the

effect of PMRT (30–34). The emerging three-dimensional (3D)

printing technology offers alternative fabrication ways for an

ideal patient-specific bolus, which can further optimize the

effectiveness of radiotherapy (35–40). Previous studies have

revealed that the patient-specific bolus reduces unnecessary

irradiation to the healthy normal tissues and improves the

conformity of radiation distribution for patients with irregular

surface contours and varying target depths (35, 41–46). Even

though a 3D-printed bolus has been gradually applied in

superficial tumor radiotherapy, the clinical application of

PMRT still remains spare (26, 28). This study used the

patient-specific 3D-printed bolus for PMRT and evaluated the

dosimetric characteristics, skin fitness, and skin adverse effects of

the 3D-printed bolus, hoping to achieve improved results by

ensuring a more precise radiotherapy for breast cancer patients.
Material and methods

3D-printed bolus design and fabrication

The desired bolus area for radiotherapy was marked on the

anthropomorphic phantom or patient. The chest contour was

created based on the computed tomography (CT) scan, which is
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then expanded by the desired thickness of the bolus and

subtracted from the expansion. CT images in the general

digital imaging and communications in medicine (DICOM)

format were exported as a stereolithography (STL) file, which

was loaded into a 3D-modeling software (Mimics 10.01) to

create a patient-specific bolus (Supplementary Table 1 and

Figure 1). It should be noted that in order to reduce the

positioning error, we developed the positioning fixator

connecting the vacuum bag and the bolus; the manufacturing

process of the 3D-printed bolus (thickness: 5 mm) is shown in

Supplementary Figure 2.

In order to ensure that the 3D-printed bolus highly fits with

the skin to further assure the radiotherapy quality, the following

aspects were noted: first, a connecting fixing device was designed

between the axillary side of the bolus and the vacuum bag to

prevent the bolus from shifting; second, cone beam computed

tomography (CBCT) was daily used to verify the reproducibility

of bolus placement; third, the 3D-printed bolus was remade

if necessary.
Participant population

We selected patients according to the following criteria:

women aged 18–70 years who underwent radical mastectomy

and primary chest wall radiotherapy, patients with PT3-4 or PN2-3

stage, one to three axillary lymph nodes positive at the PT1-2

stage with high-risk factors (age ≤40 years, estrogen receptor and

progesterone receptor negative (ER-/PR-), human epidermal

growth factor receptor 2 overexpression (HER2+++),

histologic grade III (G3), lymphovascular invasion (LVI), etc.).

Patients receiving radiotherapy with a commercially available

bolus or without a bolus, with recurrent or metastatic disease, or

previously treated, were excluded.
Dosimetric evaluation

A radiotherapist delineated the clinical target volume (CTV):

the upper border was the clinically visible/palpable one and not

exceeding the sternoclavicular joint (~2nd rib), the lower border

was the inferior margin of the contralateral breast on CT, the

anterior border extended to the skin, the posterior border

included the pectoralis muscles and ribs, and the medial and

lateral borders were sternum and mid-axillary line (excluding

latissimus dorsi) and the organs at risk (OARs) in the RayStation

treatment planning system (TPS) (version4.7.5; RaySearch

Laboratories AB, Stockholm, Sweden) (47, 48). The intensity

modulated radiation therapy (IMRT) within six-field

irradiations was used in PMRT. The inner and outer

tangential field was used in the chest wall, and the angle of

increasing field was within ±15° based on the spatial relationship

between the target area and the organs at risk. Pairs of
Frontiers in Oncology 03
penetrating field were added in the locking segment based on

the radiating field of the chest wall. The angles of the radiating

field of the left and right breasts were 340° and 160°, respectively,

and 20° and 200°, respectively. Number of segments: 48. The

maximum field area is 4 mm2, and the maximum field hop

number is 4 MU. All treatment plans are designed in the

RayStation TPS (Figure 1), with a 6 MV photon beam and a

collapsed cone algorithm. The dose grid size is 0.3 * 0.3 * 0.3 cm.

The prescribed doses were PCTVsc (the supra- and infra-

clavicular regions) and PCTVcw (the ipsilateral chest wall) 50

Gy/25 f, and doses were normalized to at least 95% target volume

meeting the prescribed dose requirements (49–51). The

dosimetric parameters of the planning target volume (PTV:

defined as the CTVs with a 5 mm margin) were evaluated as

follows: Dmin, Dmax, Dmean, D95%, homogeneity index (HI =

(D2%-D98%)/D50%), conformity index (CI), absolute percentage

differences (|%diff|=|100x (Dfact- Dtheory)/Dtheory|) for single

fraction; OARs: ipsilateral lung (Dmean, V5, V20, V30), heart

(Dmean, V30, V40), and spinal cord PRV(Dmax) (31, 49, 52).
In vivo skin dose measurement

GafChromic EBT3 (International Specialty Products, Wayne,

NJ, USA) had been proven to be suitable for absorbed dose

measurement in radiotherapy (53), which was used in our study

due to its thin structures, easily cutting to small size and near-tissue

equivalence. To accurately position the EBT3 films, beam’s eye view

(BEV) at a gantry angle of 0 degree with PTV and body contours on

show was printed on a paper with a scale of 1:1 to a real patient. The

PTV contour was divided into eight sub-regions by four rows and

two columns, with rows toward left–right and columns toward

cranial–caudal directions. Eight 3 × 2 cm2 rectangles were drawn

and marked with numbers 1, 2,…, 8 in the center of each sub-

region, respectively (Supplementary Figure 3). EBT3 film pieces

with a fixed size of 3 × 2 cm2 were cut from the same batch. For

each patient, eight film pieces coded with numbers 1, 2,…, 8 were

taped on the chest wall at the positions corresponding to the eight

rectangles and covered by the 3D-printed bolus. For the sub-region

where the patient’s surface was very unsmooth, particularly in the

region near the axilla, the 3 × 2 cm2
film piece was replaced by a

smaller one with a size of 2 × 1.5 cm2.

Every patient’s irradiated films with two reference films

together were scanned by an Epson 11000XL scanner 24 h

after irradiation. The two reference films—one was unexposed

and the other was exposed to a known dose immediately after in

vivomeasurement—were used to rescale the calibration function

to fit the responses of that specific scan. Software FilmQA Pro

2016 was used to analyze the measurement results. The film

absorbed dose was achieved by averaging the reading of a region

of interest (ROI) with 1 × 1 cm2 at the center of each film piece.

The calculated surface doses were obtained in TPS. For every

patient, eight ROIs in the center of each sub-region with a size of
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1 × 0.1 cm between the 3D-printed bolus and the patient skin

across three-slice CT images were contoured (an example of the

ROI contour is shown in Figure 2). The average dose of each ROI

was recorded and compared with the measurement dose.
Skin toxicity

All patients referred for PMRT were visited weekly during

and after 2–4 weeks of radiotherapy to assess and record skin

toxicities. To ensure consistency and accuracy in the

classification of acute skin side effect, the follow-up

photographs of the skin (Supplementary Figure 4) were

evaluated by two or three radiotherapists to determine the

grading (according to the Radiation Therapy Oncology Group

(RTOG)) (54). For cases with uncertain grading results, a

dermatological consultation with the patient might be

requested. The occurring time of skin side effect including dry
Frontiers in Oncology 04
or moist desquamation and the degree of erythema were

evaluated. Based on the RTOG classification, the main

difference between grades 2 and 3 was the presence of moist

desquamation and tenderness, while grade 4 was defined as

necrosis, ulceration, or bleeding.

During radiotherapy, skin care includes the following:

keeping the irradiated chest wall dry, avoiding skin scratching,

medical ray protection sprays, and corticosteroids or topical

dressings used for excessive inflammation; antibiotics were used

when necessary.
Result

Preclinical evaluation

The theoretical radiation dose of the chest wall reached the

targeted values (mean value): Dmin 4932 cGy, Dmax 5259 cGy,
A B

FIGURE 1

Example of dose distribution of 3D-printed bolus in treatment planning system (TPS). (A) Delineation of radiotherapy target area. (B) The dose–
volume histogram (DVH) curve.
A B

FIGURE 2

In-vivo skin doses measurement in RayStation TPS. (A) Coronal scan with bolus covering small film. (B) Cross-sectional scan with bolus covering
small film.
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Dmean 5131 cGy, D95% 5021 cGy, HI 0.05, CI 99.91%.

Meanwhile, there was a strict limit on the OARs in TPS: the

Dmean values of the ipsilateral lung and heart were 1017 and 438

cGy, respectively, the Dmax value of the spinal cord PRV was 88

cGy (Table 1). The mean Dfact and Dtheory of the skin surface

were 204.59 and 204.73 cGy, respectively, and the mean |%diff|

was 0.99%. In addition, we also observed that the 3D-printed

bolus was highly attached to the skin, and the mean air gap at the

dosimetry point on the skin surface was only 1.01 mm

(Supplementary Table 2).
Clinical evaluation

Patient population
Finally, we totally involved 360 patients in this study from

October 2019 to July 2021 (Table 2), in which 27 patients were

selected to study dosimetric parameters; the median age was 49

(24–70) years old. The lesions were mostly in the left breast (199

of 360, 55.3%). There were 24.7% (89 of 360) or 50.3% (181 of

360) of the patients with advanced pathologic stages T3-4 or N2-3.

In addition, 39.4% (142 of 360) of the patients with early pT1-2N1

had at least one (85 of 142, 59.9%) and up to four (1 of 142,

0.7%) risk factors, including age ≤40 years (20 patients), ER-/PR-

(42 patients), HER2+++ (59 patients), G3 (70 patients), and LVI

(22 patients), in which 42 patients had two risk factors and 14

patients had three risk factors. In the tumor-node-metastasis

(TNM)-based staging (8th Edition of the American Joint

Committee on Cancer (AJCC) publications), patients with

stage III disease accounted for the majority (217 of 360,

60.3%), in which 27.5% (99 of 360), 8.9% (32 of 360), and

23.9% (86 of 360) of the patients had stage A, B, and C,

respectively. The next largest number of patients belonging to

IIB was 29.6% (107 of 360). Postoperative breast reconstruction

was rare, only 11.4% (41 of 360) of the patients; the rest of the
Frontiers in Oncology 05
patients did not undergo breast reconstruction (319 of

360, 88.6%).
Dosimetric parameters evaluation in 27
patients

The dose coverage in the target area met the prescription

dose requirements in TPS: median dose(range): Dmin 4967

(4789–5099) cGy, Dmax 5447(5369–5589) cGy, and Dmean 5236

(5171–5323) cGy; D95% of the target volume ranged from 4936

to 5156 cGy. The CI and HI were 99.94% (97.41%–100%) and

0.07(0.06–0.17), respectively (Supplementary Table 3). The

actual radiation dose on the skin surface was very close to the

theory value; the median theoretical and actual radiation doses

were 208.85(203.16–212.53) cGy and 209.53(204.14–214.42)

cGy, respectively, and the |%diff| ranged between 0.89% and

2.94%, with median 1.77% (Table 3). In addition, the dose of

OARs is illustrated in Supplementary Table 4. The median Dmean

of the ipsilateral lung was 1341(1208–1385) cGy; the V5%, V20%

and V30% of the target volume were 48.06% (39.75%–48.97%),

24.55% (21.58%–26.93%), and 18.40% (15.96%–19.16%),

respectively. The Dmean of the heart was 339 (138–640) cGy,

with V30 1.10% (0%–6.14%) and V40 0.38% (0%–4.39%). The

median Dmax of the spinal cord PRV was 639(389–898) cGy.
Skin toxicity

All the 360 patients were followed up for skin toxicity study

during the radiotherapy (Table 4). The most common skin

toxicity was grade 1 (321 of 360, 89.2%), presenting as faint

erythema (229 of 321,71.4%) or dry desquamation (54 of 321,

16.8%) or both (38 of 321, 11.8%). With the accumulation of

radiation dose (especially during 21–25 fractions), the number of
TABLE 1 Dosimetry evaluation of anthropomorphic phantom with 3D-printed bolus .

PTV Mean value OARs Mean value

*Dmin, cGy 4932 Ipsilateral lung Dmean, cGy 1017

Dmax, cGy 5259 V5 38.80%

Dmean, cGy 5131 V20 19.56%

D95%, cGy 5021 V30 12.54%

D2%, cGy 5251 Heart Dmean, cGy 438

D98%, cGy 4977 V30 1.42%

D50%, cGy 5134 V40 0.30%

HI 0.05 Spinal Cord Dmax, cGy 81

CI 99.91% Spinal Cord PRV Dmax, cGy 88
f

3D, three-dimensional; PTV, planning target volume; HI, homogeneity index ((D2%-D98%)/D50%); CI, conformity index; PRV, planning organs at risk volume.
*Dmin, minimum dose of the target volume; Dmax, maximum dose of the target volume; Dmean, mean dose of the target volume; D95%, the dose that covers 95% of the target volume.
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patients with the above symptoms was also gradually increasing

(84 of 229, 36.7%; 24 of 54, 44.5%; 21 of 38, 55.3%). With a small

number of patients progressing to grade 2 (32 of 360, 8.9%), all

patients presented moderate erythema (MER), in which 56.2%

or 28.2% of the patients had accompanied patchy moist

desquamation (PMD) (18 of 32) or moderate edema (MED) (9

of 32) that occurred after 21 fractions (14 of 18, 77.8%; 7 of 9,

77.8%); others presented large areas of MER and MED, with

PMD at the folds of the skin, but the number of patients was

relatively small (5 of 32, 15.6%). The incidence of grade 3 was

relatively low (7 of 360, 1.9%); most patients present confluent

moist desquamation (CMD) and pitting edema (PE) (5 of 7,

71.4%); treatment was discontinued in four patients because they

developed during radiotherapy (1.1%). There was no grade 4

occurrence (0 of 360). The most severe reactions usually occur in

the 2–4 weeks after completion of radiotherapy treatment

(Table 5). The incidence of grades 2–4 acute radiation

dermatitis was 41.67%, of which 64.7% were grade 2 that

presented as complex lesions (moderate erythema with edema,

patchy moist desquamation at the skin fold). Grade 4 events
Frontiers in Oncology 06
(mainly ulcers) occurred in 4.4% of the patients, and all got well

again after topical corticosteroids and dressing therapy

combined with antibiotics.
Discussion

In this study, the largest of its kind, we illustrated that the use

of the 3D-printed bolus brought many advantages in

postmastectomy chest wall radiation therapy for breast cancer,

such as reducing the air gaps between the bolus and the skin,

improving the dose uniformity, and ensuring the skin surface

radiation dose, which might further guarantee the precise PMRT

for breast cancer.

Generally speaking, unwanted air gaps lead to an inadequate

or inhomogeneous radiation dose, which causes a considerable

difficulty for the precise postmastectomy chest wall radiation

therapy for breast cancer (30). Butson and Khan et al. reported

that the dose for high-energy X-ray beam was decreased by up to

4% and 10% because of 4 and 10 mm air gaps, respectively (33,

55). Zhao et al. reported that 11 mm air gap under the

commercial bolus obviously decreased the skin surface dose by

about 2% (56). Similarly, James L. Robar et al. found that the air

gaps of more than 5 mm were decreased from 30% (commercial

bolus) to 13% (3D-printed bolus) (p < 0.0003), and the

maximum air gaps diminished from 5 ± 3 to 3 ± 3 mm (26).

Our study showed that the unwanted air gaps were reduced to as

low as 1.01 mm contacting better with the patient’s irregular skin

surface. Accurate fitting of the bolus to the patient skin is

important, and thus, our study pointed out that customized

3D-printed boluses with better fitting are suitable for

clinical applications.

Furthermore, our personalized 3D-printed bolus provided

an optimal dose distribution, with HI lower than 0.07 and CI

>99.9%. However, the HI of the commercial bolus was 0.15 in

the study of Zhang et al., which greatly reduced the effectiveness

of radiotherapy (26). Hou and Park et al. also found that the 3D-

printed bolus improved dose uniformity by 45% and improved

the precision of the dose absorbed by the chest wall to 3% (28,

57). However, the HI and CI in their studies still did not reach a

lower value. In our study, we used IMRT technology and a

positioning fixation device to reduce positioning error, improve

the dose uniformity, ensure skin surface radiation dose, and

maximize precision radiotherapy. In addition, the actual

radiotherapy dose of the skin was almost close to the

theoretical dose (Dtheory 208.85 (203.16-212.53) cGy, Dfact

209.53 (204.14-214.42) cGy, |%diff| 1.77% (0.89-2.94%)). This

result was obviously better than the traditional bolus in the study

of Park et al. whose |%diff| was 4.43% (28).

It is worthy to note that although the 3D-printed chest wall

bolus has obvious dosimetric advantages, radiodermatitis is one

of the distressing side effects that manifested as erythema or

moist desquamation even. Although most radiodermatitis is
TABLE 2 Patient characteristics.

Skin follow-up (n = 360)

Age (years)

Median (range) 49 (24–70)

Lesion sites

Left, n (%) 199 (55.3%)

Right, n (%) 161 (44.7%)

pT3-4-stage

T3, n (%) 41 (11.4%)

T4, n (%) 48 (13.3%)

pN2-3-stage

N2, n (%) 95 (26.4%)

N3, n (%) 86 (23.9%)

pT1-2N1, n (%) 142 (39.4%)

age ≤40 y, n 20

ER-/PR-, n 42

HER2+++, n 59

G3, n 70

LVI, n 22

Tumor stage

IIA, n (%) 36 (10.0%)

IIB, n (%) 107 (29.7%)

IIIA, n (%) 99 (27.5%)

IIIB, n (%) 32 (8.9%)

IIIC, n (%) 86 (23.9%)

Breast Reconstruction

With, n (%) 41 (11.4%)

Without, n (%) 319 (88.6%)
pT-stage, pathologic tumor stages; pN-stage, pathologic node stages; G3, histologic grade
III; LVI, lymphovascular invasion; ER-,estrogen receptor negative; PR-, progesterone
receptor negative; HER2+++, human epidermal growth factor receptor 2 overexpression.
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TABLE 4 Skin toxicity during radiotherapy.

≤10f 11-15f 16-20f 21-25f Total patient

Grade 1, n (%) 321(89.2%)

Faint erythema, n (%) 32 (13.9%) 48 (20.9%) 65 (28.5%) 84 (36.7%) 229 (71.4%)

Dry desquamation, n (%) 6 (11.1%) 7 (12.9%) 17 (31.5%) 24 (44.5%) 54 (16.8%)

Both, n (%) 1 (2.6%) 4 (10.5%) 12 (31.6%) 21 (55.3%) 38 (11.8%)

Grade 2, n (%) 32(8.9%)

PMD+MER, n (%) 0 0 4 (22.2%) 14 (77.8%) 18 (56.2%)

MER+MED, n (%) 0 0 2 (22.2%) 7 (77.8%) 9 (28.2%)

PMD+MER+MED, n (%) 0 0 0 5 (100%) 5 (15.6%)

Grade 3, n (%) 7 (1.9%)

PE, n (%) 0 0 1 (50%) 1 (50%) 2 (28.6%)

PE+CMD, n (%) 0 0 0 5 (100%) 5 (71.4%)

Grade 4, n (%) 0 0 0 0 0

Treatment interruption, n (%) 0 0 2 (50%) 2 (50%) 4 (1.1%)
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PMD, patchy moist desquamation; MER, moderate erythema; MED, moderate edema; CMD, confluent moist desquamation; PE, pitting edema.
TABLE 3 Dose accuracy verification on skin surface of the 27 patients.

*Dfact (cGy) Dtheory (cGy) |%diff| (%)

P1 213.30 211.31 0.94

P2 209.53 208.52 0.48

P3 206.37 203.16 1.58

P4 208.40 205.86 1.23

P5 211.01 209.38 0.78

P6 207.71 208.41 0.34

P7 209.57 210.86 0.61

P8 205.29 204.55 0.36

P9 210.66 212.53 0.88

P10 212.18 209.03 1.51

P11 211.63 209.92 0.81

P12 210.70 211.09 0.18

P13 208.51 207.75 0.37

P14 204.44 204.83 0.19

P15 204.99 206.63 0.79

P16 209.53 207.75 0.86

P17 208.46 208.80 0.16

P18 207.51 206.73 0.38

P19 214.11 211.01 1.47

P20 212.51 208.42 1.96

P21 209.61 208.92 0.33

P22 212.90 208.59 2.07

P23 204.14 206.03 0.92

P24 211.46 211.59 0.06

P25 205.04 209.14 1.96

P26 208.94 210.67 0.82

P27 214.42 211.36 1.45

Median (min-max) 209.53 (204.14-214.42) 208.85 (203.16-212.53) 1.77 (0.89-2.94)
*Dtheory, theoretical radiation dose for chest wall skin; Dfact, fact radiation dose for chest wall skin; |%diff| (the absolute percentage difference=|100x (Dfact- Dtheory)/Dtheory|), the absolute
differences between theoretical and fact doses at the skin surface.
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reversible, it commonly causes discomfort and may bring about

treatment interruption. Therefore, we have taken some measures

to further reduce the incidence of radioactive dermatitis, such as

skin care education for patients before radiotherapy, including

keeping the irradiated chest wall dry; avoiding skin scratching;

and using medical ray protection sprays, corticosteroids, or

topical dressings appropriately; antibiotics were used when

necessary, and so on. In this current study, the skin side effect

incidences of grade 1 (321 of 360, 89.2%), grade 2 (32 of 360,

8.9%), and grade 3 (7 of 360, 1.9%) were controllable during the

radiotherapy, which was similar to the incidence of radiation

dermatitis caused by a traditional bolus reported by Anderson

and Tieu et al. whose ≥2 grade dermatitis was 9%–24% (15, 58).

However, in our study, fewer patients (4 of 360, 1.1%) had to

discontinue treatment because of more unacceptable skin

toxicity than Tieu’s (20 of 254, 7.9%) (15). We speculated that

it was the patient skin care education before radiotherapy and

strict follow-up that, to a certain extent, guaranteed the patient’s

compliance to the whole treatment.

However, our study presents several limitations. Firstly, the

study was a single-arm, single-center clinical study; the results

need to be further verified in a multicenter study in the future.

Secondly, since this study paid more attention to the 3D-printed

bolus ensuring the precise postmastectomy chest wall radiation

therapy for breast cancer, quality of patient life assessments may

have been overlooked. Thirdly, the follow-up time was only

limited in the radiation period, and there needs to be longer

follow-up time for the 3D-printed bolus’ effect on locoregional

control and patient survival.
Conclusion

The new 3D-printed chest wall bolus owns a high degree of

personalization, good radiation dosimetric advantages, and

controllable skin toxicity, which has a relatively high clinical

application value. In the future, long-term follow-up will be

continued to evaluate the patient’s local recurrence and survival

so as to comprehensively evaluate the efficacy of the 3D-printed

bolus in PMRT. Meanwhile, we will explore new 3D-printed bolus

materials with higher quality and lower price, and seek the best

application times to ensure the curative effect of radiotherapy.
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TABLE 5 Skin toxicity during and after 2–4 weeks of radiotherapy.

During the
radiotherapy

2–4 weeks after
radiotherapy

Grade 1 321 (89.12%) 210 (58.33%)

Grade 2 32 (8.89%) 97 (26.94%)

Grade 3 7 (1.94%) 37 (10.28%)

Grade 4 0 16 (4.4%)
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