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Spatial heterogeneity of cancer
associated protein expression in
immunohistochemically stained
images as an improved
prognostic biomarker

Henrik Failmezger*, Harald Hessel, Ansh Kapil ,
Günter Schmidt and Nathalie Harder

Research & Development Early Oncology Translational Medicine, Computational Pathology,
AstraZeneca Computational Pathology GmbH, Munich, Germany
The identification of new tumor biomarkers for patient stratification before

therapy, for monitoring of disease progression, and for characterization of

tumor biology plays a crucial role in cancer research. The status of these

biomarkers is mostly scored manually by a pathologist and such scores

typically, do not consider the spatial heterogeneity of the protein’s

expression in the tissue. Using advanced image analysis methods, marker

expression can be determined quantitatively with high accuracy and

reproducibility on a per-cell level. To aggregate such per-cell marker

expressions on a patient level, the expression values for single cells are

usually averaged for the whole tissue. However, averaging neglects the

spatial heterogeneity of the marker expression in the tissue. We present two

novel approaches for quantitative scoring of spatial marker expression

heterogeneity. The first approach is based on a co-occurrence analysis of

the marker expression in neighboring cells. The second approach accounts for

the local variability of the protein’s expression by tiling the tissue with a regular

grid and assigning local spatial heterogeneity phenotypes per tile. We apply our

novel scores to quantify the spatial expression of four different membrane

markers, i.e., HER2, CMET, CD44, and EGFR in immunohistochemically (IHC)

stained tissue sections of colorectal cancer patients. We evaluate the

prognostic relevance of our spatial scores in this cohort and show that the

spatial heterogeneity scores clearly outperform the marker expression average

as a prognostic factor (CMET: p-value=0.01 vs. p-value=0.3).
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Introduction

In cancer research, tumor biomarkers play a crucial role for

patient stratification in targeted therapies, for monitoring of disease

progression, and for characterization of tumor biology. For example

HER2 expression is an important biomarker for immunotherapies

in breast cancer (1, 2). Applying advanced image analysis and

machine learning methods, the quantitative expression of IHC

markers can be determined for whole tissue sections with high

accuracy. Such methods have been shown to be highly concordant

to the manual scoring of a marker by pathologists (3, 4) and provide

quantitative measurements of the marker’s expression on a cellular

level. To aggregate the cellular expression values into one score per

sample, most often simple averaging is performed which does not

consider the spatial heterogeneity of the marker expression (5).

However, it has been shown that relevant prognostic information

can be derived by analyzing the spatial composition of the tumor

microenvironment (6–8), as well as more generally the spatial

heterogeneity of protein expression. For example, intra-tumoral

heterogeneity has been found to be associated with more aggressive

tumors and unfavorable outcomes in many cancer indications (9).

To assess heterogeneity in marker expression, Cherenova et al.

have transferred cell signal intensity levels of immunofluorescence

images to marks in marked point patterns and defined scores based

on the conditional mean and variance of this point pattern (5). They

showed that their scores provide prognostic information in

breast cancer.

In this technical proof of concept study, we present spatial

scores to determine the expression heterogeneity of proteins in

the tissue which turned out to have enormous potential to serve

as future biomarkers in clinical studies.

In comparison to Cherenova et al. our approach does not

view the tissue as a marked point pattern but is inspired by the

well-known Haralick features (10) that are used for texture

analysis in pixel images. Like the Haralick features, our scores

are based on a co-occurrence analysis, however instead of

analyzing grey value intensities of neighboring pixels, we

examine the marker expressions of neighboring cells. Our

method has the advantage that it can be applied to continuous

measurements like marker expression intensities and that it

enables the calculation of a variety of scores that capture

different aspects of marker expression heterogeneity.

As the tumor microenvironment is highly complex and marker

expression may vary locally in the tissue, we implemented a second

methodology that is based on a tessellation of the tumor tissue. By

overlaying the tissue with a grid, we quantify the local distribution

of marker expression. The cells inside the grid tiles are classified into

marker-positive and marker-negative by a range of intensity

thresholds. Based on the marker-positive and marker-negative cell

proportions, we calculate the Shannon entropy as a measure of local
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heterogeneity. We then consider different approaches to aggregate

the local heterogeneity values into global per-sample scores.

We apply our novel scoring approaches to resections from a

cohort of 34 colorectal cancer patients that have been stained by

immunohistochemistry for HER2, CMET, CD44, and EGFR. We

show that the spatial scores provide a considerable improvement in

patient stratification as compared to the standard averaging of the

marker values.

Methods

Data

The cohort included 34 patients of colorectal cancer (CRC).

FFPE blocks (Indivumed) of tumor resections were stained for the

membrane markers EGFR (3C6), HER2 (4B5), CMET (ECD), and

CD44 (Figure 1C). Samples were scanned by Aperio with a

magnification of 20x.

There were 34 samples available for each CMET, HER2, and

EGFR, and 31 samples for CD44. All patients had late stage tumors

(Stage IV = 33 patients, Stage II = 1 patient), 74% of the patients

were treated by chemotherapy, for 15% therapy was unknown

(Supplementary Figure S1). A subset of patients (41%) was also

treated by targeted therapy (Cetuximab (Erbitux®)/Bevacizumab

(Avastin®)). Overall survival data was available for all patients.
Image segmentation

In all whole slide tissue images epithelium was detected

automatically and all epithelial cells were segmented into three

compartments (nucleus, cytoplasm, membrane) using a dedicated

image analysis approach described in more detail elsewhere (11). In

short, the approach is based on two independent supervised

convolutional neural network (CNN) models for semantic

segmentation. The first model robustly detects epithelium regions

while the second model predicts the cellular compartments for the

whole image. In a postprocessing step the predictions of both CNNs

are combined to compute the cell segmentation within the detected

epithelium regions (Figure 1A). Both models have been trained on

large amounts of IHC stained tissue images along with expert

annotations including different indications and markers. Finally,

based on the segmentation result the amount of brown DAB

staining on the cellular membranes of all tumor cells was

quantified by computing the average brown optical density (mean

OD) across all pixels per cellular membrane. Note that tumor

epithelium (vs. normal epithelium) was classified based on coarse

tumor core region annotations provided by an expert pathologist.

The performance of the segmentation approach on the images of

this study has been assessed by correlating the image-based readouts

with scoring performed by expert pathologists (Figure 1B).
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Co-occurrence scores

The co-occurrence scores are inspired by the Haralick

texture analysis (10). In comparison to the Haralick features,

we do not create a pixel-based but an object-based co-occurrence

matrix (12), where objects correspond to cells in the tissue. To

this end, we first create a cell neighborhood graph, in which cells

are considered as nodes and edges represent the neighborhood

relation of cells based on a distance threshold (Figure 2A). Based

on this cell graph a co-occurrence matrix is calculated as a 2D

histogram of membrane optical density values for all pairs of

cells sharing an edge in the neighborhood graph. The size of

the resulting co-occurrence matrix is given by 255x255,

which corresponds to the mapped OD values. Based on

the co-occurrence matrix, we calculate a subset of the

original aralick features, including Homogeneity, Contrast,

Correlation, Angular second moment (10).

Let p(i,j) be the normalized co-occurrence matrix, with i,j being

the OD values of the cells. Let mx, my and sx, sy be the marginal

means and standard deviations of the rows or columns of the co-

occurrence matrix. Homogeneity =o
i
o
j

1

1 + (i − j)2
p(i, j) is large

if neighboring cells share similar OD values, whereas

Contrast = ∑
i
∑
j
(i − j)2p(i, j) increases if neighboring cells have
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distinct OD values. Correlation = oioj
ðijÞpði;jÞ−μxμy

sxsy
is closely

related to the Pearson correlation statistic and measures the linear

dependency of the expression values of neighboring cells.

Angular   second  moment  =o
i
o
j
p(i, j)2 is a measure of general

uniformity of OD values.

As the co-occurrence matrix is dependent on the choice of

the distance threshold, we created separate co-occurrence

matrices for a range of distances (10, 25, 50, 75 mm), resulting

in 16 co-occurrence scores per tissue sample.
Tessellation scores

The second set of scores is based on tissue tessellation. We

first calculate the relevant tissue region by the convex hull of all

cell coordinates. This region is split into subregions based on a

grid with a region size of 250x250 mm². Only tiles that include at

least n=5 cells are considered for further analysis. The class high

expression or low expression is assigned based on the marker

expression of the cells (i.e., membrane mean OD) inside the grid

tile using a fixed threshold. From the resulting spatial expression

map (Figure 2B) a single score is calculated as the ratio of the

expression classes. To make this score more independent from
A

B

C

FIGURE 1

Cell segmentation pipeline. (A) The membrane of cells is segmented by an automated segmentation pipeline. (B) Concordance of scores
resulting from the automatic image analysis pipeline with pathologist scores. (C) Distribution of tissue sizes in the dataset in mm2.
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A

B

FIGURE 2

Calculation of spatial scores. (A) Spatial scores based on co-occurrence analysis. Using a machine learning pipeline, the cells are transferred into
a point pattern. Center coordinates and marker membrane OD values are reported per cell. The point pattern is transformed into a
neighborhood graph. Cells correspond to nodes and edges connect cells in spatial proximity (using a distance criterion). A co-occurrence
matrix is created, where the entries of the matrix represent the frequencies in OD value combinations for pairs of neighboring cells. Scores are
calculated from the co-occurrence matrix based on the Haralick texture features. (B) Tessellation scores. The tissue is overlaid with a grid. The
averaged membrane OD values of the cells that fall inside a certain tile are calculated. Cells are divided into marker-positive and marker-
negative based on a threshold. The Shannon entropy is calculated for the class proportions. Tiles are classified into marker-homogenous or
-heterogenous based on the Shannon entropy. Homogenous tiles are classified into marker-high or marker-low based on a threshold.
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the localization of the tiles, and thus, robust against tiling

artefacts, we shift the grid by 25 mm in all 4 directions. The

resulting score is the average of the scores of the individual shifts.

As an extension to the binary expression classes, we also

assess the expression heterogeneity per tile. Therefore, we first

classify the cells into marker-positive or marker-negative cells by

a pre-defined threshold on the membrane mean OD values. We

then calculate the Shannon entropy of the class proportions per

tile. The per-tile entropy values are aggregated into a single score

by taking their average and by calculating the so called,

Ecosystem Diversity Index (7) (EDI). The EDI represents the

number of components within the distribution of the per-tile

entropy values. These components can be seen as the number of

sub-populations in cellular expression heterogeneity. To identify

the components, a range of Gaussian mixture models with

different component numbers (1–5) are fitted to the

distribution. The number of components of the best fitting

Gaussian mixture model (w.r.t. Bayesian information criterion)

defines the EDI of a sample (Supplementary Figure S2).

Additionally, we calculate the EDI of all mean expression

values and of the standard deviation of the expression values.

Next, we also incorporate the class heterogenous into the

spatial expression map (Figure 2). Therefore, we apply a decision

tree-like scheme, by first classifying cells inside the tile into

homogenous or heterogenous expression based on the Shannon

entropy values (Figures 2; S2). For this classification we use an

entropy threshold of 0.61 that corresponds to maximum

proportions of 70% positive and 30% negative cells (or vice

versa). Tiles below this value are then classified as homogenous-

high or homogenous-low. For the classification into homogenous-

high or homogenous-low, we use the OD thresholds [8, 10, 15, 20,

25]. The corresponding range of threshold is used to calculate

the Shannon entropy by classifying the individual cells into

marker-positive vs. marker-negative as described above.
Feature selection and analysis

To reduce the overall number of scores, and thus avoid

overfitting, spatial scores with a Pearson correlation larger than

0.9 were pruned. In the correlation filtering process, we applied

univariate Cox regression to select the scores to keep, i.e. for a set

of correlated scores we kept the score that had the best

association with survival (i.e., lowest p-value). We then applied

feature selection by lasso (least absolute shrinkage and selection

operator) regression to the remaining set of uncorrelated scores

using a stability selection approach (13). Only scores that had a

selection probability of 0.20 in the stability selection were used

for further analysis.

We used univariate and multiple Cox regression to

determine the relationship of the scores with overall survival.

In order to avoid multicolinearity in the multiple regression

approach, we used only scores that had a Spearman correlation
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smaller than 0.9 with the average marker expression. We

reduced the covariates by stepwise regression analysis using

forward-backward selection (14).
Cross validation

To evaluate the robustness of the selected spatial scores we

implemented an n-times repeated k-fold cross validation

scheme. Therefore, we first implemented a k-fold cross

validation scheme, in which the full data was partitioned into

k equally-sized random splits. For a given split, all but one of the

k-subsets were used for training an optimal cutoff. The cutoffs

were then applied to the remaining unseen subset to test

stratification performance. To evaluate log-rank performance,

high and low scoring patients were grouped across all k test folds

within one split to derive a cross-validated Kaplan-Meier curves.

To test the statistical significance of the Kaplan-Meier curves, a

permutation test (15) was applied to derive empirical p-values

using m random permutations of the overall survival

information. The above-described k-fold cross validation was

then applied to each of the permutations to derive the

distribution of the log-rank statistic under the Null hypothesis

of independence of considered features and outcome. We used

the parameters n=20, k=10, m=1000.
Software and implementation

The image analysis pipeline was implemented in Python and

Tensorflow (16). The calculation of the spatial scores was

implemented in Python. Scikit-learn was used for fitting the

Gaussian mixture model (17), scikit-image was used to calculate

the Haralick features.

Data analysis was conducted in R. The package survminer

was used for the survival analysis. The package lmtest was used

for the likelihood ratio test (18). The stabs package (19) was used

for the stability selection approach. The packageMASS was used

for stepwise regression analysis (14).
Results

Mapping IHC marker expression to
spatial scores

To calculate spatial heterogeneity scores for the expression of

the four considered markers HER2, CMET, CD44, and EGFR

the images were first processed by a machine learning pipeline

that included region segmentation, cell segmentation and cell

classification (11). We compared the results of the image analysis

pipeline with pathologist scores for HER2, CMET, and EGFR

(note that no pathologist scores were available for CD44) and
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found an overall good concordance between the average marker

expression and high/low pathologist scores (Figure 1B).

We calculated four different co-occurrence scores based on

the Haralick features for texture analysis: Homogeneity,

Contrast, Angular second moment (ASM) and Correlation

(Figures 2; 3C, Methods). To calculate co-occurrence scores

for different ranges, we used the radii of 10, 25, 50, and 75 mm to

define cellular neighborhood in the neighborhood graph

construction (Figure 3C). For a radius of 10 μm we found cells
Frontiers in Oncology 06
to have a median of 2.3 neighbors, whereas for a radius of 75 μm

cells had a median of 109.3 neighbors (Figure S3). We further

found the Homogeneity as well as the Correlation feature to be

larger for small radii and decreasing for larger radii, whereas the

feature values for the other features stayed stable for different

radii (Supplementary Figure S4).

For the tessellation scores, we overlaid the tissue with a

quadratic grid of tile size 250x250 mm². We observed a large

variety in per-tile marker expression over the whole tissue
A

B

C

FIGURE 3

Tissue regions with associated spatial scores. (A) Examples of tissue samples with associated tile-wise optical densities (HER2). Scale bars
correspond to 1mm. (B) Examples of homogenous-high, heterogenous or homogenous-low tiles. (C) Associated co-occurrence features. Co-
occurrence features were calculated on the cells in the tiles only.
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(Figure 3A). In order to classify these tiles into the categories

homogenous-high and homogenous-low (see Methods,

Figure 3B), we used the OD thresholds of 8, 10, 15, 20, and

25. We used the same range of thresholds to calculate the

entropy of marker-positive or marker-negative cells (Methods).

We calculated the Ecosystem Diversity Index (EDI) for the

average marker expression per tile and the standard deviation

of this marker expression (Supplementary Figure S2).

Furthermore, we calculated the EDI for the entropy of marker-

positive or marker-negative cell proportions, resulting in 7 EDI

scores for one sample as well as ratios for the numbers of

homogenous-high, homogenous-low, and heterogenous tiles

(Figure 3B). To assess the robustness of our tessellation scores

with respect to the size and positioning of the tiles on the tissue

we performed additional experiments. To account for the

dependency of the scores on the tile location, we shifted the

grid in all directions by 1/10 of the tile size (i.e., 25 μm) and

computed the average score over all shifts as the final readout. To

investigate the dependency of the tessellation scores on the tile

size we increased and decreased the tile size by 50%, respectively,

and compared the resulting scores for one feature. We found a

very good concordance between the scores calculated on

different tile sizes (Pearson correlation > 99%, Supplementary

Figure S5) suggesting a solid robustness with respect to the

choice of this parameter.

In total we computed 16 co-occurrence scores and 37

tessellation scores. We found high correlations between the

tesselation scores and the co-occurrence scores. In general,

scores based on Correlation and EDI were less correlated with

the rest of the scores (Supplementary Figure S6).

To select the most relevant subset of spatial scores based on

their prognostic value we first pruned correlated scores, and

afterwards applied Cox lasso stability selection (see Methods).

We kept all scores that were selected in at least 20% of the

stability selection runs. From the initial set of 53 spatial scores, 5

scores were selected for HER2, 4 scores for CMET, 4 scores for

CD44, and 4 scores for EGFR (Table S1). For the selected spatial

scores, we also checked the correlation with pathologist scores.

We found only 5 spatial scores to be clearly correlated with

pathologist scores (HER2: Ratio of homogenous-low tiles

(OD=8); Ratio of homogenous-high tiles (OD=25); CMET:

Homogeneity (r=75), Contrast (OD=10), EDI for the entropy

(OD=20), Supplementary Figure S7), indicating that the spatial

scores provide additional information, which is not represented

by pathologist scores.
Univariate analysis

We checked if the selected spatial scores had an association

with overall survival by univariate Cox regression analysis.

Homogeneity (r=75, p-value=0.01, Figure 4) was associated

with survival for CMET, whereas large Homogeneity reduced
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the patient’s Hazard (HR=0.52). For CD44 Correlation (r=75)

was significantly associated with survival and increased the

patient’s Hazard (p-value=0.03, HR=1.63, Figure 4). We did

not find any other significant univariate associations of the

spatial scores with overall survival. We additionally applied

univariate cox regression for the average marker expression

values, but also found no significant association to overall

survival (Supplementary Figure S8).
Multiple regression analysis

We checked if the spatial scores provide additional

prognostic value compared to simple aggregation of the

expression values by global averaging.

Therefore, we created baseline multiple regression models

including the averaged marker expression values as well as the

clinical variables age, gender, tumor grading, and the pathologist

score for the marker expression (Supplementary Figure S9). We

added the spatial scores selected by lasso regression and reduced the

model by stepwise regression. We then compared the advanced

model to the base model by a Likelihood-Ratio test to check

whether the spatial scores provided additional prognostic value.

For HER2, the ratio of homogenous-high tiles (OD=25) and

homogenous-low tiles (OD=8), the EDI for the entropy (OD=15),

the EDI for the average expression, and the EDI for the standard

deviation in expression (Methods) remained in the model after

stepwise selection and added significant prognostic value to the

baseline model (LR-test: p-value= 2.909e-06, Figure 5). For

CMET, Contrast (r=10, Figure 5) was kept in the model and

significantly improved its prognostic value (LR-test: p-value=

0.018, Figure 5). For CD44, Correlation (r=75), the EDI for the

entropy (OD=15) and the ratio of homogenous-low tiles (OD=8),

remained in the model (LR-test: p-value=0.003, Figure 5). For

EGFR only the EDI for the entropy (OD=10) was kept in the

model (LR-test: p-value=0.066, Figure 5).
Patient stratification

To test if the spatial scores can be used to stratify patients by

overall survival, we tested the 25%, 50%, and 75% quantiles,

respectively, as potential cutoffs for patient selection. We created

survival curves for the patient groups and compared the

difference of survival times by the logrank test. We found 8

features to be significant in the logrank test for the different

markers. The EDI for the averaged OD per tile (75% quantile, p-

value=0.04, Figure 6) and the EDI for the entropy (OD=15, 50%

quantile, p-value=0.017, Figure 6) were significant for HER2.

The Contrast (r=10, 75% quantile, p-value=0.002), the

Homogeneity (r=75, 75% quantile, p-value=0.002, Figure 6),

the EDI for the entropy (OD=20, 50% quantile, p-

value=0.049), and EDI for the averaged OD per tile (average
frontiersin.org
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OD per tile, 75% quantile, p-value=0.023) were significant for

CMET. Whereas only one score each were significant for CD44

(ratio of homogenous-low tiles (OD=8, 50% quantile, p-

value=0.025, Figure 6), and for EGFR (EDI for the entropy,

OD=10, 25% quantile, p-value=0.046, Figure 6). We found the

average marker expression to be significant only in CMET (p-

value=0.015, Figure 6).

We checked the robustness of our scores by a 20 x 10

repeated cross validation scheme (Methods). Three spatial scores

had a significant median p-value in the repeated cross validation
Frontiers in Oncology 08
scheme (Supplementary Figure S10, CMET: Homogeneity

(r=75), median p-value=0.033; Contrast (r=10), median p-

value=0.009; EDI for the averaged OD, median p-value=0.043).

As the spatial scores do not indicate if the marker expression

in the tissue in general is high or low, we combined the spatial

scores with the average marker expression. We then grouped

patients based on the categories high or low obtained for both

feature values using the cutoff from the univariate analysis. For

HER2, patients with low average expression and high EDI

(entropy, OD=15) had the best prognosis (median survival
FIGURE 4

Univariate regression analysis for different markers. The scores with the lowest p-values are shown.
FIGURE 5

Multiple regression analysis for the markers HER2, CMET, CD44, and EGFR. Spatial scores were added to a base model including age, gender,
grading, pathologist scoring, and average marker expression, and afterwards reduced by stepwise regression analysis. The improvement of the
advanced model to the base model was calculated by the Likelihood-Ratio test (HER2: p-value = 2.909e-06, CMET: p-value= 0.018, CD44: p-
value=0.003, EGFR: p-value=0.066). Note that pathologist scores were not available for CD44.
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time), whereas patients with low EDI (entropy, OD=15) and

high average expression had the worst prognosis (Figure 6). We

found similar group stratifications for EGFR, CMET and CD44

(Supplementary Figure S11).
Discussion

Aggregating cellular information from tissue slides is a

challenging problem and applying straightforward methods
Frontiers in Oncology 09
such as simple averaging leads to a massive loss of

information. The tumor microenvironment is a highly

complex system, which can either trigger or downregulate

protein expression. Finding appropriate scores that adequately

capture the marker’s expression heterogeneity in the tissue is

crucial to better characterize and identify different

patient populations.

We presented two novel scoring approaches that aggregate

cellular protein expression values to per-sample scores

while quantifying the spatial heterogeneity in protein
FIGURE 6

Patient stratification by spatial scores. The average expression is shown as dashed line. 25%, 50% or 75% quantiles of the score were used as
stratification cutoffs, respectively, and the best cutoff was selected based on the p-value of the logrank test. HER2: EDI (average OD per tile, 75%
quantile, p-value=0.04), EDI (entropy, OD=15, 50% quantile, p-value=0.017), average expression (75% quantile, p-value=0.23). CMET: Contrast
(r=10, 75% quantile, p-value=0.002), Homogeneity (r=75, 75% quantile, p-value=0.002), EDI (OD=20, 50% quantile, p-value=0.049), EDI
(average OD per tile, 75% quantile, p-value=0.023), average expression (25% quantile, p-value=0.015). EGFR: EDI (entropy, OD=10, 25% quantile,
p-value=0.046), average expression (25% quantile, p-value=0.28). CD44: Ratio of homogenous-low tiles (OD=8, 50% quantile, p-value=0.025),
average expression (50% quantile, p-value=0.07). In the bivariate analysis scores were grouped by the cutoff from the univariate analysis.
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expression. Both approaches turned out to have immense

potential for use as prognostic and potentially predictive

biomarkers for patient stratification.

Our scoring approaches are widely applicable as they are

generally independent of imaging modality or indication, they

can be applied on any type of continuous measurements, and

they can easily be adjusted to a different domain with an

extremely small set of free parameters to be tuned. For the co-

occurrence scores the only parameter to be specified is the

distance criterion for setting up the cell neighborhood graph.

The tessellation scores depend on three parameters that are (1)

the tile size (2), the threshold on the continuous per-cell

measurement to classify a tile as homogenous-high or low (in

our case the membrane OD threshold), and (3) the threshold to

classify a tile as homogenous or heterogenous. In our study we

only varied parameter (2) the membrane OD threshold to

compute a set of spatial scores corresponding to different

resolutions of spatial dependency, and we used fixed values for

the two other parameters. Finding an appropriate grid size for

spatial analysis tasks in digital pathology is non-trivial and there

exists no general solution (6, 7, 20). However, in our study we

systematically investigated the influence of the tile size on the

overall result, and we showed that our changes of 50% of the tile

size had no relevant effect on the results (Supplementary Figure

S5). However, larger variations of the tile sizes could certainly be

employed to capture heterogeneity at different scales. The

threshold to classify homogenous versus heterogenous tiles

was fixed to an entropy value of 0.61, meaning that tiles were

classified as heterogenous if less than 70% of the cells were either

positive or negative. We did not optimize this value to avoid

overfitting, however, adaptation of this value might be

reasonable, for example, for other cancer indications.

In order to evaluate the generality of the scores, we tested

them on a cohort of CRC patients for four different markers with

known distinct expression patterns (21–23): HER2, CD44,

CMET, and EGFR.

All four markers are well known to be associated with

unfavorable prognosis in CRC (24–27). We applied a Cox

lasso stability feature selection scheme and observed that

tessellation scores as well as co-occurrence scores were selected

as most relevant with respect to patient stratification for different

markers (Supplementary Table S1). The spatial scores showed a

higher prognostic value than the average cellular expression,

underlining the importance of the spatial heterogeneity of the

cellular expression values. This finding was confirmed by

univariate and multiple cox regression. Overall, the spatial

scores generally stratified patients better than averaging.

Interestingly, some scores were only found significant when

analyzed together with the average expression in the multiple

regression model (Figure 5). This potentially is due to

suppression effects. Suppression effects in multiple regression

happen, if a predictor (suppressor) that is uncorrelated with the

output criterion, but is correlated with another predictor,
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improves the overall predictive power of a model (28). The

reason for that is that the suppressor controls for variance in the

other predictor. For the spatial scores this indicates a general

challenge. The spatial scores identify spatially homogenous or

heterogenous expression of the marker, however, they provide no

information about the absolute value of the marker expression -

meaning they do not indicate whether the marker is strongly or

weakly expressed in the tissue. The combination of our spatial

scores with the average expression considerably improved the

prognostic value of the multiple regression model suggesting

great potential for patient stratification. We showed this, for

example, for HER2 where the combination of the spatial scores

with the average expression resulted in a refined patient

s trat ificat ion into four groups with quite dist inct

prognosis (Figure 6).

The main limitation of this technical proof of concept study

is the small dataset. In future work, the significance of our scores

needs to be reproduced in a larger cohort, ideally including

genomic and proteomic data.
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