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Breast cancer is the most common cancer in women worldwide with

increasing incidence. Significant therapeutics advances in the field of breast

cancer have resulted in a growing number of treatment options, whereas de

novo or acquired resistance is still a persistent clinical challenge. Drug

resistance involves a variety of mechanisms, and hypoxia is one of the many

causes. Hypoxia-inducible Factor-1 Alpha (HIF-1a) is a key transcription factor

which can regulate the response of cells to hypoxia. HIF-1a can trigger

anaerobic glycolysis of tumor cells, induce angiogenesis, promote the

proliferation, invasion, and migration of tumor cells, and lead to multidrug

resistance. This review mainly discusses the role of HIF-1a in the drug-resistant

breast cancer and highlighted the potential of HIF-1a -targeted therapy.
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Introduction

Breast cancer is the most common malignancy in women and the second leading

cause of female cancer-related death after lung cancer (1). Its therapy methods mainly

include surgery, endocrine therapy, chemotherapy, radiotherapy and targeted therapy

based on the classification of tumors, among which drug therapy occupies an important

part of the treatment of breast cancer. In the early 1990s, breast cancer mortality had

declined due to its reduction in the risk, improvements in treatment and widespread use

of early screening (2). However, the emergence of drug resistance during treatment in

recent years has brought severe challenges for the survival of breast cancer patients (3).

Resistance to anticancer drug therapy is caused by a variety of factors, which include

tumor burden and growth kinetics; tumor heterogeneity; physical barriers; undruggable
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cancer drivers; the many consequences of applying therapeutic

pressures; the immune system and the microenvironment with

hypoxia (4, 5). Hypoxia in the tumor microenvironment refers

to a condition where the pressure of oxygen is lower than 5–10

mm Hg (6). Hypoxia is caused by an imbalance between oxygen

consumption and oxygen supply due to rapid growth of tumor

(7). As a hallmark of the tumor microenvironment, hypoxia

occurs in a variety of tumors. It is well known that tumor

hypoxia has a negative impact on treatment outcomes and

prognosis. Hypoxia inhibits tumor cell proliferation, induces

cell cycle arrest, and ultimately develops drug resistance because

anticancer drugs preferentially target cells that are rapidly

proliferating (8).

Hypoxia-inducible factor-1 (HIF-1) is a transcription factor

that responds to hypoxia and is involved in several aspects of

tumor progression, including metastasis, angiogenesis, drug

resistance, and immune evasion (9). The constitutive HIF-1b/
ARNT subunit and the highly oxygen-sensitive HIF-1a subunit

constitute the HIF1 protein, while intracellular HIF-1a levels

determine the activity of HIF-1 (10). After HIF-1a was initially

discovered by identifying a hypoxia response element (HRE) in

the 1990s, scholars have proven that it is a key regulator

responsible for the induction of genes that facilitate adaptation

and survival under low oxygen conditions (11). Overexpression

of hypoxia-inducible factor-1 alpha (HIF-1a) is associated with

drug resistance, poor prognosis, and a higher risk of metastasis

in breast cancer patients (12). Currently, numerous small

molecule inhibitors are under development, some of which are

considered in clinical trials. For instance, in a phase II trial of

echinomycin, a HIF-1a transcription inhibitor for metastatic

non-small cell lung cancer, the response rate of patients treated
Frontiers in Oncology 02
with echinomycin was 5%, and the median survival was 24.3

weeks (13). Although the treatment did not satisfy the

predefined expectations during the time, it revealed the

feasibility of using HIF-1a as a potential target for cancer

treatment. As research and development of drugs targeting

HIF-1a are primarily based on its mechanism of action,

exploring this aspect of breast cancer drug resistance is of

great significance to the development of related drugs. It can

provide a reference value for clinical combination therapy.

Therefore, this review aims to investigate the role of HIF-1a
in treating breast cancer drug resistance, emphasizing its

potential as a therapeutic target, and forecast its inhibitors and

clinical application prospects.
Structure of HIF-1a

Hypoxia is involved in many pathological and physiological

processes of the human body and acts as an important regulator.

HIFs are an integral component of tumor adaptation in the

hypoxic tumor microenvironment (14). So far, three types of

HIFs have been identified in mammals. HIFs are heterodimeric

proteins composed of an O2-sensitive a subunit (HIF-1a, HIF-

2a, and HIF-3a) and an O2-insensitive b subunit (HIF-1b) and
play a key role in the regulation of many genes transcribed in

hypoxic conditions (Figure 1) (15). All three HIF-a genes are

regulated by oxygen and bind to HIF-1b, but only HIF-1a and

HIF-2a have been extensively studied (16). Although HIF-1a
and HIF-2a share similar amino acid sequences and bind to the

same HRE, they differ in several aspects (17).. First, HIF-1a is

widely expressed, while HIF-2a is relatively tissue-specific (18).
FIGURE 1

Schematic diagram of structure and function of HIF subunits. All HIF isoforms have a bHLH motif and two PAS domains responsible for
heterodimerization. HIF-3a replaces C-terminal trans-activation domain with C-terminal Leucine zipper (LZIP) domain responsible for
interactions between proteins. HIF-1b does not contain ODD domain for proteasomal degradation, N-TAD, and ID. bHLH, basic helix-loop-helix
domain; PAS, Per/ARNT/Sim domain; ODD, oxygen-dependent degradation domain; ID, inhibitory domain. N-TAD, N-terminal transactivation
domain; C-TAD, C-terminal transactivation domain.
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Second, some studies showed that the oxygen dependence of

HIF-1a and HIF-2a significantly differed as HIF-1a was more

active and lasted for a shorter time under severe hypoxia,

whereas HIF-2a was more active and lasted longer under

moderate hypoxia (19–21).

HIF-1a and HIF-2a show non-overlapping antagonistic

roles due to their unique regulators, different expression

patterns, and gene targets (22). HIF-1a is ubiquitously

expressed in hypoxic tissues, whereas HIF-2a is mainly

expressed in a certain cell types, including vascular endothelial

cells (ECs) and macrophages (23). The HIF transcription factors

show disparate spatiotemporal regulation. For example, HIF-1a
can be activated under acute and severe hypoxia (1-2% O2),

whereas HIF-2a is gradually accumulated under moderate

hypoxia (5% O2) (24). Moreover, genes which regulate cell

death or anaerobic glycolysis appear to be predominantly

controlled by HIF-1a, but genes which regulate erythropoietin

synthesis (EPO) and tumor stemness or pluripotency are

primarily regulated by HIF-2a (10). Furthermore, as to typical

HRE mediated transcription, HIF subtypes also differentially

regulate signaling pathways by interacting with proteins that do

not contain PAS domains, such as b-catenin, p53, Notch

intracellular domains, and c-myc proto-oncogene (23, 25, 26).

Emerging data suggests that the HIF-a subtype is specific in

multiple solid tumor types e.g., glioblastoma, kidney carcinoma,

and neuroblastoma, and HIF-a subtype may promote tumor

progression (Figure 2) (23).

At present, there are few studies on HIF-3a, which may be

related to the complex function due to a large number of
Frontiers in Oncology 03
different variants (27). The C-terminal leucine zipper (LZIP)

domain responsible for the interaction between proteins was

found to replace C-terminal trans-activated domain in a HIF-3a
variant (28). It is generally believed that the HIF-3a gene is

expressed as a selective splicing isomer, which can activate or

inhibit HIF target gene (27).

HIF-1 contains HIF-1a subunit with 826 amino acids

and the HIF-1b subunit with 782 amino acids. Both subunits

belong to the basic helix-loop-helix/Per-ARNT-Sim (bHLH-

PAS) family of transcription factors (29). N-TAD (N-

terminal TAD) and C-TAD (C-terminal TAD), located in

HIF-1a, are two transactivation domains (TADs) with rich

acidic and hydrophobic amino acids (30). C-TAD is mainly

responsible for regulat ing HIF-a t ranscr ipt ion by

interacting with the transcriptional co-activator protein

CREB binding protein/P300 under hypoxia, whereas N-

TAD is mainly a regulator for its stabilization (31, 32).

The reg ions between the two TAD sequences are

inhibitory domains (ID; Amino acids 576-785), which

inhibit the transcriptional activation of TAD (33). HIF-1a
contains the oxygen-dependent degradation (ODD) domain

in upstream of the N-TAD region responsible for its

degradation by the ubiquitin-proteasome pathway (34).

HIF-1b (also known as aryl hydrocarbon receptor nuclear

translocator ARNT) is constitutively expressed in all cell

types and is not regulated by oxygen levels (35). HIF-1b
subunit lacks ODD and N-TAD domains and contains only

C-TAD, and its structural differences are reflected in its

function (30).
FIGURE 2

Specific role of HIF in tumor cells. Transcription-dependent and independent targets of HIF-1a or HIF-2a are listed. No overlapping HIF targets
are listed. Depending on the cellular environment, activation of HIF transcription factors may have pro-tumor or anti-tumor effects.
frontiersin.org

https://doi.org/10.3389/fonc.2022.964934
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yong et al. 10.3389/fonc.2022.964934
Induction of HIF-1a in breast cancer

HIF-1a stabilization was reported in tumors of varying

origins, and functional analyses led to the perception of HIF-

1a as an oncoprotein (36). HIF-1a is located in the cytoplasm

and is easily degradable under normoxia conditions with a half-

life of less than 5 min. However, many studies have found that

HIF-1a enhances stability in the presence of hypoxia and

maintains a set of mechanisms for stability and activation in

the presence of normoxia. Hence, the mechanisms of HIF-1a
stabilization and transcriptional activation under normal and

hypoxic conditions are discussed based on: (1) classical oxygen-

dependent pathways and (2) oxygen-independent pathways.
Classical oxygen-dependent pathways

Under normal physiological conditions, HIF-1a is degraded

in the body and cannot exert its biological effects. Hypoxia-

inducer -a (HIF-a) protein inactivation is mainly regulated by

FIH-1 and PHD through interactions with their specific N-TAD

and C-TAD domains (37). FIH-1 is an oxygen-dependent

enzyme that hydroxylates aspartic acid residues at position 803

(Asn803) in the transactivation domain of the HIF-1a C-

terminal. The transcriptional activation function of HIF-1a
was inhibited by blocking the binding of HIF-1a with CBP

(CREB-binding protein)/P300 (38). Prolyl hydroxylase (PHDs)

is also an oxygen-dependent enzyme that hydroxylates the key

residue Pro564 and Pro402 of HIF-1a, located in the oxygen-

dependent degradation domain (39). Subsequently, the E3
Frontiers in Oncology 04
ubiquitin ligase Von Hippel Lindau protein (pVHL) binds to

the ODD domain of HIF-1a subunit, recruiting a variety of

ubiquitin proteins to form the ubiquitin ligase complex, leading

to ubiquitination of the HIF-1a subunit (40). Finally, HIF-1a is

degraded by the ubiquitin-linked protease complex pathway.

The expression of PHDs varies from tissue to tissue, and the

affinity for different HIF proteins varies, which may lead to the

diversity of hypoxic responses. In addition to hydroxylation of

Pro564, Pro402, and Asn803, lysine (Lys532) in the oxygen-

dependent degradation domain is blocked by acetyltransferase

arrest-defective 1 (ARD1) to promote tumor pVHL binding,

leading to HIF-1a instability (41).

Under hypoxic conditions, FIH-1and PHDs activity is inhibited,

resulting in decreased HIF-1a hydroxylation and repressed

proteasomal degradation (42). HIF-1a stabilizes and dimerizes

with HIF-1b present in the cytoplasm and nucleus of anoxic and

normal cells to formHIF-1, which is then translocated to the nucleus

(43). Heterodimer HIF-1 and co-activator CREB binding protein/

P300 bind to hypoxia response element (HRE), which activates

transcriptional activity of target genes such as VEGF, GLUT1, and

MDR1 (Figure 3) (44). Therefore, HIF-1a does not degrade, leading

to a rapid increase in intracellular protein levels (38).
Oxygen-independent pathways

Most current studies focused on the relationship between

cancer and HIF-1a in the context of hypoxia have limited insight

because about 50% of advanced solid tumors lack hypoxic zones,

and as a result, they remain able to activate HIF-1a (42).
FIGURE 3

Oxygen-dependent regulation of HIF-1a. Under normoxic conditions, FIH hydroxylates HIF-1a Asn803 residues and blocks the binding of HIF-
1a to CBP/P300, thereby inhibiting its transcriptional activation. PHD hydroxylates the key residues Pro564 and Pro402 of HIF-1a, resulting in
pVHL binding to HIF-1a and ubiquitination of HIF-1a, which is ultimately degraded by the proteasome. Under hypoxia conditions, FIH and PHD
are inactivated. HIF-1a and HIF-1b translocate to the nucleus, thus binding to p300 and hypoxia response elements (HRE) in the nucleus to
activate gene transcription.
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Therefore, exploring the stabilization and activation mechanism

of HIF-1a in non-hypoxia conditions might help us to have a

comprehensive understanding of its role in tumorigenesis, thus

providing new targets for treatment.

Several pathways regulate HIF-1a stabilization and are

thought to contribute to the intracellular accumulation of HIF-

1a. For instance, it was reported that extracellular-signal-

regulated kinase (ERK) was involved in the regulation of HIF-

1a synthesis and transcriptional activation (45). In addition,

ERK phosphorylates the co-activator CBP/P300 and increases

the formation of HIF-1a/P300 complex, thereby stimulating its

transcriptional activation (46). Some common genetic

alterations in the oxygen-signaling pathway, such as loss of

tumor suppressors p53, PTEN, and pVHL increase HIF-1a
transcription, translation, or stability independently of O2

levels leading to tumor progression (47–49). A previous study

reported that the loss of p53 enhances HIF-1a levels in human

colon cancer, which may be explained by the role of p53 in

promoting Mdm2-mediated ubiquitination and proteasomal

degradation of the HIF-1a (50). Similarly, PTEN expression

inhibited HIF-1a stabilization in glioblastoma-derived cell lines

with evidence suggesting AKT regulation involvement, although

AKT is indirectly associated with HIF-1a phosphorylation (51).

As mentioned above, pVHL plays an important role in HIF-1a
degradation. It was reported that HIF-1a stability was

maintained, and HIF-1 was activated in VHL-deficient cells

(52).Hsp90 inhibitors promoted effective ubiquitination and

proteasome-mediated degradation of HIF-1a in RCC under

normoxic and hypoxic conditions (53). Hsp90 directly binds

to PAS domain of HIF-1a to induce conformational changes

that enable HIF-1a to bind to HIF-1b, thereby initiating HIF-1a
transactivation (54). Moreover, Hsp90 can stabilize HIF-1a by

inhibiting its degradation.
TME and HIF signaling and
angiogenesis

Tumor microenvironment (TME) refers to the local

biological environment of a solid tumor, consisting of both

tumor cells, non-tumor cells, and extracellular matrix (ECM).

In TME, there is a complex interaction and balance between

tumor cells and non-tumor cells (55). Hypoxia, a hallmark of the

TME, is caused by an imbalance between oxygen consumption

and oxygen supply because of rapid tumor growth, which occurs

in a variety of tumors including breast cancer (7). A key feature

of the cellular response to hypoxia is the upregulation of multiple

genes that promote angiogenesis/vascularization to increase

oxygen delivery. This process is mediated by hypoxia-inducible

factor (HIF-1a subunit) which can activate transcriptional

responses under hypoxia (56, 57). Hypoxia-induced HIF-1a
stabilization and accumulation can promote angiogenesis by

increasing the expression of multiple pro-angiogenic genes.
Frontiers in Oncology 05
Vascular endothelial cell growth factor (VEGF) is one of its

main target genes and is considered to be the main driver of

angiogenesis. Particularly, VEGF can recruit endothelial cells to

hypoxic and non-vascular areas and promote their proliferation

(58). In addition to VEGF, HIF-1a regulates the expression of

other angiogenic inducers (e.g., FGF, PDGF, and Ang-1/2) and

angiogenic receptors (e.g., VEGFR, ANGPT receptor) (59–61).

Meanwhile, HIF-2a plays an indispensable role in angiogenesis,

which promotes vascular maturation (62).

HIF-1a not only mediates breast cancer angiogenesis but

also leads to its metastasis, drug resistance, and poor prognosis.

For example, HIF-1a signaling selectively supports breast cancer

proliferation in the brain, which has been validated in vivo (63).

In this study, nuclear HIF-1a staining was performed on breast

cancer CTC-derived tumors growing in the brain and mammary

gland, respectively. The results revealed that HIF-1a staining

was approximately 11-fold increase in brain tumors in

comparison with that in mammary tumors. Another study

reported that mammary gland-specific deletion of Axl which is

an HIF target can reduce HIF-1a levels in a HER2 + mouse

model of breast cancer, thereby leading to a normalization of the

blood vessels, a proinflammatory TME, and a reduction of lung

metastases by inhibiting the hypoxia response of tumor cells

(64). The in vivo data strongly suggests that HIF-1a plays a

significant role in breast cancer metastasis.

In addition, some clinical randomized trials have

demonstrated that HIF-1a can be used as a marker of poor

prognosis and an independent predictor of drug resistance. For

example, a clinical trial of 187 patients with T2-4 N0-1 breast

cancer found that overall response to epirubicin and tamoxifen

treatment decreased with increased tumor HIF-1a. The Kaplan-
Meier curves showed that increased HIF-1a expression was

associated with a significantly shorter disease-free survival

(DFS) (65). Another clinical study enrolled 114 patients with

T2-4 N0-1, estrogen receptor (ER) -positive breast cancer who

were treated with letrozole. The response was assessed by

measuring tumor size and detecting the presence of tumor

cells in breast and axillary lymph nodes. The results found

that 91 patients (81%) achieved disease response, 48 patients

achieved complete clinical response (43%), and 22 patients did

not achieve response (19%). Moreover, increased P44/42 MAPK

and HIF-1a were found in patients without remission,

suggesting that the increase in P44/42 MAPK and HIF-1a was

a significant factor in treatment resistance in all leave-one-out

iterations (63). A previous study also revealed that increased

HIF-1a expression was associated with tamoxifen resistance.

HIF-1a positivity was more common in contralateral breast

cancer (CBC) during tamoxifen adjuvant therapy (N = 60) than

in CBC without prior tamoxifen (N = 522) (32% (18/56) versus

17% (80/482) (64) These reports highlight the role of HIF-1a as

a prognostic marker, but also demonstrate the positive

association between HIF-1a overexpression and endocrine

therapy resistance in breast cancer.
frontiersin.org

https://doi.org/10.3389/fonc.2022.964934
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yong et al. 10.3389/fonc.2022.964934
HIF-1a contributes to drug
resistance in breast cancer

Breast cancer is the most common malignancy in women

and the second leading cause of female cancer-related death after

lung cancer (1). Its therapy methods mainly include surgery,

endocrine therapy, chemotherapy, radiotherapy, and targeted

therapy based on the classification of tumors, among which drug

therapy occupies an important part. However, drug resistance

has become a major challenge in breast cancer treatment.

Although the relationship between HIF-1a and drug resistance

in breast cancer has been emphasized above, the mechanisms by

which it induces resistance in chemotherapy, endocrine therapy,

and targeted therapy remain to be clarified. This may be because

HIF-1a is involved in various life activities in human cells.

Studies suggested that HIF-1a may develop resistance to

conventional therapies through a series of signaling pathways

including drug effusion, tumor stem cell enrichment, autophagy

and apoptosis (7, 66). Therefore, we will explore the mechanism

of HIF-1a leading to breast cancer drug resistance from the

above mentioned related signaling pathways.
HIF-1a mediated overexpression of drug
efflux proteins

A major cause of cancer MDR is the increased efflux of

various ATP-dependent hydrophobic cytotoxic drugs, mediated

by transmembrane transporters of ATP binding cassette (ABC)

superfamily (67). ABC transporters are known as a complete

family of membrane proteins, including many recognized drug

transporters, such as the well-known multidrug resistance 1

protein (MDR1)/P-glycoprotein encoded by ABCB1 gene,

MDR-related protein 1 (MRP1, encoded by ABCC1 gene) and

G member 2 of ABC subfamily, also known as breast cancer

resistance protein (BRCP), which is encoded by ABCG2 gene

(68). The relationship between these three drug transporters and

drug resistance in breast cancer has been extensively studied

(69–71).

Using quantitative RNA microarray analysis, previous

studies revealed an approximately 7-fold increase in MDR in

epithelial cells exposed to hypoxia. Meanwhile, MDR1 gene

detection identified the binding site between hypoxia-inducible

f a c to r -1 (HIF-1 ) and MDR1 . Hypox i a - induc i b l e

MDR1expression was significantly inhibited, and the basic

MDR1 expression was almost completely lost when HIF-1

expression was inhibited using antisense oligonucleotides (72).

Over-expression of the multidrug resistance protein 1 (MDR1,

also known as P-glycoprotein or P-gp) is associated with the

resistance of taxane and anthracyclines, which are principle

chemotherapeutic agents for breast cancer treatment (73).

Both the gene encoding MRP1 (ABCC1) and ABCG2 gene
Frontiers in Oncology 06
encoding BCRP have a hypoxia response element upstream of

the open reading frame, and the deletion of this locus prevents

hypoxia-dependent activation (74, 75). In one study, western

blotting analysis demonstrated increased mRNA and protein

expression of MDR1 and MRP1 in SGC7901/HIF cells, whereas

hypoxia-induced MDR1 and MRP1 were inhibited in SGC7901/

si-HIF cells with HIF-1a knockdown, suggesting that HIF-1a
expression can upregulate the expression of drug-resistant

proteins MDR1 and MRP1 (76). Another study found that

basic HIF-1a protein and BCRP mRNA and protein in AI

(letrozole or exemestane)-resistant and HER2-transfected cells

were higher than those in AI-sensitive HER2 parents under

nonhypoxic conditions and BCRP mRNA in LTLTCa cells (AI-

resistance breast cancer cells) treated with CoCl2 (HIF-1a
stabilizer) increased by about two times compared with the

control group. Additionally, in the study, real-time PCR analysis

of immunoprecipitated DNA after ChIP found that HIF-1a
binds to the hypoxia response element (HRE) region of BCRP

promoter in LTLTCa cells under non-hypoxia conditions and

CoCl2 significantly increased the binding of HIF-1a to BCRP

promoter (77). However, the specific signaling pathway utilized

by HIF-1a to regulate the expression of drug-resistant proteins

remains unclear at present. The level of cell resistance to

irinotecan and topotecan was correlated with the expression

level of BCRP in cells, which was demonstrated in BCRP-

overexpressed breast cancer cells (T47D) (78). These results

suggest that HIF-1a expression and stabilization can increase

mRNA and protein levels of MDR1, MRP1, and BRCP, which

are involved in HIF-1a mediated drug resistance (Figure 4).
HIF-1a mediated BCSC enrichment

Cancer stem cells (CSC) are a kind of cell subpopulation in

solid tumors, which possess self-renewal, differentiation, and

tumorigenic potential (79). HIF-1a has been reported as a

prerequisite for chemotherapy resistance (paclitaxel and

gemcitabine) of breast cancer stem cells by inducing ROS-

dependent expression of HIF-1a and HIF-2a, leading to HIF-

mediated expression of IL-6, IL-8, and MDR1, thereby

promoting the survival of BCSCs (80). This study found that

exposure of MDA-MB-231, SUM-149, and SUM-159 to

paclitaxel increases the percentage of ALDH+ cells that

exhibit stem cell properties in vitro and in vivo by 12-fold.

All of the abovementioned effects can be eliminated by the HIF

inhibitor digoxin or knockdown of HIF-1a. In addition, an

assay of the ALDH activity of MDA-MB-231, SUM159, and

MCF-7 cells, which were cultured at 21% O2 (normoxia) or 1%

O2 (hypoxia), demonstrated that the percentage of ALDH+

cells per cell line increased by approximately two to three times

and HIF-1a knockdown completely eliminated the hypoxia-

induced ALDH+ population increase under hypoxic

conditions (81). Furthermore, the authors speculated that
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HIF-1a promoted stem cell enrichment, in part, through the

Akt/b-catenin pathway, which was reported to be a key

regulator of CSC self-renewal in breast cancer, because HIF-

1a increased levels of both phospho-Akt and phospho-S552

-b-catenin in SUM159 cells, and b-catenin was inactivated (not

phosphorylated) when HIF-1a was knocked down (81, 82).

Thus, activation of HIF-1a can promote the proliferation and

enrichment of tumor stem cells, leading to treatment

resistance (Figure 4).
HIF-1a mediated up-regulation of
autophagy

Autophagy, also known as cellular self-digestion, is a cellular

pathway that involves the degradation of proteins and

organelles, with a complex relation to human disease and

physiology (83). Autophagy in cancer is a double-edged sword,

which can function as a tumor suppressor by preventing the

accumulation of damaged proteins and organelles, and as a cell

survival mechanism to promote the growth of established

tumors under nutritionally deficient or hypoxic conditions (84).

HIF-1amainly upregulates autophagy in cancer through the

following pathways: promoting PTP-PEST expression to activate

AMPK, increasing BNIP3 expression, and lastly, interfering with

the interaction of Beclin1 with BCL-2, and inducing ELP3-

mediated PAK1 acetylation, leading to subsequent PAK1-
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mediated ATG5 (autophagy-related 5) phosphorylation at

T101 residue (Figure 4) (85–87). Some studies have revealed

that hypoxia increases breast cancer cell resistance to

doxorubincin (DOX) with activation of AMPK. Meanwhile,

blocking the AMPK-ULK1 pathway can increase the

sensitivity of breast cancer (BC) cells to doxorubicin (88, 89).

Beclin1, a crucial regulatory protein for regulating

autophagosome membrane formation, was upregulated in

breast cancer, colorectal cancer, gastric cancer, liver cancer,

and cervical cancer and has been associated with

chemotherapy resistance (78, 84, 90). The present evidence

demonstrated that Beclin1-knockdown breast cancer cells

treated with paclitaxel increase cell death by inducing caspase-

dependent apoptosis than the group without Beclin1 knockdown

(91). In the study, the apoptosis rate of paclitaxel-treated breast

cancer cells with Beclin1 knockdown was about 45%, while the

apoptosis rate of the group without Beclin1 knockdown was

about 33%, and western blot analysis showed that the expression

of apoptotic protein caspase-3 increased in the former group. In

addition, a study utilizing RT-PCR to measure ATG5 levels in 60

breast cancer tissues found that trastuzumab-resistant patients

had higher ATG5 levels than trastuzumab effective patients (92).

Similarly, elevated autophagy markers in drug-resistant breast

cancer cells have been reported for tamoxifen and fulvestran (93,

94). In summary, it can be concluded that HIF-1a can lead to

breast cancer resistance to endocrine drugs and cytotoxic drugs

through upregulation of autophagy.
FIGURE 4

Summary of mechanisms and pathways of HIF-1a mediated drug therapy failure in breast cancer. The pathways of resistance to conventional
treatment of HIF-1a include: increasing expression of drug efflux protein leads to drug efllux, increasing expression of anti-apoptotic protein
and decreasing expression of pro-apoptotic protein enhance anti-apoptotic effect; phosphorylated Akt/b-catenin pathway and increased
cytokine levels promote survival and self-renewal of breast cancer stem cells; promoting the expression of PTP-PEST to activate AMPK,
increasing the expression of BNIP3 to interfere the interaction between Beclin1 and Bcl-2 and inducing the acetylation of PAK1to phosphorylate
ATG5 promote the upregulation of autophagy. MDR1, multidrug resistance protein 1; MRP1, MDR-related protein 1; BCRP, breast cancer
resistance protein; IL, interleukin; ATG5, autophagy-related 5; AMPK, AMP-activated protein kinase; Beclin1, a protein for regulating the
formation of autophagosome membranes; Bcl-2 and Bcl-xl, antiapoptotic proteins; Bid, a pro-apoptotic protein; PAK1, p21 activated kinase 1;
PTP-PEST, the protein tyrosine phosphatase (PTP)-PEST.
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HIF-1a-mediated inhibition of apoptosis

Apoptosis is a gene-regulated form of cell death that plays a

role in biological processes, including embryogenesis, aging, and

many diseases (95). Escape from apoptosis is one of the

characteristics of cancer cells and is associated with

chemotherapy resistance or tumor recurrence (96). At the

molecular level, there are two main pathways of apoptosis:

external signaling pathways dependent on the binding of death

receptor–ligand and internal signaling pathways in response to

various cellular stresses (97). Many proteins and cytokines are

involved in apoptosis, including members of the B-cell

lymphoma-2 (Bcl-2) family, inhibitors of apoptosis-associated

proteins, cytochrome c, and the caspase family of proteases (97).

Interactions between pro-apoptotic and antiapoptotic members

of the Bcl-2 family may mediate the balance between cell survival

and apoptosis.

Similar to Bcl-2 family, the role of HIF-1a in apoptosis is

also double-sided: promoting apoptosis and inhibiting apoptosis

(97). The pro-apoptotic alterations by HIF-1a include down-

regulating the expressions of BNIP3, NIX, and NOXA, which

belong to the members of the pro-apoptotic Bcl-2 family. In

contrast, antiapoptotic effects include increased antiapoptotic

proteins such as Bcl-2, Bcl-xL and Myeloid cell leukemia (Mcl-1)

and decreased pro-apoptotic Bid, Bax, and Bak levels (98–100).

The hypoxia-mediated downregulation of Bid in tumors is

reported through HIF-1a dependent mechanisms and

contributes to drug resistance (Figure 4) (101). HIF-1a was

silenced by interfering RNA in HT29 and MEFs cells under

hypoxia. At the same time, western blot analysis showed that the

Bid protein expression was increased compared with the control

group, indicating that the pro-apoptotic protein Bid expression

was inhibited when HIF-1a expression was increased under

hypoxia, partially explaining the antiapoptotic phenomenon

induced by hypoxia. Simultaneously, hypoxia-induced

reduction in Bid in HT29 and MEFs cells showed resistance to

etoposide. In addition, inhibition of apoptosis induced by

overexpression of antiapoptotic proteins is a core factor in

acquiring multidrug resistance (MDR) in breast cancer (102).

Increased expression of antiapoptotic proteins Bcl-2 and Bcl-xL

in HCT116 cells under hypoxia and treatment with irradiation

during severe hypoxia significantly improved cell survival scores,
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which could be ameliorated by Bcl-2 inhibitor ABT-263 (103).

This result suggests that hypoxia can increase antiapoptotic

proteins and thus resistance to treatment, but the specific

mechanism of HIF-1a in this process remains to be explored.
Targeting HIF-1a directly to
overcome drug resistance

Hypoxia-induced overexpression of HIF-1a is an essential

factor that induces drug resistance in breast cancer. Therefore,

targeting HIF-1a is expected to overcome therapeutic resistance

caused by HIF-1a in breast cancer and improve therapeutic

efficacy. The drug mechanisms that directly target HIF-1a
mainly include inhibiting transcription and translation of HIF-

1a and promoting its degradation. Several potential approaches

for targeting HIF-1a in breast cancer are described and

summarized below (Table 1).
Inhibitors of HIF-1a translation

KC7F2, a lead compound with a cysteamine center structure,

has been reported to reduce HIF-1a protein levels in a dose-

dependent manner (104). Western blotting analysis was

performed on LN229 cells incubated with different

concentrations of KC7F2 for 6 h under hypoxia conditions

and demonstrated that HIF-1a protein levels specifically

decreased with the increase of KC7F2 concentration, while b
-actin level was basically unaffected. The same results were

observed in U251MG, PC3, and MCF-7 cell lines.

Digoxin, a cardiac glycoside, which FDA has identified as a

potential inhibitor of HIF-1 activity, has been reported to repress

HIF-1a translation. In a study, Hep3B cells were exposed to vector

(-) and 100 nM digoxin (+) under hypoxia, followed by a western

blot analysis, displaying a significant decrease in HIF-1a protein

levels in the digoxin exposed group (105). Another study using

digoxin inhibiting HIF-1 from treating breast cancer modeling

mice found that the group treatedwithdigoxinhada78%reduction

in tumor growth and a 94% reduction in ipsilateral axillary LN

metastasis compared to the control group (106).Themechanismby

which cardiac glycosides inhibit HIF-1a may be ROS production
TABLE 1 Overview of drugs that inhibit HIF-1 activity reported in breast cancer.

Mechanism drug name target status Ref

Inhibition of HIF-1a
translation

KC7F2 DNA binding preclinical (104)

Digoxin unknown approved (105, 106)

Inhibition of HIF-1a
stabilization

AT-533 Hsp90 preclinical (107)

STA-9090 clinical trial (108, 109)

Inhibition of the binding of HIF-1a to the HRE Echinomycin (NC-13502) HRE suspendend (59)

liposomal-echinomycin preclinical (60)
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leading to HIF-1a ubiquitination and degradation, which is still

under investigation.
Inhibitors of HIF-1a stabilization

HSP90 is a molecular chaperone, and its binding to HIF-1a
stabilizes the activity of HIF-1a by blocking VHL-independent

proteasome degradation and helping HIF-1a isodimer obtain

appropriate conformation to recruit P300 (110). AT-533, a novel

Hsp90 inhibitor, is considered a potential candidate for breast

cancer treatment, as it inhibits breast cancer growth and

angiogenesis by blocking HIF-1a/VEGF/VEGFR-2 signaling

pathway (107). Ganetespib (formerly STA-9090) is also a

unique Hsp90 inhibitor capable of rapidly inducing

degradation of known Hsp90 client proteins (such as HIF-1a)
(108, 109). In orthotopic MDA-MB-231 and MDA-MB-435

tumor models, Ganetespib treatment significantly impaired

primary tumor growth and inhibited local tumor invasion and

distant tumor metastasis to regional lymph nodes and

lungs (111).
Inhibition of the binding of HIF-1a to the
HRE

HRE is the DNA binding site of HIF-1a, which promotes the

expression of HIF-1a-related target genes. Echinomycin (NC-

13502) has a strong hypoxic selective cytotoxicity by inhibiting

the binding of HIF to VEGF promoter HRE but does not affect

HIF to AP-1 or NF-kB promoter HRE (59). Chromatin

immunoprecipitation studies have shown that echinomycin

can also inhibit HIF-1 binding to DNA. It was reported that

the liposomal -echinomycin can effectively inhibit HIF-1a
transcriptional activity of primary and metastatic TNBC cells

and inhibit tumor growth in vivo (60). In the study, liposome-

echinomycin treatment in xenograft mice (MDA-MB-231 and

SUM-159) significantly inhibited tumor volume and almost

eradicated liver and lung metastases in both models compared

with the control group.
The limitations of clinical application
of HIF-1a inhibitors

Although these compounds targeting HIF-1a have shown

efficacy in vitro, HIF-1a inhibitors still have several limitations.

First, differential expression of HIF-1a limits the efficacy of anti-

HIF-1a therapy. Second, HIF-1a inhibitors monotherapy have

limited efficacy (61). In a phase II clinical trial, 2ME2 NCD

showed no efficacy in patients with renal cell carcinoma (61).

Similarly, in another Phase II trial, 17-AAG (tanespimycin), a
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potential HSP90 inhibitor that increased HIF-1a degradation,

did not achieve objective response rates in the treatment of

metastatic RCC (62). Because no clinical trials investigated HIF-

1a inhibitors monotherapy in breast cancer yet, the efficacy of

HIF-1a inhibitors monotherapy in breast cancer may not

satisfactory either. Finally, HIF-1a was measured by western

blotting, real-time quantitative PCR (RT-PCR), and

immunostaining. These detection methods are mainly used in

cancer research. The clinical implementation requires invasive

tissue biopsy which may not be feasible to patients with late-

stage breast cancer. Therefore, non-invasive tests for HIF-1a are

highly desired.

Given the limitations of HIF-1a inhibitors, the combination

of HIF-1a inhibitors with chemotherapeutic agents or other

agents may achieve an optimal efficacy. Because the relevant

combination therapies in breast cancer still stay in the pre-

clinical stage, we are unable to draw a solid conclusion yet.

Nevertheless, a previous preclinical study reported that digoxin

increased the sensitivity of triple negative breast cancer to

paclitaxel and gemcitabine in vivo (80). Acriflavine, a HIF-1a
dimerization inhibitor, has also been reported to enhance the

antitumor activity of sunitinib in 4T1 breast cancer models

(112). Additional data from in vitro and in vivo studies are

urgently needed to determine whether the use of HIF-1a
inhibitors in combination with current therapies may be

beneficial for breast cancer patients. There is also an urgent

need for combinations of HIF-1a inhibitors to be tested in

clinical trials, especially in patients with drug resistance.
Conclusion

Since the HIF family transcription factors were first discovered

nearly 30 years ago, great progress has beenmade in understanding

their regulation and role in physiology and pathophysiology. This

achievement ultimately led to the awarding of the 2019Nobel Prize

in Physiology or Medicine for the discovery of HIF, the clinical

approval of multiple therapies affecting upstream and downstream

targets of the HIF subtype, and the clinical development offirst-in-

class selective inhibitors of HIF-2a. HIF subtypes may play

complementary roles in driving tumor progression due to their

nonoverlapping spatiotemporal regulation in tumor cells and

tumor microenvironment (TME) cells. In brief, HIF-1a
promotes metabolic reprogramming in tumor cells and TME

cells, while HIF-2a induces an aggressive stem-like phenotype

within tumor cells, and both contribute to angiogenesis and the

production of tumor-licensed TME.

Tumor cell resistance to therapeutic drugs is a thorny problem,

limiting the success in the clinical treatment of breast cancer. HIF-

1a is upregulated in different breast cancer subtypes and is

associated with poor prognosis and drug resistance in breast

cancer. HIF-1a confers resistance to conventional therapies
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through several signaling pathways involved in BCSC enrichment,

drug outflow, apoptosis, and autophagy. At present, many

compounds can directly or indirectly inhibit HIF-1a to alleviate

drug resistance, but most of them are limited by poor efficacy or

large toxic side effects in vivo, which may present challenges in the

future. Due to the inherent limitations of cellular and animal

models, a deep understanding of the role of HIF transcription

factors in TME in clinical setting is critical to understanding the

determinants of therapeutic resistance and to develop relevant

compounds targeting them. Given these problems, we can

consider the optimization method from the following three

points. First, in addition to HIF-1a, HIF-2a has also been

associated with histological grade, Ki67 expression, and multidrug

resistance in breast cancer (113). Therefore, further exploration of

HIF-2a may find another effective drug target. Second, HIF-1a
varies between and within breast cancer subtypes and considering

breast cancer patient selection may help screen for effective drugs.

Finally, it can be considered that delivering drugs with nanoscale

liposomes may reduce side effects and achieve both efficacy and

safety. Most drugs remain in development, and some are in clinical

trials, so combinations of drugs targeting HIF-1a and other drugs

are unavailable. No single therapy can completely solve the problem

of breast cancer drug resistance, so combination therapy is the best

option in the future. Because inhibition of one HIF-a subtype tends

to induce expression of the remaining subtypes, we propose that, in

some cases, direct targeting of these two HIF subtypes may provide

more benefits than targeting each subtype alone.
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