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PIWI-interacting RNAs (piRNAs) are a less-studied class of small non-coding

RNAs approximately 24–31 nucleotides in length. They express in germline and

somatic cells and form complexes with PIWI proteins to exert regulatory

effects. New studies show that piRNAs are aberrantly expressed in various

cancers. In this review, we focus on those piRNAs that are associated with

cancer hallmarks such as proliferation, invasion, and chemoresistance and

discuss their potential as biomarkers for cancer diagnosis and prognosis.
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Introduction

The Human Genome Project shows that over 95% of the human genome is

comprised of non-coding RNAs that do not code proteins, known as the “dark” or

“junk” RNA of the genome (1). In recent years, this research area has entered the

forefront due to the active role of non-coding RNAs in life activities and disease

development. Non-coding RNAs are classified by length into long non-coding RNAs

(lncRNA, >200 nt) and small non-coding RNAs (<200 nt) (2).When it comes to small

non-coding RNAs, people usually think of miRNAs (3, 4), siRNAs (5), and other small

RNAs that have been widely studied. In fact, piRNAs, a class of non-coding RNAs, have

also been a hot topic in molecular research (6).
Abbreviations: piRNAs, PIWI-interacting RNAs; dsRNAs, double-stranded RNAs; ssRNAs, single-

stranded RNAs; RNAi, RNA interference; RISC, RNA-induced silencing complex; ccRCC, clear cell

renal cell cancer; RCC, renal cell carcinoma; HCC, hepatocellular carcinoma; EMT, epithelial–

mesenchymal transition; SNPs, single-nucleotide polymorphisms; CRC, colorectal cancer; DFS, disease-

free survival; AUC, area under the curve; EVs, extracellular vesicles; MM, multiple myeloma; OS, overall

survival; RFS, recurrence-free survival; H3K9me3, histone H3 lysine 9; RNA Pol II, RNA polymerase II.
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piRNAs were first identified in Drosophila testis 20 years ago

and derived from the Su (Ste) locus (7, 8). Compared with

miRNAs and siRNAs, piRNAs are longer (24–31 nt in length)

and more abundant (approximately 5 × 104 species) (9, 10). Its

production is not dependent on RNase-like nucleases and has a

3′ terminal 2′O-methylation modification (6, 9). In addition,

miRNAs and siRNAs are processed from double-stranded RNA

(dsRNA) precursors via Dicer, whereas piRNAs are derived

from single-stranded RNA (ssRNA) precursors of piRNA

clusters (11). piRNAs, along with miRNAs and siRNAs, are all

the critical cores of RNA interference (RNAi), forming RNA-

induced silencing complexes (RISC) with Argonaute family

proteins that recognize and regulate target expression through

full or partial Watson–Crick base pairing (12, 13). Argonaute

proteins are divided into two subfamilies: the AGO proteins and

the PIWI proteins—the latter being another spotlight in this

review (14). Numerous studies confirm that PIWI family

proteins are essential for piRNA biogenesis. Like piRNAs,

PIWI proteins were first discovered in Drosophila

melanogaster and regarded as key genes for germline

development. In Drosophila, PIWI proteins are classified as

PIWI, Aub, and Ago3, all of which play key roles in piRNA

biogenesis. PIWI regulates transposon transcription mainly in

the nucleus. In contrast, Aub and Ago3 act in the cytoplasm to

cleave transposon transcripts (15). In mice, PIWI proteins are

divided into three classes, PIWIL1 (MIWI), PIWIL2 (MILI), and

PIWIL4 (MIWI2), all of which are expressed at different stages

of spermatogenesis (16, 17). In humans, PIWI proteins are

divided into four isoforms—PIWIL1 (HIWI1), PIWIL2 (HILI),

PIWIL3 (HIWI3), and PIWIL4 (HIWI2)—with highly

conserved properties (18, 19).

It was previously thought that piRNAs were mainly found

in gonadal cells (20). However, recent studies have shown that
Frontiers in Oncology 02
many piRNAs are also expressed in somatic cells, and

abnormal piRNA expression has been found in many

diseases (21–23). The dysregulation of piRNAs is also

present in various human cancers, suggesting that these

piRNAs may be involved in cancer progression (24, 25). The

biological functions of piRNAs in germline are well

understood, but their roles in cancer cells remain unclear.

Based on available findings, this review briefly summarizes the

biogenesis of piRNAs. This is followed by a series of studies on

piRNAs with various cancer hallmarks and a discussion of

their prospects as diagnostic and prognostic markers

for cancer.
Biogenesis of piRNA

Currently, studies on the biogenesis of piRNAs are mainly

focused on organisms such as Drosophila, mice, silkworm, and

Caenorhabditis elegans (26–31). The biogenesis of piRNA varies

slightly in different organisms, but the main processes are

conserved. piRNAs fall into three main categories based on

their source: piRNAs from transposon, piRNAs from mRNA 3′
UTR, and piRNAs from long non-coding RNAs (32). Two major

pathways are currently recognized in piRNA biogenesis

(Figure 1): primary and secondary (“ping-pong cycle”). The

primary pathway occurs in somatic and germ cells. The

secondary pathway (“ping-pong cycle”) occurs only in germ

cells (33, 34). piRNA clusters are marked by histone H3 lysine 9

(H3K9me3) and transcribed by RNA polymerase II (RNA Pol II)

(35). Rhino (Rhi), a member of the HP1 protein family, then

specifically binds to the H3K9me3 marks on the piRNA clusters

and recruits Cutoff (Cuff) through the adaptor protein Deadlock

(Del) (36, 37). A protein complex comprising Rhi, Del, and Cuff
FIGURE 1

Biogenesis of piRNA: primary pathway and secondary pathway. In the primary pathway, piRNA forms a complex with PIWI proteins to mediate
transposon silencing. In the secondary pathway, piRNA binds to Aub to produce secondary piRNA, while secondary piRNA binds to Ago3 to
produce primary piRNA, and so the cycle continues.
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ensures the continuous extension of piRNA cluster transcription

(34). piRNA clusters are transcribed into piRNA precursors in

the nucleus (38). Then, piRNA precursors are transported to the

cytoplasm via UAP56 and cleaved by an endonuclease Zucchini

(Zuc) (39–41) to produce short-stranded piRNA intermediates

with 5′ uracil. After binding to PIWI proteins, piRNAs are

further trimmed by 3′–5′ exonuclease Trimmer (42–46) and

methylated by Hen1 enzyme to produce mature piRNA/PIWI

complexes (47–49). The PIWI/piRNA complexes return to the

nucleus and interact with transposon transcripts through base

pairing. PIWI/piRNA inhibit transposon expression there

through H3K9me3. Notably, piRNAs amplify via the

secondary pathway in Drosophila, zebrafish, and most

mammalian germline (50, 51)—for example, in Drosophila

germ cells, piRNAs bind to PIWI subfamily Aub protein to

form complexes. Then, piRNA/Aub complexes recognize and

target transposon sequences and generate secondary piRNAs.

When the secondary piRNAs are loaded to Ago3 (52, 53), the

transposon transcripts will be cleaved and produce new piRNAs

identical to the primary piRNAs. This pathway is also known as

the ping-pong cycle.
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piRNAs and cancer

With the development of sequencing technology, piRNAs in

various diseases, including cancer, have been progressively

deciphered. Here we review studies of piRNAs in different

systems of human cancers (Figure 2) and further explore the

relationship between piRNAs and various hallmarks of cancer.

In addition, piRNAs have been suggested as cancer diagnostic

tools, therapeutic targets, and prognostic biomarkers. As piRNA

binding proteins, the PIWI proteins also receive attention in

this review.
piRNAs and proliferation,
migration/invasion

Uncontrolled cell proliferation is a major hallmark of cancer,

and piRNAs are involved (54). Deep sequencing analysis

confirmed that piR-651 was upregulated in lung cancer tissues

and cell lines and promoted cell proliferation and tumor

formation through the upregulation of cyclinD1 and CDK4
FIGURE 2

piRNAs in various types of cancer.
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expression (55, 56), although the exact mechanism is not clear.

In addition, the overexpression of piR-8041 in glioblastoma

multiforme reduced cell proliferation, and pretreatment with

piR-8041 in vivo significantly reduced the volume of intracranial

mouse xenograft tumors (57). Cheng et al. pointed out that piR-

823 was downregulated in gastric cancer tissues and cells, and its

mimics increased the level of piR-823 and significantly inhibited

tumor growth in a dose-dependent manner (58).

Tumor cell proliferation is usually a promoter of cell

metastasis. Cancer cells leave the primary site and colonize

outside the primary tumor, while metastatic cells also

proliferate, migrate, and invade surrounding tissues (59, 60).

This cascade is the main cause of poor prognosis, and piRNAs

are also involved in some stages of this process. In metastatic and

non-metastatic clear cell renal cell cancer (ccRCC), piR-30924 and

piR-38756 weremore highly expressed in metastatic tumors, while

piR-57125 was less expressed in metastatic tumors. More

importantly, their differential expression was associated with

tumor recurrence and overall survival (OS) and considered to

be an independent prognostic factor (61). As piRNA-binding

proteins, the PIWI subfamily also functions in the metastatic

properties of cancer. Reports have shown that PIWIL1

downregulation significantly reduced the proliferation,

migration, and invasiveness of hepatocellular carcinoma (HCC)

(62). What is more, PIWIL1 was much more abundant in

endometrial cancer tissues compared with atypical hyperplasia

and normal tissues. The overexpression of PIWIL1 exerted an

influential role in maintaining stem cell-like characteristics,

including enhanced tumor cell viability, migration, invasion,

and sphere formation activity. Furthermore, PIWIL1 was related

to increased mesenchymal markers and E-cadherin inhibition

(63). Tumor metastasis involves many steps, but each step is not

independent. Epithelial–mesenchymal transition (EMT) is an

essential step in tumor development (64). After the tumor cells

underwent EMT, they acquired invasion characteristics and

infi l trated into the surrounding stroma, forming a

microenvironment that promoted tumor growth and metastasis

(65–67). The discovery of PIWI proteins correlated with EMT

markersmay have profound implications for improving treatment

methods and controlling tumor metastasis. piRNAs may also have

some important role in the EMT process.
piRNAs and cell cycle

A large number of regulatory factors are involved in the cell

cycle process of tumor cells. If a regulatory factor is abnormal,

the cell will not be able to move from one stage to the next, which

is called cell cycle arrest (68). Cell cycle arrest is a prominent

feature of tumor progression. Many piRNAs and PIWI proteins

are closely related to cell cycle arrest. Antisense sequence

inhibited piR-823 in colorectal cancer (CRC) cells HCT116

and DLD-1, followed by flow cytometry showing the increased
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G1 phase cell population (69). Liu et al. found that PIWIL1 was

overexpressed in gastric tissues and cell lines, and the

downregulation of endogenous PIWIL1 by antisense or RNAi

effectively inhibited the proliferation and G2/M phase cell cycle

arrest in gastric cancer cells (70). In addition, cyclinD1, an

indispensable driver of cell cycle progression, controlled the

secretion of piRNAs (piR-016658 and piR-016975) in breast

cancer (71).
piRNAs and genetic variation

Although most studies have focused on the aberrant

expression and function exploration of piRNAs, some studies

have still noted the association between piRNAs and genetic

variants (72). Single-nucleotide polymorphisms (SNPs) are the

most common genetic variations (73). Chu et al. found that

reference SNP rs11776042 (T > C) in piR-015551 participated in

the development of CRC (74). Furthermore, SNPs in PIWI are

more common and more strongly associated with cancer risk. A

case–control study by Sung et al. found the pronounced

protective effect of PIWIL1 rs11060845 in progesterone

receptor-positive breast cancer patients. At the same time, two

SNPs in PIWIL1 (rs4759659 and rs11060845) were correlated

with disease-free survival (DFS). Another study found that an

SNP in PIWIL1, rs10773771 (CT/CC), reduced the risk of HBV-

associated HCC (75). Tumor risk assessment can be achieved by

identifying SNPs in piRNAs and PIWI proteins.
piRNAs and epigenetic modification

The main modes of epigenetic modification include DNA

methylation, histone modifications, and chromatin remodeling

(74–78). DNA methylation is closely related to oncological

diseases, and CpG island methylation can lead to the

transcriptional inactivation of oncogenes. Recent studies

report that piRNAs are involved in CpG island methylation

(76). In breast cancer, piR-021285 suppressed ARHGAP11A

expression by facilitating methylation at a CpG site within the

5′UTR/first exon. ARHGAP11A is a known pro-apoptotic

regulator, and its reduced expression leads to the inhibition

of apoptosis (77). In breast cancer stem cells, piR-932 and

PIWIL2 formed a complex to promote CpG island methylation

of the Latexin promoter region and reduced its expression.

Latexin is a tumor suppressor that reduces the transformation

of senescent stem cells into cancer stem cells, showing a cancer-

suppressive ability (78). A study demonstrated that PIWIL2

played an essential role in the transformation of cervical

epithelial cells to tumor-initiating cells via epigenetics-based

cell reprogramming (79). In addition, PIWIL1 mediated PTEN

hypermethylation via DNA methyltransferase 1 in type I

endometrial cancer (80). DNA methylation is mainly
frontiersin.org
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mediated by DNA methyltransferases, which consist of two

major classes, DNMT3 (DNMT3a and DNMT3b) and

DNMT1, that catalyze and maintain DNA methylation,

respectively (81, 82). Except for DNA methylation, piRNAs

and PIWI proteins are also closely related to histone

modifications. piRNAs have the ability to promote histone

modifications in D. melanogaster (83). In addition, PIWI

proteins have been shown to directly influence histone

modifications at piRNA targets (84, 85). As an important

class of histone modifications, ubiquitination plays a very

important role in protein localization, metabolism, regulation,

and degradation. The association of ubiquitination with non-

coding RNAs, including piRNAs, has also received much

attention (86). In CRC, piR-823 repressed the ubiquitination of

hypoxia-inducible factor 1a by upholding the expression of

glucose 6 phosphate dehydrogenase, ultimately upregulating

glucose consumption and suppressing intracellular reactive

oxygen species content (87). The role of piRNAs in cancer

often involves more than one cancer hallmark—for example, in

multiple myeloma (MM), piR-823 inhibited tumor formation in

vitro and in vivo and induced the expression of cell cycle

regulators and apoptosis-related proteins as well as the

secretion of vascular endothelial growth factor. More notably,

piR-823 inhibition was also linked to the expression

downregulation of de novo DNA methyltransferases DNMT3A

and DNMT3B, the latter leading to the re-expression of the

methylation-silenced tumor suppressor gene p16 (88). These

diverse functions may harbor complex mechanisms that

deserve further exploration.
piRNAs and chemotherapy

Chemotherapy is the most widely used treatment for

malignant tumors (89). Some piRNAs are associated with

chemotherapeutic efficacy and even have synergistic anticancer

effects, providing new insights into how we can use piRNAs well

to enhance chemoresistance or sensitivity. Recently, a study

identified that piR-L-138 was a key factor of cisplatin

resistance in patients suffering from lung squamous cell

carcinoma (90). In addition, Tan et al. found that the

upregulation of piR-36712 in breast cancer displayed a

synergistic anticancer effect with chemotherapy drugs (24).

Another interesting finding was that CRC cells with piR-54265

overexpression were resistant, while piR-54265 knockdown was

sensitive to 5-FU and oxaliplatin, two first-line drugs commonly

used in chemotherapy for advanced CRC (91). This finding will

be significant for improving the efficacy of chemotherapy.

Another study conducted by Roy et al. observed that the

overexpression of piR-39980 decreased the sensitivity of the

anticancer drug doxorubicin and inhibited the doxorubicin-

mediated apoptosis of neuroblastoma cells (92). The discovery

that piRNAs could regulate chemosensitivity sparks new hope
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regulatory mechanisms, and further research is needed in

the future.
piRNAs in liquid biopsy

Liquid biopsy is considered an ideal channel for developing

cancer biomarkers (93, 94). Common liquid specimens include

blood, urine, cerebrospinal fluid, thoracoabdominal fluid, and

bronchoalveolar lavage fluid. Compared with invasive

examination, these specimens have the advantages of

convenient collection, reliable repeatability, and high patient

acceptance. Many studies have found abnormal piRNAs in the

body fluids of cancer patients—for example, piR-823 was

downregulated in the tissue but upregulated in the serum and

urine of patients with renal cell carcinoma (RCC) (95). The piR-

65 expression in different samples was also inconsistent. Cheng

et al. suggested that piR-651 was upregulated in gastric cancer

tissues, affecting cell growth and cell cycle arrest (96). On the

contrary, Cui et al. showed that piR-651 was downregulated in

the peripheral blood of gastric cancer patients with diagnostic

significance (97). Interestingly, piR-651 expression was

downregulated in the serum samples from classical Hodgkin’s

lymphoma patients at diagnosis but rose to levels similar to

healthy patients after complete remission, suggesting that piR-

651 could be an indicator of long-term monitoring and disease

progression (98). The same molecule was differentially expressed

in different samples (tissue and blood) and before and after

treatment. These findings prompted researchers to consider the

possibility that piR-651 detected in the serum was derived from

circulating cells rather than tumor cells. Zhou et al. also reported

that a high piR-1245 expression was observed in the gastric juice

of gastric cancer patients with poor OS, and the area under the

curve (AUC) was 0.885, indicating that piR-1245 in gastric juice

was both a diagnostic and prognostic indicator (99). Some other

findings suggested that piR-823 mainly accumulated in the

extracellular vesicles (EVs) of peripheral blood from MM

patients and EVs from MM cells (MM-derived EVs). Among

them, MM-derived EVs were able to effectively transfer piR-823

to EA.hy926 endothelial cells and alter their biological

characteristics, such as cell proliferation, tube formation, and

invasion (100). EVs are an intercellular communication tool that

plays an essential role in information transmission and tumor

microenvironment (101, 102). piRNAs encapsulated in EVs can

be stably present in body fluids and have the potential to be

promising markers for cancer diagnosis and prognosis.
piRNAs and immunity

Research on piRNAs has also been carried out in other areas

such as immune regulation. It has been found that piR-30840
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complementarily bound to pre-mRNA intron to inhibit IL-4

expression and Th2 T-lymphocyte development (103). In

another study, myeloid-derived suppressor cells increased the

production of piR-823, thereby enhancing the stemness of MM

stem cells (104). Research on immune cell regulation based on

piRNAs is still in its infancy, and it is worthwhile to explore

more piRNAs in the tumor microenvironment.
Clinical significance of piRNAs
in cancer

piRNAs as diagnostic biomarkers
in cancer

For any malignancy, i t would be of paramount

significance to achieve early diagnosis. It is no longer

sufficient to detect only traditional markers for the early

diagnosis of various tumors. In some studies, piRNAs show

a better diagnostic ability than traditional markers—for

instance, piR-13643 (AUC = 0.821) and piR-21238 (AUC =

0.823) performed better than the currently used biomarker
Frontiers in Oncology 06
HBME1 in distinguishing malignant nodules from the benign

ones and may serve as new biomarkers for an accurate

detection of papillary thyroid carcinoma (105). In addition,

serum piR-5937 and piR-28876 were able to distinguish CRC

from healthy controls with very high sensitivity and

specificity. The detailed values are shown in Table 1. Their

diagnostic characteristics were compared with the traditional

markers CEA and CA199. In comparison, alterations in piR-

5937 and piR-28876 were detected in 71 and 69% of colon

cancer patients, respectively, while CEA and CA199

alterations were detected in only 48 and 26% of patients,

respectively. The highest diagnostic sensitivity (86%) was

achieved with the combination of CEA, CA199, and both

piRNAs (107). Accumulating studies have shown that piRNAs

are good diagnostic markers in cancer (Table 1). Although a

single piRNA is sufficient to distinguish cancer patients from

healthy controls, combined biomarkers may be more

diagnostically accurate than an individual biomarker. Qu et

al. found that five differentially expressed piRNAs (piR-

001311, piR-004153, piR-0177n 23, piR-017724, and piR-

020365) performed better than CEA in CRC detection, with

an area under the curve of 0.876 (108).
TABLE 1 piRNAs as diagnostic or prognostic biomarkers in clinical studies.

Cancer type Sample
number

Source piRNA Expression AUC Sensitivity Specificity OS
(p-value)

PFS
(p-value)

Reference

Gastric cancer 66 patients, 66
controls

Gastric
juice

piR-1245 Up 0.885 0.909 0.742 0.015 0.013 (106)

Gastric cancer 93 patients, 32
controls

Peripheral
blood

piR-651 Down 0.841 0.709 0.813 / / (97)

piR-823 Down 0.822 0.805 0.812 / /

Colorectal cancer 80 patients, 80
controls

Serum piR-5937 Down 0.806 0.718 0.725 / / (107)

piR-
28876

Down 0.807 0.753 0.700 / /

Colorectal cancer 120 patients, 120
controls

Serum piR-
017724

Down 0.756 0.575 0.817 0.005 0.002 (108)

Colorectal cancer 725 patients,
1,512 controls

Serum piR-
54265

Up 0.896 0.857 0.651 / / (109)

Colorectal cancer 140 patients, 140
controls

Serum piR-
020619

Up 0.871 0.843 0.764 / / (110)

piR-
020450

Up 0.841 0.814 0.750 / /

piR-
020814

Up 0.680 0.586 0.729 / /

Colorectal cancer 87 patients, 87
controls

Tissue piR-
24000

Up 0.818 0.931 0.690 / / (111)

Esophageal squamous
cell carcinoma

54 patients, 54
controls

Tissue piR-823 Up 0.713 0.630 0.770 / / (112)

Clear cell renal cell
carcinoma

118 patients, 75
controls

Tissue piR-
34536

Down 0.815 0.780 0.781 0.005 0.040 (113)

piR-
51810

Down 0.829 0.856 0.712 <0.001 0.001
fro
AUC, area under the curve; OS, overall survival; PFS, progression-free survival.
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piRNAs as prognostic biomarkers
in cancer

Like other non-coding RNAs, piRNAs were associated with

the prognosis of cancer patients. A total of 132 piRNAs were

detected in the transcriptional atlas of the gastric cancer genome,

and nearly half of them were overexpressed. Among them, piR-

FR222326 was associated with OS and five piRNAs (piR-

FR157678, piR-FR387750, piR-FR381169, piR-FR290353, and

piR-FR064000) were significantly associated with recurrence-

free survival (RFS) (114). Data from Zhao et al. suggested that

HIWIL1 may be a useful prognostic factor for patients with HCC

after curative resection, especially in the case of low serum AFP

and low pathological grading (115). Lliev et al. also observed no

difference in PIWIL2, PIWIL3, and PIWIL4 expression between

RCC and renal parenchyma. However, their expression

gradually decreased together with increasing clinical stage

(116). Although the functional mechanisms of these piRNAs

remain unclear, their expression is correlated with patient

survival, tumor stage, or other clinical parameters. This

suggests their potential as tumor prognostic markers.
Conclusion

Since the discovery of piRNAs in 2001, their critical role in

different species and different conditions of physiology and

pathology has been extensively reported. This paper reviews the

advances in piRNA studies and provides a complete description of

piRNA biogenesis, function, and clinical implications in cancer.

Under normal conditions, piRNAs are synthesized and degraded

in germ cells and somatic cells at relatively stable levels. However,

when the piRNA expression is disrupted, they lose normal

function and may lead to cancer development. Some trials have

confirmed that piRNAs are aberrantly expressed within various

cancers in a cancer-specific manner. Some piRNAs are also found

in the blood or urine of cancer patients as diagnostic or prognostic

indicators. Most reports are limited to their effect on tumor

phenotype, and only a tiny fraction have investigated their

mechanisms, leaving many unanswered questions. As candidate

biomarkers, piRNAs require multi-center cohort studies with

large samples to facilitate their clinical application in human
Frontiers in Oncology 07
cancer. Furthermore, although piRNAs are considered

therapeutic targets, their association with available clinical

therapies is mainly focused on chemotherapy. The role of

piRNAs in radiotherapy and immunotherapy has not been

explored. The comprehension of piRNAs is still in its infancy,

and the development of multi-omics and high-throughput

sequencing technologies is expected to help us gain a more

comprehensive understanding. It is hoped that the description

of this review will inspire more research and clinical trials to

unlock the potential biological code of piRNAs.
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