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Venoms are complex mixtures of different molecules and ions. Among them,

bioactive peptides have been found to affect cancer hallmarks, such as cell

proliferation, cell invasion, cell migration, and can also modulate the immune

response of normal and cancer-bearing organisms. In this article, we review

the mechanisms of action on these cancer cell features, focusing on bioactive

peptides being developed as potential therapeutics for one of the most

aggressive and deadly brain tumors, glioblastoma (GB). Novel therapeutic

approaches applying bioactive peptides may contribute to multiple targeting

of GB and particularly of GB stem cells. Bioactive peptides selectively target

cancer cells without harming normal cells. Various molecular targets related to

the effects of bioactive peptides on GB have been proposed, including ion

channels, integrins, membrane phospholipids and even immunomodulatory

treatment of GB. In addition to therapy, some bioactive peptides, such as

disintegrins, can also be used for diagnostics or are used as labels for cytotoxic

drugs to specifically target cancer cells. Given the limitations described in the

last section, successful application in cancer therapy is rather low, as only 3.4%

of such peptides have been included in clinical trials and have passed

successfully phases I to III. Combined approaches of added bioactive

peptides to standard cancer therapies need to be explored using advanced

GB in vitromodels such as organoids. On the other hand, newmethods are also

being developed to improve translation from research to practice and provide

new hope for GB patients and their families.
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1 Introduction

1.1 Bioactive peptides as therapeutic
compounds

Bioactive peptides are produced by a wide variety of organisms,

from bacteria to plants and higher animals, such as snakes, cone

snails, spiders, scorpions and insects. One of their main functions is

to defend the producing organism against predators. Biologically

and pharmacologically active peptides, hereafter referred to as

“bioactive peptides,” are usually 2–20 amino acid residues (AA)

long, although some have been reported to be longer (1). These

peptides exhibit a spectrum of pharmacological effects on human

organism, of which beneficiary to the homeostasis and/or

counteracting the disease have always been attractive objects of

research. Structural and functional studies of natural toxins have

revealed physiological and pharmacological mechanisms at the

cellular and molecular levels. With our growing understanding of

their pathophysiological actions, possibilities to employ bioactive

peptides as therapeutics emerged (2).

In contrast to small molecule drugs, bioactive peptides

generally have narrower target specificity and higher efficacy.

Because of their unique selectivity combined with high potency,

natural peptide toxins are attracting considerable attention in

drug discovery (2). An increasing number of bioactive peptides

are moving from laboratory to clinical trials. The balance of

therapy-related toxin research is shifting from the development

of classical anti-toxins to the development of bioactive peptides

as drugs to treat various diseases, including cancer.

Venoms are complex mixtures of different molecules and ions.

Among them are bioactive peptides with toxic effects that usually

bind to receptor proteins in target organisms to induce adverse

reactions (3). Such peptides target signaling pathways in normal

and pathological conditions and cause either harmful or beneficial

effects in the organism (4). Based on the physiological targets of

venom toxins, we distinguish neurotoxins, myotoxins, cardiotoxins

and hemotoxins. Venom toxins can also target catalytic functions

of various enzymes and act as inhibitors or activators. Based on

their site of action, their therapeutic effect can be among others

analgesic, neuroprotective, cardioprotective, or anti-cancer (5). A

special group of molecules from venoms with anti-cancer activity

are venom peptides, on which this review is focused. With their

highly specific and selective effects on cancer cells, venom bioactive

peptides have been found to affect cancer hallmarks, such as cell

proliferation, cell death, cell invasion and cell migration. In

addition, they have also been found to modulate the immune

response of normal and cancer-bearing organisms (6).
1.2 Hallmarks of cancer

Cancer is one of the major causes of death worldwide. It is

anticipated that its burden will rise by 47%, from 19.3 million
Frontiers in Oncology 02
new cases in 2020 to 28.4 million in 2040 (7). According to

Hanahan and Weinberg (8), the term “hallmarks of cancer”

refers to ten key features of cancer cells. These are sustaining

proliferative signaling, evading growth suppressors, avoiding

immune destruction, enabling replicative immortality,

inducing tumor-promoting inflammation, activating invasion

and metastasis, promoting vascular development, enhancing

genome instability and mutation, resisting cell death and

deregulating cellular metabolism. In a 2022 review (9),

Hanahan additionally defined four newly emerged traits of

cancer cells, termed “enabling characteristics”, including

unlocking phenotypic plasticity, non-mutational epigenetic

reprogramming, polymorphic microbiomes and senescence.

Therefore, a total of fourteen cellular attributes currently

outline key processes of cancer progression (9) and thus also

define key cellular/molecular targets to inhibit them and

normalize physiology. This helps predicting properties of

novel substances to treat human cancer, which include venom-

derived bioactive peptides (Figure 1).

Several venom peptides have been evaluated for their effects

on various hallmarks of cancer. For example in different types of

cancer, including glioblastoma (GB), the AGAP peptide from

scorpion venom has been shown to decrease cell proliferation

and inhibit angiogenesis, tissue invasion, and metastasis (10),

whereas chlorotoxin inhibits invasion and metastasis (11), cell

death resistance, and angiogenesis (12). Iberiotoxin, another

scorpion toxin, has been shown to balance deregulated cell

proliferation (13), while melittin, a peptide from the honeybee

venom, stimulates DNA damage, activating the intrinsic

pathway of apoptosis and thus causing the death of most

resisting cancer cells (14–18). Another example are

disintegrins from snake venom, which reduce angiogenesis,

tumor inflammation and inhibit invasion and metastasis (19).

These and other venom peptides targeting hallmarks of other

cancers are a topic of several recent review papers (5, 19, 20).

Elsewhere, anti-tumor effects of venom peptides in various types

of cancer at the molecular and cellular level are described (3, 10,

21). In this systematic review, we are focusing on peptides

derived from venoms that affect GB progression and are being

developed as potential anti-GB therapeutics.
1.3 Glioblastoma and resistance
to therapy

As presented by Louis et al. (22), there is a variety of central

nervous system (CNS) cancers. Gliomas are the most frequent

primary brain tumors in adults. The new classification from the

World Health Organization (WHO) distinguishes four grades of

astrocytoma. De novo GB is defined as a diffuse astrocytic glioma

WHO grade IV without mutations in the isocitrate

dehydrogenase (IDH) genes (23). GB is the most common
frontiersin.org
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human glial tumor, occurring in 5 to 7 adults per 100,000 per

year (24). Necrosis, vascular proliferation and pleomorphism are

the main histological features of GB. The most common factor

associated with poor prognosis is diffuse infiltration of highly

invasive single GB cells into the brain parenchyma, which makes

complete resection of the tumor impossible, thus causing

resistance to therapy.

GB stem cells (GSCs) are the second factor responsible for

the high therapy resistance of GB. These cancer stem cells

(CSCs) generally express high levels of DNA damage repair

proteins as well as the ABC family transporters that render GSCs

less vulnerable to radiation and chemotherapy. For this reason,

GSCs are far more resistant to cytotoxic drugs compared to

differentiated GB cells. In addition to their relatively high genetic

stability, the specific location of CSCs in the so-called tumor

“niches” and the hypoxic environment, which causes a low

proliferation rate of CSCs, are also of great importance for

their therapy resistance (25). GSC niches in the brain are often

located in the subventricular zone (26). The brain parenchyma is

a relatively common secondary metastatic site because of its
Frontiers in Oncology 03
permissive microenvironment which consists of brain-specific

stromal cells and the extracellular matrix (ECM) into which

CSCs from other organs can migrate (27). The metastatic

process is triggered by paracrine interactions with CSC

receptors, presumably after acquiring the invasive phenotype

via an epithelial-to-mesenchymal (EMT)-like transition.

Similarly, we assume that GSCs undergo proneural-

mesenchymal transition (PMT) (28) to metastasize to other

organs, not such a rare process, as previously assumed (27).

Taken together, there is a general agreement that prolonged GB

patient survival can only be achieved by combined treatments

targeting GSCs with synthetic drugs, antiangiogenic agents and

other targeted biological therapeutics, gene therapy, promising

immunomodulation (29) and lastly, possibly bioactive peptides.

1.3.1 Current glioblastoma
therapeutic strategies

The current standard therapy for GB includes surgery and a

combination of radiation and the alkylating agent temozolomide

treatment using various protocols (30). However, the beneficial
FIGURE 1

Hallmarks of cancer and suggested types of treatments. In the ring, the hallmarks of cancer, as defined by Hanahan and Weinberg (9), are
presented. These hallmarks have been identified as therapeutic targets for new anti-cancer drugs. Noteworthy, there are examples of peptides
that have an effect on a single cancer hallmark in various cancers and also have an effect on glioblastoma, or have a specific effect on one
cancer. However, a single bioactive peptide can affect more than one hallmark (e.g. invasion and angiogenesis). Blue arrows point at the
hallmarks of cancer that have been affected by venom peptides. The figure was generated using BioRender online tool, adapted from “Hallmarks
of cancer: circle” [BioRender.com (2022)].
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effect of temozolomide is usually, but not always, limited to

patients with MGMT promoter-methylated GB (31). The recent

consensus review of the Society for Neuro-Oncology (SNO) and

the European Association of Neuro-Oncology (EANO) (32)

discusses in detail the current medical treatment options and

supportive care of GB patients. In addition to surgery and

postoperative treatment, radiotherapy and patient-specific

treatment with small molecule chemotherapeutic agents,

monoclonal antibodies targeting either cancer cells or stromal

cells have been described in detail. Regarding the latter,

bevacizumab that target vascular endothelial growth factor

(VEGF) attracting endothelial cells in (MGMT promoter-

unmethylated) recurrent GB, is frequently, but unsuccessfully

used to prevent angiogenesis. Increased invasion of GB cells after

such treatment has been observed and is mainly due to induction

of hypoxic areas within the tumor, being the main obstacle of

bevacizumab efficacy (33).

Immunotherapies may also be considered to overcome the

immunosuppressive GB tumor microenvironment (TME),

which is defined as immunologically ‘cold’. This means that

GB TME lacks effector lymphocytes and is infiltrated with large

amounts of suppressive myeloid cells and regulatory T cells

(Tregs). Immunosuppression can also be caused by

corticosteroids that are applied to reduce tumor-associated

edema, as standard treatment of GB patients (34). Despite

intensive research, current immunotherapy strategies,

including chimeric antigen receptor CAR T cells and natural

killer (NK) cells, oncolytic viruses (OVs) and vaccines, have not

achieved clinically-relevant effects (35). Therapies targeting

specific cytokines (such as TGF-b), receptors (colony-

stimulating factor receptor) or immune checkpoint proteins

(PD-1, PDL-1), all related to GB-immune cells cross-talks,

have not shown much success yet in clinical trials (35).

New therapeutic molecules aimed to overcome GB

resistance are constantly being explored and added to standard

treatment. Anti-cancer bioactive peptides are promising to be

more efficient in targeting GB and to be less harmful as

conventional GB therapies. Peptides used for targeting and

therapy of GB are classified into different categories, such as

tumor-homing peptides, peptides targeting aberrant cellular

signaling pathways and cell-penetrating peptides (36). The use

of peptides from venoms as adjuvants may open new

perspectives for treatment of GB (2, 4, 36).
2 Molecular background of action of
venom peptides on glioblastoma

Bioactive peptides from venoms are known to play their

therapeutic role through different mechanisms of action, which

makes them unique agents compared to existing commercial

drugs (10). They act selectively on cancer cells without being
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harmful to normal cells (37). Various molecular targets have

been proposed to be related to the effect of venom peptides on

GB, including ion channels, integrins and membrane

phospholipids. The effects of venom peptides on GB have also

been related to immunomodulation (Table 1 and Figure 2).
2.1 Ion channels as targets of
venom peptides

Ion channels are specialized transmembrane proteins that

regulate the flow of ions into cells and/or out of cells and their

intracellular compartments, respectively. As a consequence of

ion flow, specific intracellular signaling may be triggered. Ion

channel dysfunction is a key feature of numerous pathologies. In

the human genome, 330 genes encode ion channels, which differ

in their selectivity for ions and their gating mechanism (61, 62).

Ion channels are classified on the basis of the ion they conduct to

chloride (Cl−), sodium (Na+), potassium (K+) and calcium (Ca2

+) channels, or according to their gating characteristics, this is,

how their opening and closing is controlled. Ion channels are

important for cell migration, proliferation, apoptosis and

regulation of gene expression in cancer cells (63). Genome

profiling has shown that genes encoding ion channels are

among the most commonly mutated genes in GB (64, 65).

Abnormal ion channel function has been associated with

migration (66, 67) and proliferation of GB cells (13). For

example, Pollak et al. (68) identified higher expression of

several ion channels in GSCs compared to neural stem cells

(NSCs) that were associated with reduced survival of patients.

Genetic silencing or blocking of these channels reduced the

viability of GSCs, indicating the therapeutic potential of ion

channel blockers in GB.

2.1.1 Cl− channels
Cl− channels play important roles in physiological processes,

such as cell membrane potential maintenance, cell volume

regulation, cell proliferation and intracellular pH control. They

are either voltage-sensitive ClC channels, Ca2+-activated

channels, high conductance channels, cystic fibrosis

transmembrane conductance regulators (CFRTs), or volume-

regulated channels (69).

There is growing evidence that Cl− channels contribute to

tumor development and progression, with the ClC subfamily

playing an important role in GB cell migration and invasion

(70). ClC-2, ClC-3 and ClC-5 are overexpressed in GB. Higher

expression of these three Cl− channels results in increased

transport of Cl− ions into the GB cell leading to changes in

cell shape and size to facilitate cell invasion (71). In a recent

study, an association was demonstrated between high ClC-3

expression and increased GB cell invasion promoted by NF-kB
signaling, that was associated with shorter patient survival (72).
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Chlorotoxin (ClTx), a 36 AA basic peptide isolated from the

venom of the death stalker scorpion Leirus quiquestriatus (73),

was the first identified Cl− channel blocker that impaired GB cell

growth and invasion (38). NMR analysis of ClTx revealed that its

a-helix is connected by three disulfide bonds to antiparallel b-
sheets (39). Due to its low molecular mass, it can cross the blood

brain barrier (BBB) (40) and then specifically binds to malignant

cancer cells. In addition to the voltage-gated Cl− channels, ClTx

interacts also with annexin-2 and the secreted matrix
Frontiers in Oncology 05
metalloproteinase-2 (MMP-2). In GB, MMP-2 is involved in

degradation of the ECM, whereas the ClC-3 ion channel is

associated with regulation of the cell shape and volume, both

facilitating its invasive behavior (66). It has been suggested that

ClTx binds to the MMP-2 in glioma cells (11). This binding

leads to the endocytosis of the complex of ClTx, MMP-2 and

ClC-3 channel, located close to MMP-2, resulting in reduced cell

migration (10). ClTx has been shown to have some anti-invasive

and anti-angiogenic effects per se (41), although it is not
TABLE 1 Bioactive peptides from venoms to resist GB.

Bioactive peptide Molecular
target/

Mechanism

Effect on GB Venom Study References

Chlorotoxin (ClTx) Cl- channels ↓ migration, invasion Death stalker scorpion (Leirus
quiquestriatus)

in vitro,
in vivo,
Translated
into the
clinics

(11, 38–41)

rBmK-CTa Chinese scorpion
(Mesobuthus martensii)

in vitro (42)

AaCtx Southern man-killer scorpion
(Androctonus australis)

in vitro (43)

KAaH1 K+ channels ↓ migration, adhesion Southern man-killer scorpion
(Androctonus australis)

in vitro (44)

KAaH2 ↓ proliferation in vitro

Iberiotoxin (IbTX) ↓ proliferation Eastern Indian red scorpion
(Hottentotta tamulus)

in vitro (13, 45, 46)

AGAP Na+ channels ↓ migration
↓ proliferation
cell cycle arrest

Chinese red scorpion (Buthus
martensii)

in vitro (47, 48)

PnTx3-6 or Pha1b Ca2+ channels ↓ proliferation
↓ viability

Wandering spider
(Phoneutria nigriventer)

in vitro,
In vivo

(49)

PhTx3-3 In vivo

Disintegrins Integrins ↓ invasion Saharan horned viper
(Cerastes cerastes)

in vitro (50)

↑ cytotoxicity
↓ migration
↓ proliferation

Anatolian meadow viper
(Vipera anatolica)

in vitro (51)

RK and RK1 ↓ migration
↓ proliferation

Common yellow scorpion
(Buthus occitanus tunetanus)

in vitro (52)

Melittin Membrane
phospholipids

↓ invasion
↓ proliferation
↑ apoptosis

Honeybee (Apis mellifera) in vitro (18, 53)

Mastoparan 1 (MP1) ↓ viability
↑ necrosis

Wasp(Polybia paulista) in vitro (54)

Mastoparan X (MPX) Yellow hornet (Vespa
xanthoptera)

Mast cell degranulating
peptide (HR1)

Oriental hornet (Vespa
orientalis)

LyeTxl-b ↑ necrosis and necroptosis Wolf spider (Lycosa
erythrognata)

in vitro (55)

Fractions F1–F3, and
subfractions SF1–SF11

Immunomodulation ↑ number of monocytes in blood of xenogeneic mice
and number of macrophages infiltrating tumor

Wandering spider
(Phoneutria nigriventer)

in vitro,
In vivo

(56–58)

LW-9 ↑ cytotoxic and phagocytic activity of macrophages in vitro (59)

SNX-482 ↑ activation polarized (non-activated) M0
macrophages

African tarantula
(Hysterocrates gigas)

in vitro (60)
fr
↓ decreased, ↑ increased.
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cytotoxic to neither cancer cells nor healthy cells. Due to its high

specificity for cancer cells, ClTx has been demonstrated to be

very promising as tumor-labelling and tumor-guiding molecule.

Thus, several drug vehicles for chemotherapy and gene therapy

have been coated with ClTx to achieve specific targeting (40). In

a very recent study, the authors designed a ClTx-CAR T cell to

achieve specific tumor targeting. In this way, by more efficient

GB targeting, tumor regression in orthotopic GB xenograft

models was obtained (74). Radioactively labelled ClTx (125I- or
131I-ClTx) is a promising substance for radiotherapy of

postoperative brain tumors (75, 76). Fluorescently labelled-

ClTx, termed BLZ-100 (a.k.a. tozuleristide or Tumor Paint®),

facilitated demarcation of cancer foci from adjacent normal

tissue (77–79). The recombinant ClTx, designated TM-601,

reached phase III clinical trials (NCT00040573), BLZ-100

phase I trials were successfully concluded (NCT02234297) and

ClTx-CAR T cells are currently in phase I clinical trials

(NCT04214392). There are other scorpion venom peptides

that bind Cl− channels, which are studied for their anti-GB

applications. For example, the ClTx-like peptide rBmK-CTa

from the venom of Chinese scorpion (Mesobuthus martensii),

which has been shown to inhibit the growth and proliferation of

human glioma cells (42) and the AaCtx peptide from the venom
Frontiers in Oncology 06
of southern man-killer scorpion (Androctonus australis), which

prevented invasion and migration of human glioma cells (43).
2.1.2 K+ channels
There are four classes of K+ channels, namely voltage-gated

K+ channels (Kv), which are the largest group of K+ channels,

Ca2+-activated K+ channels (KCa), which are further divided into

big conductance (BK), intermediate conductance (IK) and small

conductance (SK) channels, inward rectifying K+ channels (Kir)

and two-pore-domain K+ channels (K2P) (80).

In cancer, altered expression of K+ channels has been found

and their involvement in the regulation of cancer cell

proliferation and apoptosis have been shown as well (81). For

example, KCa channels, such as KCa3.1, and the BK channels are

overexpressed in 32% of glioma patients and this correlates with

poor survival, due to increased glioma cell invasion (82). Other

types of K+ channels include Kir channels, such as Kir4.1 and

Kir4.2, that are downregulated in glioma cells and Kv channels,

such as hERG (human Ether à go-go Related Gene channel) that

has been shown to be overexpressed in GB (83). Other Kv

channels, e.g. Kv1.5, appear to be associated with prolonged

survival of cancer patients (84).
FIGURE 2

The ways of action of venom peptides on glioma cell. 1.) Venom peptides block different ion channels in glioma cells, such as Cl−, K+, Na+ and
Ca2+ resulting in a decrease in viability, proliferation and invasion of the cells. 2.) Venom peptides (e.g. disintegrins) bind to integrins and inhibit
their interaction with the ECM. This impairs migration and proliferation of glioma cells and induce cell death. 3.) Venom peptides that interact
with phospholipids in the plasma membrane of glioma cells disturb its integrity with the result of perforation of the membrane leading to cell
lysis and death. 4.) The immunomodulatory effects of venom peptides on macrophages may enhance their cytotoxic and phagocytic effect on
glioma cells. The figure was created using BioRender online tool (BioRender.com).
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Different peptides from scorpion, snake, bee and sea

anemone venoms show high affinity toward specific classes of

K+ channels (85). Among these peptides, CSa/b toxins from

scorpion venom have been shown to block K+ channels and to

inhibit various hallmarks of cancer. KAaH1 and KAaH2 are two

peptides from the scorpion venom of Androctonus australis (44)

that block specific Kv channels in GB. KAaH1 has been shown to

block Kv1.1 and Kv1.3 channels, resulting in inhibition of

migration and adhesion of GB U87 cells, whereas KAaH2,

which only slightly affects the Kv1.1 channel, alters EGFR

signaling and decreases U87 cell proliferation (86). These

results support targeting of K+ channels as anti-cancer

therapeutic approach. KAaH1 and KAaH2 may also be used as

specific tools to study the mechanisms of Kv channels in various

types of cancer and especially in GB (86). Another scorpion

venom toxin is iberiotoxin (IbTX), purified from the Eastern

Indian red scorpion (Hottentotta tamulus), which selectively

inhibits BK channels. Studies have shown that IbTX arrests

glioma cells in the S phase of the cell cycle and impairs cell

proliferation (13, 45, 46), whereas other studies found the

opposite these results and showed that BK channels are not

required for cell proliferation (87).

2.1.3 Na+ channels
Two groups of Na+ channels are defined, the voltage-gated

Na+ channels (VGSC or Nav) and the epithelial Na+ channels

(ESC). Nav channels are expressed in the nervous system and

other excitable or non-excitable cells. They are responsible for

the generation of action potentials (88). Nine Nav isoforms are

known (Nav1.1 to Nav1.9), differently spread in the human body.

Nav1.1, 1.2, 1.3 and 1.6 are found in the CNS, whereas Nav1.7,

1.8 and 1.9 are mainly found in the peripheral nervous system.

Nav1.4 and Nav1.5 are expressed in adult skeletal muscle and

cardiac muscle, respectively (89). Relatively high expression

levels of Nav channels have been found in some types of non-

excitable cell, including immune cells, fibroblasts and cancer

cells (90). Multiple isoforms of Nav channels are expressed in

different types of cancer cells (90), whereas their expression has

not been detected in corresponding normal cells. The higher the

expression of Nav channels, the higher was the motility of cancer

cells, their invasiveness and metastatic potential. However, the

mechanism behind these traits and the impact of increased

expression of Nav channels in the cells is still unknown. Gene

expression analyses have shown that Nav channels are

upregulated in GB tissues. In addition, mutations in Nav
channels have been found in at least 90% of GB samples

correlating with shorter patient survival (91).

Recent preclinical data suggest that pharmacological

targeting of Nav reduce invasion and metastasis in breast

cancer mouse models (92), although the utility of these

inhibitors in anti-metastatic therapy has yet to be proven in

clinical studies. One group of venom peptides targeting Na+
Frontiers in Oncology 07
channels are Na+ channel scorpion toxins (NaScTxs) (93). These

peptides are classified into a- and b-type toxins according to

their modes of binding and action (10, 94). So far, only few

NaScTxs have been evaluated for their effects on cancer cells as is

summarized by Srairi-Abid (10). Among them, a peptide AGAP,

isolated from the venom of the Buthus martensii scorpion, was

tested on glioma cells and showed antitumor and analgesic

effects (47). AGAP is a b-type long-chain toxin, consisting of

66 AA, cross-linked by four disulfide bridges (95). Its

recombinant form (rAGAP) inhibited proliferation of SHG-44

human malignant glioma cells by arrest in the G1 phase of the

cell cycle and impaired migration of SHG-44 cells. Recombinant

AGAP has been shown to affect protein kinase B (AKT), p38

mitogen-activated protein kinase (p-38), extracellular signal-

regulated kinases (Erk1/2), c-Jun kinases signaling pathways

and reduced VEGF and MMP-9 expression levels (48). The

authors suggested that AGAP induces these effects by inhibiting

the Nav1.5 channel, causing a disruption of intracellular ion

homeostasis (48).

2.1.4 Ca2+ channels
Voltage-gated Ca2+ channels (VGCC) are transmembrane

proteins that are activated upon membrane depolarization,

allowing Ca2+ to enter the cell and trigger many physiological

events. VGCCs are classified into 6 types, referred to as L-, P/Q-,

N-, R- and T-type, depending on channel conductance, kinetics,

cell distribution and sensitivity to specific blockers (96).

There is increasing evidence that Ca2+ channels play an

important role in cancer cell proliferation, resistance to

apoptosis, drug resistance and invasion (97). GB-related Ca2+

channels include P/Q-type (Cav2.1), N-type (Cav2.2) and T-type

(Cav3.1–3.3) channels, which are abundant in the central

nervous system (98). It has been shown that the T-type Cav3.2

channel is highly expressed in GSCs and that its expression

correlated with patient survival. Blocking these channels by the

FDA-approved drug mibefradil (T-type channel blocker) or

RNAi-mediated attenuation of the channel enhanced the effect

of temozolomide and consequently inhibited cell growth and

induced cell death of GSCs (99). Moreover, the use of tetralol

derivates (T-type Ca2+ channel blockers) remarkably delayed

tumor progression in GB mouse xenografts (100). Targeting the

dysregulated Ca2+ channels may thus represent a promising

chemotherapy for GB treatment.

Venoms are rich sources of potent and selective VGCC

peptide inhibitors. So far, only two peptides targeting VGCCs

have been tested on GB. PnTx3-6 (also Pha1b), a peptide from
the venom of the wandering spider (Phoneutria nigriventer), is a

VGCC blocker with a characteristic ICK structural motif (101).

Without being toxic, it exhibited potent analgesic effect in rat

models of inflammatory and neuropathic pain as well as an anti-

nociceptive effect (20). The effect of PnTx3-6 on GB progression

was evaluated in the study by Nicoletti et al. (49). PnTx3-6 and
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the structurally similar VGCC blocker, PhTx3-3 induced a

significant reduction in cell proliferation and viability of GB

cell lines (M059J, U138MG and U251MG). Moreover, PnTx3-6

and its recombinant form, CTK 01512-2, reduced tumor growth

in mouse GB model and increased the number of activated

astrocytes and microglial cells in the peritumoral area.
2.2 Integrins as targets for
venom peptides

Integrins belong to the family of transmembrane receptors

involved in cellular adhesion with specific elements of the ECM,

such as fibronectin, vitronectin, laminin and collagen. Upon

binding an extracellular ligand, integrin dimers activate

downstream signaling pathways that regulate many cellular

processes, including cell survival, migration, proliferation and

inflammatory activity (102). Integrins are heterodimeric

complexes of non-covalently associated a- and b-subunit.
There are at least 24 integrin receptors. They are composed of

different combinations of the 18 a- and 8 b-subunits (103) and
have different ligand-binding properties and tissue distribution

patterns. The specificity of integrins to interact with ECM

proteins depends on the presence of their conserved tripeptide

motif, usually Arg-Gly-Asp (RGD), but also Met-Leu-Asp

(MLD) or Arg/Lys-Thr-Ser (R/KTS), to which they bind. A

number of integrins are frequently upregulated in various types

of cancers (104), including GB (105). According to The Cancer

Genome Atlas (TCGA) datasets, integrin subtypes, such as avb3
and avb5, are upregulated in GB and associated with poor

patient prognosis. Integrin expression patterns have also been

shown to correlate with GB subtypes. The mesenchymal

subtype, for example, exhibits global integrin overexpression,

except for b8 and a6, which are mainly overexpressed in the

classical GB subtype (105). Integrin a6 was also found to be

highly expressed in GSCs, making this protein a candidate

marker for GSC targeting. Since a6 integrin is involved in the

self-renewal and proliferation of GSCs, it is also a potential

therapeutic target for GB (106). Several integrin-binding

peptides from venoms have shown anti-cancer activity by

binding to integrins, inhibiting their interaction with the ECM

and hence their name – disintegrins (107).

Disintegrins are small (40–100 AA), cysteine-rich and non-

enzymatic peptides that bind to and inactivate integrins on the

surface of cancer cells and normal cells (108). Disintegrins are

mainly found in snake venoms (109) and are usually generated

by proteolytic processing of the snake venom metalloproteases

(SVMP) (108). Of RGD-, MLD- and R/KTS-containing

disintegrins, the first has been most frequently studied (110).

RGD-disintegrins exhibit anti-cancer effects by inhibiting cell

adhesion to the ECM (111) and as a consequence cell migration

and invasion (110). For example, disintegrin from the venom of

the Saharan horned viper (Cerastes cerastes) suppressed invasion
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of GB U87 cells (50). Cytotoxic activity of disintegrins from the

Anatolian meadow viper (Vipera anatolica) venom has been

demonstrated in U87 cells (51). The proposed mechanism

behind the disintegrin-induced cytotoxicity was their binding

to a5b1 and avb3 integrins, which significantly reduced survival,

proliferation and migration of GB U87 cells (IC50 value 0.51 ±

0.04 mg/ml). Radiolabeled disintegrins (131I-VAT) were used to

analyze their uptake by GB U87 cells (112). Based on these

results, it was concluded that 131I-VAT could be employed as an

agent to facilitate imaging of GB. 131I-labeled disintegrin

vicrostatin (131I-VCN) has also been shown to be suitable for

imaging GB. VCN is a recombinant disintegrin derived from

contortrostatin, a disintegrin isolated from the venom of the

snake Agkistrodon contortrix and viperid disintegrin echistatin

(Echis carinatus) (21). Two glioma mouse models, the

orthotopic xenograft glioma model and the syngeneic GL261

mouse model, were used to test 131I-VCN as a brachytherapy

agent. It was found that the therapy prolonged survival of treated

animals (113). Moreover, the combination of temozolomide and
131I-VCN showed better therapeutic results than the

combination of radiotherapy and temozolomide. Therefore,

VCN has been shown as a suitable delivery system to target

GB for radiotherapy. RGD-disintegrin, cilengitide, the first anti-

angiogenic small molecule that selectively blocks integrins avb3
and avb5 (114), completed a phase III clinical trial for treatment

of recurrent glioblastoma (NCT00093964).

From the Buthus occitanus tunetanus scorpion venom, short

peptides targeting integrins, have been recently purified. The

peptides, RK and RK1, 17 and 14 AA in size, suppressed

migration and proliferation of GB U87 cells, possibly by

interacting with integrins a1b1 and/or avb3 (52). RK1 contains

two distinct AA motifs: KSS that interacts with a1b1 and ECD

with affinity for avb3 integrin. The KSS motif does not appear to

be involved in the disintergrin function of RK, whereas the ECD

motif inhibits avb3 to prevent cancer cells from spreading (3).

Both peptides represent the first members of a new group of

scorpion venom peptides with anti-tumor potential and may

open a new perspective in drug development for treatment

of GB.
2.3 Cell membranes as targets of
venom peptides

Integrity of the plasma membrane is critical for functioning

of all living cells (115). Several peptides from venoms can induce

membrane disorganization and loss of its function. Cancer cells

contain a higher percentage of negatively charged lipids in their

membranes compared to normal cells so they interact with the

positive residues of a subset of natural peptides (cationic

amphipathic peptides) more readily, which therefore represent

an effective source of potential anti-cancer agents (116).
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One of those is melittin from the venom of honeybee (Apis

mellifera) (117). Melittin is a phospholipid-interacting and lytic

peptide of 26 AA. It forms a long helical structure with a

hydrophilic N-terminus and a hydrophobic C-terminus.

Melittin triggers cell lysis by forming membrane pores with an

approximate diameter of 4.4 nm, through which then ions and

other small molecules leak, ultimately leading to cell lysis (117).

The anti-tumor activity of melittin has been demonstrated in

various types of cancers (14, 15, 118, 119), including GB (18, 53).

The anti-neoplastic activity of melittin includes inhibition of

invasion, proliferation and induction of apoptosis in cancer cells.

It was shown that it inhibits the PI3K/Akt/mTOR axis in breast

cancer (16), MAPK in melanoma (120), JAK2/STAT3 in ovarian

cancer (121) and the NFkB signaling pathway in lung carcinoma

cells (122). The effect of bee venom (BV) on cell viability,

apoptosis, as well as protease MMP-2 expression and activity

has been found in GB A172 cells (53). After BV treatment, the

authors observed decreased GB cell viability. Moreover,

decreased expression and activity of MMP-2 was observed,

which was associated with a reduction of invasiveness of GB

cells. The exact mechanism by which BV affects MMP-2 is still

unknown. The key mechanism of the anti-cancer effect of BV

has been attributed to melittin, a major component of the venom

(123). In a recent study, the effect of both BV and melittin was

evaluated on various GB cell lines (18). It was shown that the

peptide induced cell death in GB Hs683, T98G and U373 cells,

but also exhibited cytotoxic effects on immune cells of patients

(18). The authors demonstrated an increased ratio of the pro-

apoptotic proteins Bak and Bax in GB cells that led to apoptosis.

Despite the rather non-specific lytic activity and rapid

degradation of melittin in the blood, it is still considered as an

attractive candidate for anti-cancer therapy (124). Its therapeutic

potential is further exploited using gene therapy alone (124), or

combined with a suitable delivery system, such as

nanoparticles (125).

Mastoparan peptides are the most common constituent of

wasp venoms, which adopts a linear, amphipathic a-helical form
and disrupt the membranes, eventually leading to cell death

(101). Mastoparans, MP1 from the wasp Polybia paulista, MPX

from the yellow hornet (Vespa xanthoptera) and mast cell

degranulating peptide HR1 from the Oriental hornet (Vespa

orientalis), showed anti-cancer activity in GB T98G cells (54).

All three peptides consist of 14 AA and adopt an amphipathic

structure when bound to the membrane. MP1 has been shown to

have broad-spectrum bactericidal and potent anti-cancer activity

(126), MPX bactericidal and hemolytic activity (127), and HR1

membrane-permeabilizing activity against bacteria and

erythrocytes (128). All three peptides decreased viability of GB

cells and induced necrotic cell death, characterized by

morphological changes, membrane disruption and an increase

in intracellular Ca2+ levels. The authors confirmed that the

mastoparan activity was the consequence of cell membrane

lysis. A direct relationship between membranolytic efficacy of
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phospholipids, such as phosphatidylserine, in cell membrane

has been suggested (54) and opened new prospects for

mastoparans as anti-cancer compounds.

Another synthetic peptide LyeTxI-b, derived from the Wolf

spider (Lycosa erythrognata) venom with membranolytic activity

showed anti-cancer activity on GB U87 cells (55). LyeTxI-b was

originally synthesized as a potential antibiotic against resistant

bacteria. The peptide has a slightly curved amphipathic helical

structure consisting of 26 AA (129). The authors indicated that

LyeTxI-b induced pore format ion and membrane

permeabilization of GB U87 cells, followed by necrosis and cell

necroptosis (regulated necrosis) (55). Similar to melittin,

LyeTxI-b exhibited unfavorable cytotoxicity, including

hemolysis and immunotoxicity. Despite these limitations, the

peptide represents an interesting prototype to be used as a model

for development of new chemotherapeutics.
2.4 Venom peptides
are immunomodulators

As mentioned above, components of the wandering spider

(Phoneutria nigriventer) venom (PnV), such as PnTx3-6 and

PnTx3-3 peptides, have recently been shown to have anti-GB

effects (49). Structurally and functionally uncharacterized

peptides isolated from the PnV venom, namely fractions F1,

F2, F3 and subfractions SF1–SF11, affected GB cells in vitro (56–

58) and impaired GB progression in a xenogeneic mouse model

in vivo (130). However, in this study, PnV venom also affected

the TME and especially the local tumor immunosuppressive

microenvironment to reactivate anti-tumor immunity, in

particular tumor-associated macrophages (TAMs). In GB,

TAMs account for up to 40% of the total tumor mass (131),

being mostly polarized to the M2 phenotype, which is anti-

inflammatory and tumor-supportive, thus promoting

carcinogenesis and cancer progression. TAMs stimulate

tumor-associated angiogenesis, resistance to chemotherapeutic

agents and suppress anti-tumor immunity responses (132).

Several pharmacological strategies have been proposed to

target TAMs (133), including the use of venom peptides. The

above-mentioned PnV fractions were found to increase the

number of monocytes in the blood of xenogeneic mice and the

number of macrophages infiltrating in the tumor (130). It was

demonstrated that the PnV spider venom fraction LW-9

increased cytotoxic and phagocytic activity of macrophages by

immunomodulation (59). It was suggested that macrophages

were reeducated into a non-TAMs phenotype, resulting in

enhanced destruction of cancer cells.

SNX-482 is another peptide with immunomodulatory

activity. It was isolated from the venom of the African

tarantula (Hysterocrates gigas). The peptide consists of 41 AA

and was previously described as a selective antagonist of R-type
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Ca2+ channels containing the a1E (Cav2.3) subunit (134, 135).

The results of the recent study suggest that SNX-482 activates

polarized (non-activated) M0 macrophages by increasing co-

stimulatory proteins (CD40, CD68, CD80, CD83, CD86),

involved in antigen presentation, whereas an effect of the

peptide on polarized M1 and M2 macrophages was not

observed. SNX-482 was also shown to upregulate the

expression of CCR4 (C-C motif chemokine receptor 4), IFNG

(IFN-gamma), GZMB (granzyme B) and PDCD1 (programmed

cell death protein 1) genes, which are important for anti-cancer

activity. On the other hand, SNX-482 peptide induced

macrophage death and decreased the percentage of dead

cancer cells. The results of this study suggest that the peptide

could be used to activate macrophages for adoptive cell therapy,

although it is not suitable for systemic therapy of GB. It is

possible that the peptide acts differently in other types of cancers,

which remains to be elucidated in further studies (60).
3 Discussion: limitations
and challenges

Bioactive peptides have ushered in a new era of targeted

cancer therapies serving as a model for new drug development.

The use of venom peptides offers many advantages because they

have high specificity and selectivity for specific ion channels and

other receptors on the plasma membrane and membranes of

organelles in cells. Besides, venom peptides are also developed as

tags to target cytotoxic drugs or nanoparticle scaffolds to specific

cell types (6).

Venom peptides are very stable over a wide pH-range and

are usually highly resistant to degradation by proteases, for

example due to unusual post-translational modifications or a

high number of disulfide bonds (6, 136), properties that are

welcome for pharmaceutical applications. Moreover, these

molecules are relatively small what facilitates their penetration

into tissues and binding to molecular targets and receptors to

achieve the desired therapeutic effects. Bioactive peptides have

evolutionarily conserved domains that simplify further

molecular modelling of cognate peptides with increased

selectivity for their cellular and molecular targets in cancer in

the process of selective drug development (137).

On the other hand, there are numerous serious obstacles that

restrict more successful application of bioactive venom peptides

in medicine. One is their pharmacology. To confine their action

just on malignant cells, they have to be delivered precisely to the

tumor (101), in our case to GB, more desirable specifically to

GSCs. The other problem is their complexity and size. Besides

being regularly post-translationally modified, bioactive peptides

usually contain multiple disulphide bonds, which make their

synthesis, needed when repurposed as anti-cancer drugs,

complicated and expensive (136). Also a drawback,
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mechanisms of action of many bioactive peptides is still not

clearly understood at the molecular level (20).

The success rate of the bioactive peptides to pass clinical

trials is still very low. For cancer treatment only 3.4% of

considered venom peptides have entered clinical trials passing

phases I–III (138). However, novel methodologies are developed

that give hope to improve translation from bench to bedside.

Combined approaches of adding bioactive peptides to standard

cancer treatments are to be explored using advanced GB in vitro

models (139). Recent advances in the establishment of GB

organoids (140, 141) that accurately recapitulate the genetic

and molecular features of original tumors, including inter-

patient and intra-tumor heterogeneity, are promising a

brighter future.
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Molecular characterization of the anticancer properties associated with bee venom
and its components in glioblastoma multiforme. Chem Biol Interact (2021)
347:109622 doi: 10.1016/j.cbi.2021.109622

19. Urra FA, Araya-Maturana R. Putting the brakes on tumorigenesis with
snake venom toxins: New molecular insights for cancer drug discovery. Semin
Cancer Biol (2022) 80:195–204. doi: 10.1016/J.SEMCANCER.2020.05.006
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