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Construction and prognostic
value of enhanced CT image
omics model for noninvasive
prediction of HRG in bladder
cancer based on logistic
regression and support vector
machine algorithm

Qing Li, Yang Luo, Dawei Liu, Bin Li, Yufeng Liu and Tao Wang*

Department of Urology, The Fifth Affiliated Hospital, Southern Medical University, Guangzhou,
Guangdong, China
Background: Urothelial Carcinoma of the bladder (BLCA) is the most prevalent

cancer of the urinary system. In cancer patients, HRG fusion is linked to a poor

prognosis. The prediction of HRG expression by imaging omics in BLCA has not yet

been fully investigated.

Methods: HRG expression in BLCA and healthy adjoining tissues was primarily

identified utilizing data sourced from The Cancer Genome Atlas (TCGA). Using

Kaplan–Meier survival curves and Landmark analysis, the relationship between

HRG expression, clinicopathological parameters, and overall survival (OS) was

investigated. Additionally, gene set variation analysis (GSVA) was conducted and

CIBERSORTx was used to investigate the relationship between HRG expression

and immune cell infiltration. The Cancer Imaging Archive (TCIA) provided CT

images that were used for prognostic analysis, radiomic feature extraction, and

construction of the model, respectively. The HRG expression levels were predicted

using the constructed and evaluated LR and SMV models.

Results: HRG expression was shown to be substantially lower in BLCA tumors as

opposed to that observed in normal tissues (p < 0.05). HRG expression had a close

positive relationship with Eosinophils and a close negative relationship with B cells

naive. The findings of the Landmark analysis illustrated that higher HRG was

associated with improved patient survival at an early stage (P=0.048). The
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predictive performance of the two models, based on logistic regression analysis

and support vector machine, was outstanding in the training and validation sets,

yielding AUCs of 0.722 and 0.708, respectively, in the SVM model, and 0.727 and

0.662, respectively, in the LR.The models have good predictive efficiency.

Conclusion:HRG expression levels can have a significant impact on BLCA patients’

prognoses. The radiomic characteristics can successfully predict the pre-surgical

HRG expression levels, based on CT- Image omics.
KEYWORDS

HRG, support vector machine, bladder urothelial carcinoma, logistic regression, prognosis
Introduction

90% to 95% of all urothelial carcinomas are Bladder Urothelial

Carcinoma (BLCA), with muscle wall invasion accounting for 30%

(1). In 2018, 549,393 individuals worldwide were diagnosed with

BLCA, with 199,922 succumbing to cancer (2). Despite the fact that

the age-standardized incidence rate (ASIR) demonstrated substantial

diversity among geographical regions, it is expected to climb over the

coming decade (3). Non-muscle-invasive bladder cancer (NMIBC)

has the highest recurrence rates (60–70%) (4). Stage 4 bladder cancer

has a 5-year survival rate of 15%, while stages 0 and 1 have survival

rates of 98% and 88%, respectively (5). The classical prognostic

indicators of bladder cancer include clinicopathological

characteristics and Neutrophil-to-lymphocyte ratio (NLR) (6–13),

etc., which cannot meet the clinical needs of precision medicine. By

stratifying patients’ prognoses, it is important to continue to

investigate novel prognostic markers and provide new indicators

for tailored precise treatment.

HRG (Histidine Rich Glycoprotein, HeReGulin) is a histidine-

rich Glycoprotein containing two cysteine-like domains. Neuregulin

1 (NRG1) is a growth factor of the heregulin family that is encoded

by the NRG1 gene on chromosome 10q23(14). In cancer, HRG may

be pro-oncogene or suppressor gene. The suppression of NRG1

inhibited the growth of lung cancer cells. Furthermore, NRG1

overexpression has been linked to poor overall survival (OS) in

patients with NSCLC (15). In recent years, HRG fusion has attracted

attention. In cancer patients, NRG1 fusion is linked to a poor

prognosis. Non-small cell lung cancer has the greatest rate of

NRG1 fusion (16) (17), but it’s also prevalent in cancers of the

bladder, ovaries, pancreas, breast, and other malignancies(18).

Patients with NRG1 fusion generally do not respond well to

chemotherapy or immune checkpoint inhibitors (such as PD-1/L1

mab, etc.), and treatment with HER2 inhibitors (afatinib) (19) 、

HER3 inhibitors (monoclonal antibody Seribantumab) (20) or

HER2xHER3 bispecific antibody (Zenocutuzumab) (21) may be

an effective approach. NRG1 gene fusion leads to excessive

accumulation of NRG1 fusion protein, which activates HER3

(ERBB3). HER3 and HER2 bind to form heterodimers, which

then activate downstream signaling pathways (MAPK and
02
mTOR), leading to cell proliferation and differentiation, and

further promoting the occurrence of tumors. More significantly,

effective targeting of the NRG1 pathway might be a potential

therapeutic strategy for metastatic cancer(22).

Radiomic omics data is a kind of high-throughput “image

sequencing” , which can obtain a large number of image

parameters. It is a non-invasive, dynamic detection and the

quantitative reaction of tumor characteristics. Imaging omics has

been widely used in the clinic. Previous research has demonstrated

that it may be used to diagnose and classify bladder cancer at an

early stage, as well as the assessment of residual lesions, lymph node

load, tumor heterogeneity, and microenvironment. Radiomics may

be used to predict TMB in individuals with BLCA.(23). Ultrasound-

based radiomics models may accurately predict preoperative tumor

stage and pathological grading in BLCA (24). Magnetic resonance

imaging radiomics might predict Ki67 expression status and be

linked to survival outcomes of patients with BCa (25). However, no

studies have confirmed that CT radiomics can be used to predict the

expression of HRG in BLCA.

Based on the above factors, this study innovatively proposed a

non-invasive prediction of HRG mRNA expression in bladder cancer

tissues by enhanced CT imaging and evaluated the correlation

between the constructed imaging model and prognosis. At the same

time, the underlying molecular mechanism behind HRG expression

and its relationship with the immune microenvironment were

discussed by integrating bioinformatics analysis. The present study’s

workflow is illustrated in Figure 1.
Materials and methods

Collection of data cohorts and
data processing

The 2 data sets, BLCA-Radiogenomics and TCGA- BLCA were

obtained through the TCIA website (https://www.cancerimagingarchive.

net/) and TCGAwebsite (http://portal.gdc.cancer.gov/), including 94 and

412 samples, respectively. Cases from TCGAwith no survival data (n=3),

overall survival <30 days (n=17), and unknown grade and subtype (n=9)
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were excluded. The remaining qualified samples consisted of a set of 389

samples. Cases fromTCIAwith no post-resection and poor image quality

(n=50) were excluded. The remaining qualified samples consisted of a set

of 389 samples. The final BLCA Radiogenomics data set included 43

cases, Including complete and clear image data. The final TCGA-BLCA

data set included 383 cases, Including clinical and genetic data. The

imaging data for TCGA was retrieved from a variety of sites globally and

is quite heterogeneous in terms of manufacturers, scanner modalities,

and acquisition protocols. The public database was utilized in compliance

with the citations and data usage policy published on the TCGA-TCIA

website’s public porta.

The TCGA database was searched for clinical data related to

patients diagnosed with BLCA as well as high-throughput RNA

sequencing (RNA-seq) information. The fragments per kilobase per

million fragments mapped (FPKM) approach that is included in

HTSeq was used to determine the levels of transcript expression. In

addition, for subsequent investigation, the RNA-Seq gene expression

level 3 HTSeq-FPKM information of 383 patients presenting with

BLCA and the accompanying clinical data were transformed into the

format of transcripts per million (TPM) reads. Because the database is

public, no permission from the local ethics committee was necessary.

R package: mainly ggplot2 [version 3.3.3] (for visualization).
Clinical statistical analysis on prognosis and
landmark analysis

Cox regression and Kaplan–Meier methods were used to

investigate prognostic features, such as OS, using patient data from

the TCGA. The median value was used to determine the truncation

value of high and low HRG expression. The association of

clinicopathological characteristics and HRG expression was

investigated using the Wilcoxon signed-rank sum test and logistic

regression. Multivariate Cox analysis was used to determine the effect

of HRG expression on survival rate and other clinical characteristics.

Landmark analysis plotted KM curves at different time periods, and

defined 12, 24, 36, 48, 60, and 72 months after the diagnosis of bladder

cancer as “early”, and “advanced” from the diagnosis to the end of

follow-up. In the KM curve analyzed by Landmark, the abscissa is

survival time and the ordinate is death risk. P < 0.05 was

considered significant.
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Enrichment analysis and immune
infiltration analysis

The GSVA method was used to enrich HRG expression-related

pathways. The pathway enrichment score of KEGG Pathway gene sets

and Hallmark gene sets in each sample was calculated by GSVA for

the expression matrix of 383 bladder cancer patients in the TCGA-BC

project. “Limma” R package was used to analyze differences between

high and low HRG expression group, visual top 50 pathway, and the

critical value for | t | = 1. In KEGG Pathway gene sets analysis, there

were a total of 185 pathways, and the first 50 pathways were

visualized; Hallmark Gene Sets enrichment analysis showed a total

of 50 pathways, and all of them were visualized.

The gene expression matrix of bladder cancer samples was

uploaded to CIBERSORTx data(https://cibersortx.stanford.edu/),

and the immune cell infiltration of each sample was calculated.

Spearman correlation analysis was used to analyze the correlation

between HRG and immune cell infiltration, and the lollipop chart

was drawn.
Image segmentation and feature selection

The 3D-slice software (v4.10.2; www.slicer.org) was used to

perform regions of interest sketching. A proficient radiologist with

8 years of experience manually drew the 3D volumes of interest

(VOIs). Intraclass correlation coefficients (ICC) were used to evaluate

the consistency of imaging features based on VOI extraction

delineated by two physicians separately. After all the cases were

delineated by one physician, 10 samples were randomly selected by

another physician using the “random number table method”, and

their imaging omics features were extracted. It is generally considered

that ICC>=0.80 is very good, 0.51-0.79 is medium, and less than 0.50

is poor.

mRMR (Maximum relevance, minimum redundancy) and Relief

(Relevant Features) were two feature extractor algorithms utilized to

extract radiomics characteristics from the segmented tumor volumes.

To rank feature significance, the maximum relevance minimum

redundancy (mRMR) method (“mRMR” package in R CRAN) was

utilized. In order to rank input features, the mutual information (MI)

to class labels was maximized. In contrast, the MI with other features
FIGURE 1

The workflow of radiomic in this study.
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was minimized. mRMR was used to rank the features, which is a

viable strategy for optimizing the dependence between the chosen

features and the classification variables while reducing the correlation

of the inner features. Relief (Relevant Features) is a famous filtering

feature selection method. It’s a feature weighting technique that gives

varying weights to distinct features based on the correlation of each

feature and category. Features that have a weight below a particular

level will be eliminated. The top 20 features selected by the mRMR

method and the top 20 features selected by the Relief algorithm

are intersected.
Establishment and evaluation of logistic
regression model

Logistic regression is a generalized regression algorithm that is

widely used in classification problems. Logistic regression transforms

linear regression through the Sigmoid function so that the output

values of the model are distributed between (0,1). Using the stats

package GLM function of the R language, the selected image omics

features were fitted by the logistic regression algorithm, and the

binary classification model of HRG expression prediction was

established. In both the training and validation groups, the

effectiveness of the imaging omics model was assessed (5-fold

internal cross-validation). Accuracy (ACC), specificity (SPE),

sensitivity (SEN), positive predictive value (PPV), and negative

predictive value (NPV) were among the evaluation indices.

Hosmer-Lemeshow goodness of fit test was performed to evaluate

the calibration degree of the image omics prediction model. The

decision curve (DCA) was drawn to demonstrate the clinical benefits

of the imaging omics prediction model. The radiomic model outputs

the probability Rad_score for predicting HRG molecular expression

level; the Wilcoxon test was used to compare Rad_score between

HRG levels and groups.
Establishment and evaluation of
the SVM model

Support vector machine algorithm, using support vector to find

high latitude hyperplane as a decision boundary. Using the R

language “Caret” package, the SVM algorithm was used to model

the selected image omics features to predict HRG gene expression. In

both the training and validation groups, the effectiveness of the

imaging omics model was assessed (5-fold internal cross-

validation). Accuracy (ACC), specificity (SPE), sensitivity (SEN),

positive predictive value (PPV), and negative predictive value

(NPV) were among the evaluation indices. Hosmer-Lemeshow

goodness of fit test was performed to evaluate the calibration degree

of the image omics prediction model. The decision curve (DCA) was

drawn to demonstrate the clinical benefits of the imaging omics

prediction model. The radiomic model outputs the probability

Rad_score for predicting HRG molecular expression level; the

Wilcoxon test was used to compare Rad_score between HRG levels

and groups.
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Clinical data consolidation and time-
dependent ROC

The LR model prediction result Radiomics score was combined

with clinical data, and the threshold value was 0.239 through

survMiner package, transforming Radiomics score into binary

variable RS. At different time points of 12, 24, and 36 months after

the diagnosis of bladder cancer, the corresponding time points were

plotted according to ROC curves to evaluate the difference in RS

expression in predicting patient survival at different time points.
Statistical analysis

For statistical analysis, R (v3.3.3; packages include limma, pROC,

rms, glmnet, and caret) and SPSS (v22; IBM Corp., NY, USA) were

used. Quantitative data were expressed as medians and interquartile

ranges or as means ± standard deviations. The potential differences in

gender, age, and other baseline characteristics between the high-

expression and the low-expression HRG groups were also detected

based on the normality of the samples as determined by the

independent sample t-test and the c2 test. For survival analysis, the

R package ‘survival’ (v2.42-3) was utilized, and Kaplan–Meier analysis

was employed to plot survival curves. The risk variables for BC were

assessed using univariate and multivariate Cox regression models,

with p < 0.05 denoting a significant difference.
Results

Patient characteristics

Table 1 summarizes the clinical features of the 383 individuals

included in our study. According to HRG expression, 0.00724851 was

used as the cut-off value, and the patients were classified into two

groups: those with high HRG expression (n=150) and those with low

HRG expression (n=233). The chi-square test for categorical data and

the t-test for continuous data were used to determine statistically

significant differences. In terms of age, histologic stage, and pathologic

stage, there was no significant difference between the high-HRG

expression and the low-HRG expression groups (P = .544,.443,

and.292, respectively).

We further included several important clinical covariates, such as

whether to receive adjuvant therapy, the number of lymph node

examinations, and the location of the tumor; As shown in the baseline

data table (Table S1), the above variables were evenly distributed

among groups. Then we further incorporated the above covariates for

multifactor analysis, and constructed model II to fully adjust the

confounding factors; As shown in Table S2, the correlation between

the main variable molecule HRG and prognosis is similar to the

original analysis (HR, 95% CI, P value). Considering that there are

still some unknown confounders, we further evaluate the impact of

unknown confounders on the results through E-value; As shown in

Table S3 and Figure S1, the E value of the main variable HRG is 1.876

(1.141-2.592).
frontiersin.org

https://doi.org/10.3389/fonc.2022.966506
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.966506
TABLE 1 Patient characteristics in high- and low-HRG expression groups.

Variables Total (n = 383) Low (n = 233) High (n = 150) p

Age, n (%) 0.544

<60 84 (22) 54 (23) 30 (20)

>=60 299 (78) 179 (77) 120 (80)

Gender, n (%) 1

Female 101 (26) 61 (26) 40 (27)

Male 282 (74) 172 (74) 110 (73)

Pathologic_stage, n (%) 0.292

I/II 123 (32) 76 (33) 47 (31)

III 134 (35) 87 (37) 47 (31)

IV 126 (33) 70 (30) 56 (37)

Histologic_grade, n (%) 0.443

High 365 (95) 220 (94) 145 (97)

Low 18 (5) 13 (6) 5 (3)

Lymphovascular_invasion, n (%) 0.457

NO 121 (32) 69 (30) 52 (35)

Unknown 125 (33) 81 (35) 44 (29)

YES 137 (36) 83 (36) 54 (36)

Histological_subtype, n (%) 0.549

Non-Papillary 260 (68) 155 (67) 105 (70)

Papillary 123 (32) 78 (33) 45 (30)

Extracapsular_extension, n (%) 0.225

NO 79 (21) 53 (23) 26 (17)

Unknown 238 (62) 145 (62) 93 (62)

YES 66 (17) 35 (15) 31 (21)

Pathologic_diagnosis_method, n (%) 0.895

Endoscopic Biopsy 41 (11) 24 (10) 17 (11)

Other 57 (15) 36 (15) 21 (14)

Transurethral resection 285 (74) 173 (74) 112 (75)

Lymph_node_examined_count, n (%) 0.717

¡Ü17 131 (34) 76 (33) 55 (37)

>17 151 (39) 94 (40) 57 (38)

Unknown 101 (26) 63 (27) 38 (25)

Adjuvant_therapy, n (%) 0.509

NO 191 (50) 111 (48) 80 (53)

Unknown 108 (28) 70 (30) 38 (25)

YES 84 (22) 52 (22) 32 (21)

Site_of_resection_or_biopsy, n (%) 0.606

Anterior wall 20 (5) 11 (5) 9 (6)

Lateral wall 61 (16) 40 (17) 21 (14)

Neck_or_Dome_or_Ureteric_orifice 16 (4) 12 (5) 4 (3)

(Continued)
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Survival analysis based on HRG expression

Firstly, we performed an analysis of differences between HRG

groups (tumors vs. normal tissue). The results showed that the Tumor

group’s HRG expression levels were lower compared to the Normal

group, with the difference being statistically significant (P = 0.016,

Figure S2). Kaplan-Meier survival curve was used to show the changes

in survival rates in different groups, where the median survival time

was the survival time corresponding to a survival rate of 50%. The

significance of survival among groups was assessed utilizing the log-

rank test. Patients in the low-HRG expression group had a median

survival time of 31.37 months, while those in the high-HRG

expression group had a median survival time of 62.3 months,

according to our findings. Kaplan-Meier curve showed that HRG

expression had a critical level of statistical significance with OS (P =

0.057, Figure 2A). Landmark analysis was further used to draw the

KM curve of HRG. We further analyzed the OS outcome with

different phenotypes. The OS outcome analysis revealed that age ≥

60 、Lymphovascular_invasion 、higer pathologic_stage and Non

−Papillary subtype correlated with poorer survival results (Figure

S3A-F).

Landmark analysis plotted KM curves at different periods, and

defined 12, 24, 36, 48, 60, and 72 months after the diagnosis of bladder

cancer as “early”, and “advanced” from the diagnosis to the end of

follow-up. In the KM curve analyzed by Landmark, the abscissa is

survival time and the ordinate is death risk. Kaplan-Meier curves
Frontiers in Oncology 06
showed that 72 months after diagnosis as Landmark, higher HRG was

associated with improved patient survival at an early stage (P=0.048).

There was no significant difference in the risk of end-point events

between the high- and low-HRG expression groups at the late stage (P

= 0.746, Figure 2B). For 12, 24, 36, 48, and 60 months after diagnosis

as Landmark, higher HRG was not associated with improved patient

survival at an early stage (Figure S4A-E).

We further included the high-quality cohort study of imvigor210

immunotherapy for bladder cancer. As shown in the KM curve

(Figure S5A), there is a difference in OS between high and low

HRG expression groups. Considering that P=0.083, we further

conducted Landmark analysis. When 16 and 20 months were

selected as landmarks, there was a significant difference in OS

between high and low HRG expression groups before the landmark,

P=0.044 and 0.049, respectively (Figure S5B-5C).
Univariate and multivariate cox
regression analysis

In univariate analysis, HRG was a protective factor for OS (HR =

0.737, 95% CI = 0.538-1.01, P = 0.058) and had a critical level of

statistical significance (Figure 3A). In multi-factor analysis, after

multi-factor adjustment, HRG (HR = 0.716, 95% CI = 0.522-0.983,

P = 0.039) was a statistically significant protective factor for

OS (Figure 3B).
TABLE 1 Continued

Variables Total (n = 383) Low (n = 233) High (n = 150) p

NOS 217 (57) 128 (55) 89 (59)

Posterior wall 46 (12) 26 (11) 20 (13)

Trigone 23 (6) 16 (7) 7 (5)

BMI, n (%) 0.42

~24.9 134 (35) 86 (37) 48 (32)

25.0~ 201 (52) 116 (50) 85 (57)

Others 48 (13) 31 (13) 17 (11)
frontier
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FIGURE 2

Survival Analysis with HRG expression in BLCA. (A). Kaplan-Meier curve showed that HRG expression had a critical level of statistical significance with OS
(P =0.057); (B). With 72 months after diagnosis as Landmark, higher HRG was associated with improved patient survival at an early stage (P=0.048).
sin.org

https://doi.org/10.3389/fonc.2022.966506
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2022.966506
Correlation analysis of HRG and immune
cell infiltration

The situation of immune cell infiltration in bladder cancer was

analyzed, and the correlation of the main variable HRG with the

degree of Eosinophils invasion was significantly positive (P = 0.007).

The correlation between HRG and B cells naive invasion was negative

(P = 0.044) whereas there was no significant correlation between HRG

and NK cell activated infiltration (P = 0.502). (Figure 4A). We also

analyzed the correlation between various immune cells in bladder

cancer and found that the correlation between Th1 andMonocyte was

significantly negative (r = -0.65376, P = 2.00 E-06) (Figure 4B).
Enrichment analysis of differentially
expressed genes in high- and low-HRG
expression groups

The DEGs enrichment in high/low HRG expression groups in

bladder cancer was analyzed, and it was found that in KEGG gene
Frontiers in Oncology 07
concentration, the high HRG expression group was significantly

enriched in apoptosis and cell cycle signaling pathways, while the

low HRG expression group was significantly enriched in PPAR

signaling pathways. In Hallmark gene concentration, the high HRG

expression group was significantly enriched in G2M checkpoint and

WNT Beta-catenin signaling pathways, while the low HRG

expression group was significantly enriched in fatty acid

metabolism and other pathways (Figures S6A, B).
Feature selection

For the purpose of extracting radiomics features from the

segmented tumor volumes, mRMR (Maximum relevance, minimum

redundancy) and Relief (Relevant Features) were used. The first 20

features selected by the mRMRmethod and the first 20 selected by the

Relief algorithm are intersected. In the end, we kept three features

(Figure 5). ICC values of selected image omics features were all higher

than 0.80 (Table 2).
BA

FIGURE 4

Correlation analysis of HRG and immune cell infiltration. (A). Diagram of immune infiltration and HRG; (B). The correlation between various immune cells.
* represent p < 0.05; ** represent p < 0.01; *** represent p < 0.001.
BA

FIGURE 3

Univariate and multivariate Cox regression analysis. (A). Univariate analysis indicated that HRG was a protective factor for OS. (B). Multivariate analysis
revealed that HRG was a statistically significant protective factor for OS.
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Establishment and evaluation of logistic
regression model

The importance of screened features in the LR algorithm is shown in

Figure 6A. Image omics formula=original_shape_MinorAxisLength*-

0.545712621+original_firstorder_Mean*0.640239708+original_gl

dm_SmallDependenceLowGrayLevelEmphasis*0.489265893+

-0.626646408. Our results showed that the image omicsmodel has a good

predictive effect. As shown by the ROC curve, the AUC value of the

model in the training set is 0.722 (Figure 6B). The AUC value of the

verification set is 0.708 (Figure 6C). The calibration curve shows that the

predicted probability of high expression of HRG is in good agreement

with the real value, which is near the diagonal (Figure 6D). DCA display

model has high clinical practicability (Figure 6E). Rad_score (Radiomics

score) was used to predict HRGmolecular expression level.Wilcoxon test

was used to compare Rad_score between HRG levels and groups.

Rad_score of the training set was significantly different among HRG

groups (P <0.05). Rad_score was higher in HRG high expression

group (Figure 6F).
Establishment and evaluation
of the SVM model

The importance of screened features in the SVM algorithm is

shown in Figure 7A. As shown in the chart, the image omics model
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has a good predictive effect. As shown by the ROC curve, the AUC

value of the model in the training set is 0.727 (Figure 7B). The AUC

value of the validation set is 0.662 (Figure 7C). The calibration curve

showed that the prediction probability of HRG expression was in

good agreement with the real value (Figure 7D). DCA display model

has high clinical practicability (Figure 7E). The AUC value of the LR

model was close to that of the SVM model in the training set. The

AUC value of cross-validation is higher than that of SVM. The AUC

values of the two models did not differ significantly in the Delong test

(training set P = 0.880; Cross-validation p = 0.722), indicating that the

models had high prediction efficiency. The Rad_score of the training

set differed significantly between the two HRG groups (P < 0.05).

Rad_score was higher in HRG high expression group (Figure 7F).
Survival analysis based on RS expression

At different time points of 12, 24, and 36 months after the diagnosis

of bladder cancer, the corresponding time points were plotted according

to ROC curves to evaluate the difference in RS expression in predicting

patient survival at different time points. The AUC value of RS expression

in predicting OS (12 months) was 0.738, as shown by the ROC curve

(Figure 8A). Kaplan-Meier survival curve was utilized to show the

changes in survival rates in different groups, and the log-rank test was

used to evaluate the significance of survival rates among groups. The

survival analysis was performed with the R package “Survival”, and the
TABLE 2 ICC values of selected image omics features.

Feature ICC

original_shape_MinorAxisLength 0.854104406

original_firstorder_Mean 0.997606654

original_gldm_SmallDependenceLowGrayLevelEmphasis 0.866965565
fr
FIGURE 5

The Venn diagram showed the final 3 radiomics features.
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findings were summarized and visualized with the R program

“SurvMiner”. The low-RS expression group had a median survival time

of 8.73 months, whereas the high-RS expression group had a median

survival time of 51.87 months. Higher RS expression was significantly

linked to better OS (P = 0.064, Figure 8B) according to Kaplan-Meier

curves. It can be seen that the KM curve crosses, and the KM curve of

Landmark analysis is further drawn.
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Landmark analysis plotted KM curves at different time periods,

and defined 12, 24, and 36 months after the diagnosis of bladder

cancer as “early”, and “advanced” from the diagnosis to the end of

follow-up. Higher RS was substantially linked to better survival in the

early stage 12 months after diagnosis as Landmark (P = 0.002),

according to Kaplan-Meier curves. Between the RS and survival in

the advanced stage, there was no significant correlation (P > 0.05)
B C

D E F

A

FIGURE 6

Establishment and evaluation of logistic regression model. (A). The importance of screened features in LR algorithm; (B). The model’s AUC value in the
training set; (C). The model’s AUC value in the verification set; (D). The calibration curve displays the probability of high HRG expression; (E). DCA curve
displays high clinical practicability of the model; (F).Rad_score was higher in HRG high expression group. * represent p < 0.05.
B C

D E F

A

FIGURE 7

Establishment and evaluation of the SVM model. (A). The importance of screened features in SVM algorithm; (B). The model’s AUC value in the training
set; (C). The AUC value of the model in the verification set; (D). The calibration curve displays the probability of high HRG expression; (E). DCA curve
displays high clinical practicability of the model; (F).Rad_score was higher in HRG high expression group. * represent p < 0.05.
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(Figure 8C). Kaplan-Meier curves showed that with 24 months after

diagnosis as Landmark, higher RS was significantly associated with

improved survival in the early stage (P = 0.007) (Figure 8D). Kaplan-

Meier curves showed that 36 months after diagnosis as Landmark,

higher RS was significantly associated with improved survival in the

early stage (P = 0.007) (Figure 8E).
Discussion

Because of the invasive nature of BC, a maximum degree of tumor

excision is thought to lead to a better prognosis. As a result, the more

predictive information gathered, the better the clinical decision-

making in the early phases is likely to be. Emerging molecular

biomarkers use gene expression, copy number alterations, and

mutational patterns to classify cancers. In cancer, HRG may be a
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pro-oncogene or a suppressor gene. Non-small cell lung cancer has

the greatest rate of HRG fusion, but it’s also prevalent in cancers of the

bladder, ovaries, pancreas, breast, and other malignancies. Radiomic

biomarkers may be collected non-invasively using conventional

imaging, are easily repeatable over time (delta-radiomic features),

and can assess the total tumor volume. We investigated correlations

between the pre-treatment radiomic BC profile and HRG expression

in this integrated radiomic-molecular investigation of BC. Our

research focused on BC, and we found that lowered HRG

expression levels are associated with a worse prognosis in patients

with BC (p < 0.05) using a Kaplan–Meier analysis of 383 samples

from the TCGA. Our findings revealed that CT features were linked to

alterations in HRG expression levels. To predict HRG expression

levels, we constructed and tested an LR and SMV model.

Age, gender, tumor histological grade, lymphovascular invasion,

and histological subtype were included in the univariate and
B C

D E

A

FIGURE 8

Survival Analysis with RS in BLCA. (A). The AUC value of RS expression in predicting OS (12 months) was 0.738; (B). Kaplan-Meier curves displayed that
higher RS expression was critically associated with improved OS; (C). With 12 months after diagnosis as Landmark, higher RS was associated with
improved early-stage survival significantly (P = 0.002). (D). With 24 months after diagnosis as Landmark, higher RS was associated with improved early-
stage survival significantly (P = 0.007). (E). With 36 months after diagnosis as Landmark, higher RS was associated with improved early-stage survival
significantly (P = 0.007).
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multivariate Cox regression analyses to further investigate the

significance of HRG in the survival of BC patients; the results

revealed that HRG was an independent predictor for poor OS in

BC patients in the multivariate Cox regression analysis (p = 0.039).

However, it is not clear whether HRG expression is related to BC

immune infiltration. As a result, we investigated the association

between HRG expression and the degree of immune infiltration in

BC in a systematic manner. Our study showed that HRG expression

had a close positive relationship with Eosinophils and a close negative

relationship with B cells naive. According to the enrichment analysis

of DEGs, the high-HRG expression group was considerably enriched

in apoptosis and cell cycle signaling pathways in KEGG gene

concentration, whereas the low-HRG expression group was strongly

enriched in PPAR signaling pathways. Therefore, we selected HRG as

the candidate molecule for this study and subsequently constructed

an imaging omics model to further explore the prognostic value

of HRG.

Based on past research, we believe that non-invasive testing that

predicts HRG expression levels is useful for individualized therapeutic

decision-making. Iṅce O etc. applied radiomics features to predict

retinoblastoma-1 mutation status in bladder cancer; the model

yielded an accuracy of 84% (26). Cui Y etc. used CT-based

radiomics to predict the muscle-invasive status of bladder cancer

before surgery. The radiomics model had an AUC (95% CI) of 0.979

(0.935 - 0.996) in the training dataset and 0.894 (0.796 - 0.956) in the

test dataset (27). The predictive performance of the two models in the

current study, based on logistic regression analysis and support vector

machine, was outstanding in the training and validation sets, yielding

AUCs of 0.722 and 0.708, respectively, in the SVM model, and 0.727

and 0.662, respectively, in the LR model. The Delong test revealed no

significant difference in AUC values between the two models (training

set P = 0.880; cross-validation p = 0.722), indicating that both models

are capable of accurate prediction.

To the best of our knowledge, this is the first research to use

enhanced CT noninvasive imaging to predict HRG mRNA expression

in bladder cancer, as well as the association between the imaging model

and prognosis. We showed that imaging biomarkers, such as tumor

fatness and area density (which are morphological features) and median

(which is a statistical category), are predictive of OS in this study. In

addition, among clinical features, age ≥ 60, lymphovascular_invasion,

higher pathologic_stage, and Non−Papillary subtype are statistically

significant predictors of OS. In the clinical practice, BLCA accounts for

90–95% of Urothelial carcinoma(UC). UTUC, defined as a malignancy

arising from urothelial cells in the ureter and/or pyelocaliceal cavities,

accounts for 5–10% of all UC. UC of the bladder and the upper urinary

tract share histomorphological similarities. Hence it would be interesting

to study enhanced CT image omics model for noninvasive prediction of

HRG in UCTC, which would be an promising direction for

future investigation.

Radiomic analysis has emerged as a potential approach for

diagnosing, managing and predicting the survival status of patients

with many cancers. Numerous studies have looked into how this tool

might be used to predict survival and prognosis. The combined model

developed from images of two phases (portal venous and hepatobiliary

phase) of gadolinium-ethoxybenzyl-diethylenetriamine-pentaacetic

acid (Gd-EOB-DTPA)-enhanced MRI might be used to predict the
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VEGF level in HCC (28). Microvascular invasion (MVI) in individuals

with HCC can be predicted using models developed from triphasic CT

(29). In pediatric medulloblastoma, the radiomics signature and

nomogram performed well in predicting progression-free survival

(PFS) (30). Based on radiomic, we constructed two prognostic

models in our study, and our findings suggested that the models had

the same good prognostic power. Rad_score was higher in HRG high

expression group. The imaging omics labels that can be used to predict

HRG molecular expression have been constructed, which has the

prospect of providing new indicators for individualized precision

therapy. In the future, the need for integration of omics and AI-

based features with the already available yet underutilized predictive

biomarkers in BCa and their efficacy in the prediction of the prognosis

and survival is necessary and urgent(31). Furthermore, the future

perspective of integrating the novel mpMRI based criteria from VI-

RADS deserves attention(32-33).

There are a few limitations to our research. Features were

extracted using the default settings of the features’ parameters or as

specified by the documentation for the open-source feature extractors.

Other researchers may come up with different conclusions if they

utilize various image pre-processing parameters, which contain a lot

of variation in image quality, thereby affecting the predictive analysis.

Secondly, only HRG was used for this investigation; other tumor

markers should be investigated further. Lastly, 43 images were

retrieved from TCIA, which was still a limited sample size.

Importing more images from different sources might help the

model become more stable and generalizable.
Conclusion

To conclude, HRG expression levels can have a considerable

impact on the prognosis of patients with BC. The radiomic

characteristics can reliably predict the HRG expression levels before

surgery based on improved CT images.
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HRG expression in tumors vs. normal tissue.
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OS outcome with different phenotypes. The OS outcome analysis revealed that

age≥60 (A) Lymphovascular_invasion (B)、higer pathologic_stage (C) and Non
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−Papillary subtype(D) correlated with poorer survival results. OS outcome did
not correlate with gender (E) and histologic_stage (F).

SUPPLEMENTARY FIGURE 4

Landmark analysis plotted KM curves at different periods. For 12, 24, 36, 48, and

60 months after diagnosis as Landmark, higher HRG was not associated with
improved patient survival at an early stage (A–E).

SUPPLEMENTARY FIGURE 5

Survival Analysis with HRG expression in IMvigor210 cohort. (A). Kaplan-Meier

curve showed that there was a difference in OS between high and low HRG
expression groups (P =0.083); (B). With 16 months after diagnosis as Landmark,

higher HRG was associated with improved patient survival at an early stage
(P=0.044); (C). With 20 months after diagnosis as Landmark, higher HRG was

associated with improved patient survival at an early stage (P=0.049).

SUPPLEMENTARY FIGURE 6

Enrichment analysis of differentially expressed genes between high- and low-
HRG groups. (A). KEGG gene concentration; (B). Hallmark gene concentration.

SUPPLEMENTARY TABLE 1

Clinical covariates in high- and low-HRG expression groups.

SUPPLEMENTARY TABLE 2

Univariate and multivariate regression analysis of clinical covariates.

SUPPLEMENTARY TABLE 3

The E value of HRG and clinical covariates.
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